
WYSIWYG Development of Data Driven Web Applications

Fan Yang
∗

, Nitin Gupta
∗
, Chavdar Botev

∗

Cornell University, Ithaca, NY
{yangf, niting, cbotev}@cs.cornell.edu

Elizabeth F Churchill, George Levchenko, Jayavel Shanmugasundaram
Yahoo! Research, Santa Clara, CA

{echu, georgel, jaishan}@yahoo-inc.com

ABSTRACT
An emerging trend in Social Networking sites and Web portals
is the opening up of their APIs to external application develop-
ers. For example, the Facebook Platform, Google Gadgets and Ya-
hoo! Widgets allow developers to design their own applications,
which can then can be integrated with the platform and shared with
other users. However, current APIs are targeted towards develop-
ers with programming expertise and database knowledge; they are
not accessible to a large class of users who do not have a program-
ming/database background, but would nevertheless like to create
new applications. To address this need, we have developed the
AppForge system, which provides a WYSIWYG application de-
velopment platform. Users can graphically specify the components
of webpages inside a Web browser, and the corresponding database
schema and application logic will be automatically generated on
the fly by the system. The WYSIWYG interface gives instanta-
neous feedback on what users have created and allows them to run,
test and continuously refine their applications. AppForge has been
used to create prototype versions of a variety of applications such
as an event planning system, a recruiting system, an item trading
system and an online course management system. We have also
conducted a small and preliminary user study to identify and fix
some of the usability aspects of AppForge.

1. INTRODUCTION
As the world moves towards Web 2.0, there is an increasing need

to leverage webpages as computing platforms that can enable users
to build their own applications. For example, in Facebook and Ya-
hoo! Groups, different groups of users have different needs, and
it is difficult for these websites to build applications that satisfy all
of these needs. Thus websites are starting to open up their APIs
to their advanced users so that they can build new applications that
can be deeply integrated with the websites, e.g., the Facebook Plat-
form [30], Yahoo! Widgets [34] and Google Gadgets [20].

However, current APIs and tools are primarily targeted towards
developers who have programming and database knowledge. Con-

∗Work done while the author was at Yahoo! Research.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

sequently, they are beyond the reach of the majority of users who
lack this knowledge, but would nevertheless like to create and share
their own custom applications. For instance, members of a book
club in Yahoo! Groups may wish to create a custom application for
managing their club events (since no third party application is avail-
able to satisfy their specific needs), but the group members may not
have the necessary programming expertise to develop this applica-
tion. Put another way, even though there has been a lot of work on
designing languages and tools to simplify application development,
ranging from high level programming languages such as Ruby on
Rails [28] and Hilda [37] to visual programming tools such as Vi-
sual Basic [4] and Oracle Forms [18] to various CASE tools such
as UML [7] and WebML [8], the abstractions that these tools pro-
vide is still too complex for users with limited programming and
database knowledge.

Recently, there has been a flurry of activity on providing online
Web application creation services for advanced users1. Examples
of such websites are Yahoo! Pipes [29], Microsoft Popfly [31],
App2You [2], CogHead [11], Zoho Creator [13], Ning [27], Dabble
DB [14], WyaWorks [36], JotSpot [23] and SalesForce [33]. These
websites allow developers to graphically build web pages and the
associated application logic in browsers, thereby greatly lowering
the bar for building Web applications. However, these systems suf-
fer from at least one of the following three drawbacks, which limit
their applicability and generality.
1. Non-WYSIWYG development environment. Most systems

(e.g., [2], [11], [13], [27], [29], [33], [36]) have at least two
modes: (1) development mode, where developers can edit the
page structure, application logic and/or database schema, and
(2) execution mode, where developers and users can actually
run and test the application. Consequently, developers have to
visualize what they want in the execution mode (i.e., what the
end-users will see) and mentally map these into corresponding
constructs in the development mode, which results in a sig-
nificant impedance mismatch. As a loose analogy, consider
two popular typesetting tools: LaTeX and Microsoft Word. In
LaTeX, users have to mentally map what they want in the fi-
nal document to the corresponding LaTeX commands, while in
Microsoft Word, they directly edit the final document using a
WYSIWYG interface. While both approaches have their ad-
vantages, the WYSIWYG environment is more accessible to a
larger class of users, as also pointed out in [22].

2. Limited support for creating stateful applications with com-
plex structures such as relationships. Some systems (e.g.,

1Henceforth, to avoid confusion with end users, we shall refer to
advanced users as developers; these are not to be confused with
professional developers with programming/database knowledge.

1

163

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

[29], [31]) only support stateless web applications with read-
only operations, while some other systems (e.g., [23]) only sup-
port stateful applications with predefined and restricted struc-
ture. A few systems (e.g., [11], [13], [14], [36]) do support
sophisticated stateful applications, including advanced features
such as relationships between entities, but they require devel-
opers to be familiar with relational database schema design.
As an illustration, consider a book club event planning appli-
cation, which includes information about events, speakers and
attendees, and also the rating provided by each attendee for ev-
ery speaker in the event. In effect, the application state contains
three entities — event, speaker and attendee — and a 3-way re-
lationship with rating information that connects the three enti-
ties. In order to capture this state using the aforementioned sys-
tems, developers have to explicitly create a table that connects
event, speaker and audience, e.g. using foreign key columns,
and also create a column in that table for storing the rating in-
formation. In general, such a process is equivalent to creating
an Entity-Relationship (E-R) graph [9] and translating it to re-
lational tables, which is challenging for developers.

3. Limited support for publishing views over multiple related
entities. Many Web applications need to publish pages with
complex views of the application state, which could include
multiple related entities. For example, in our book club appli-
cation, we may wish to display the audience for each event,
which requires “joining” events with their corresponding par-
ticipants through a relationship. As pointed out in [22], such
join queries in their traditional form are unnatural for average
users. Current systems either do not support the creation of
such views (e.g., [23]) or assume that developers have database
and programming knowledge (e.g. [11], [13], [14], [27], [36]).

To address the above issues, we have developed the AppForge
system, which enables developers to graphically build sophisticated
applications inside Web browsers. AppForge offers the following
advantages over existing systems.
1. AppForge provides a WYSIWYG environment. AppForge

seamlessly integrates the process of page design, application
logic design, schema design, deployment and testing of appli-
cations, which greatly lower the bar for building applications.
As developers interact with the system by changing the pre-
sentation model on web pages, AppForge automatically gener-
ates the underlying database schema and application logic on
the fly. Developers also get instantaneous feedback on pages
when modifications are made to the application logic, database
schema and database queries. This allows developers to test,
run and continuously refine the application as they are con-
structing it. The WYSIWYG interface is especially important
in our setting, since the developers we are targeting at are ex-
pected to constantly make mistakes before producing the de-
sired output.

2. AppForge enables non-programmers to create sophisticated
stateful applications. Developers just need to focus on build-
ing what they want to show in each application page, and App-
Forge automatically infers the entities and relationships in the
underlying database schema. In our book club example, de-
velopers can graphically build forms for entering speakers and
events, and a view for displaying and editing the speaker for
each event. As the pages are being built, AppForge will au-
tomatically generate two entities, Speaker and Event, and a
Presentation relationship between the two entities. The key
technical contribution here is an algorithm that translates a se-
quence of developers actions based on only two simple context-

dependent graphical primitives into arbitrarily complex schemas
in the E-R model. We also prove that this algorithm is capable
of generating a large class of E-R models, including those with
entities, n-way relationships and aggregations.

3. AppForge allows non-programmers to create complex views
over multiple related entities. AppForge provides a new nav-
igation paradigm over (automatically generated) E-R models
called a Schema Navigation Menu. This menu enables devel-
opers to visualize a complex E-R graph as a hierarchical menu
and create views with sophisticated operators such as joins, ag-
gregations and selections, without having to understand the de-
tails of these operators. The key technical contribution here is
an algorithm that generates a Schema Navigation Menu from
an arbitrary E-R graph, and then translates developers actions
on this menu to sophisticated view definitions. We also prove
that this algorithm can generate a large class of nested rela-
tional algebra [1] views, including those with primary-foreign
key joins, nesting and unnesting.

We have used AppForge to prototype a wide range of applica-
tions such as a book club event planning system, a recruiting man-
agement system, an online course management system and an item
trading system. We have also conducted a small user study to test
the usability of AppForge. Based on results of this study, we have
identified and fixed some of the main issues that had confused de-
velopers, and also identified directions for future exploration.

In summary, the main contributions of this paper are:
• A WYSIWYG interface for developing data driven web ap-

plications and an application model for capturing such ap-
plications (Sections 2 and 3).

• Schema Navigation Menu, a hierarchical menu-driven way
of navigating complex E-R graphs, and algorithms to con-
struct the menu from auto-generated database schema and
to translate developers actions on the menu to complex
nested relational algebra views (Section 4).

• A core set of two context-dependent graphical primitives
for schema design, and an algorithm to translate these prim-
itives into complex E-R graphs (Section 5).

• A preliminary user study to evaluate the usability of App-
Forge and identify directions for future explorations (Sec-
tion 6).

2. APPFORGE SYSTEM OVERVIEW
We first provide an overview of the AppForge system architec-

ture before describing the AppForge GUI using a running example.

2.1 System Architecture
Figure 1 shows the architecture of the AppForge System. In the

front-end, AppForge provides a graphical interface for building and
running applications. As developers build an application, the sys-
tem automatically generates the schema and application logic, and
stores this information in the back-end. Developers can run the
application at the same time as they are editing it.

The back-end system consists of two sub-systems: Application
Creation System and Application Runtime System. The Applica-
tion Creation System creates and updates the application model
based on developers’ actions. The application model includes the
specification of page views, application logic and database schema.
The Page View Creation module provides an interface for creating
and updating webpages. Developers’ actions at the front-end for
creating/editing page views are translated into commands in the
Page View Creation module. The Automatic Schema Generation

2

164

Figure 1: AppForge System Architecture

Figure 2: AppForge GUI

module automatically generates the appropriate relational database
schema from page views. Note that in AppForge, building page
views and generating the schema is an iterative process: new views
are built by navigating the existing schema, and the schema is im-
plicitly updated when page views are updated.

The application model created by the Application Creation Sys-
tem is stored in the file system, while the application state is stored
in a relational database system. At start-up time, the Application
Runtime System loads the application model into memory, and then
serves end users’ requests by interpreting the model and issuing
SQL queries over the relational database system.

2.2 AppForge GUI
Figure 2 shows a screen shot of the AppForge GUI. As shown,

the GUI exposes the following abstractions to developers:
- Application. Developers can create and manage multiple ap-

plications. Each application can be pre-populated with a list of
users. For example, in a Yahoo! Group application, the users can
be initialized to be all the members of the group.

- Role. Users of applications can be divided into multiple roles.
Users in different roles can view pages with different content and
allowable actions.

- Page. Users in each role can access a set of pages. Each page
can contain one or more Forms and Views.

- Form. Users can use forms to enter new data. Forms are associ-
ated with the logic needed to update the relevant database tables.
In AppForge, we support many types of form components such
as input fields and drop down boxes.

- View. Users can view and update the application state using

views. By default, views are presented as nested tables, but other
formats such as unnested lists and charts can also be supported.

- Container. Containers corresponds to entities in an application.
Containers are automatically created when developers add new
forms and views to pages. Containers are used as a visual aid and
only developers can see them.

2.3 Running Example
We now illustrate the AppForge GUI using a running exam-

ple. Consider a book club in Yahoo! Groups that organizes reg-
ular events with invited speakers to give presentations on different
books. While there are many event planning sites such as Evite
[17], none of them support the specific features required by the
book club. Consequently, the book club members decide to build
their own customized Event Planning System (EPS).

There are two roles in EPS: organizers and attendees. Organiz-
ers can add candidate speakers, create events, and view registered
attendees and their feedback after each event. Attendees can reg-
ister for an event and provide feedback on each speaker. They can
also volunteer to help speakers in each event, e.g. by providing
transportation.

Using AppForge, members of the group can create such an EPS
easily. We now illustrate this process by building several key pages
for organizers, including the Create Event page (Figure 2), the View
Volunteers page (Figure 9), and the View Comments page (Fig-
ure 13). Note that the following screenshots show all the steps
needed to create these pages, and are thus indicative of the easy-
to-use aspect of AppForge. In the following discussion, assume
that we have already created an application named EPS with a pre-
populated container Users, which contains all book club members,
and a container Speaker, which contains information about speak-
ers.

Create Events Page (Figure 2). Organizers can create new events,
and add/edit speakers and presentation topics for each event (note
that adding speakers and presentation topics associated with an
event updates not just the relevant entities, but also the relationship
between these entities).

1. Create a form named Event with fields Location and Date as
in Figure 3. The resulting form is shown in Figure 4.

Automatic schema updates: a new Event entity (container)
with attributes Location and Date is created.

2. Add a view over the Event container (Figure 4.1)2 and select
the columns to show in the view (Figure 4.2).

3. Click beside the view (Figure 5.1), add a new column named
Presentation of type Speaker, and select columns in Speaker
to show in the view (Figure 5.2).

Automatic schema updates: a 2-way relationship named Pre-
sentation between the Event and Speaker entities is created.

4. Click on nested table for Presentation (Figure 6.1) and add a
new column named Topic (Figure 6.2). The resulting page is
shown in Figure 2. End users can click on the link add >>
under the Presentation column to add speakers to each event.

Automatic schema updates: a topic attribute is added to the
Presentation relationship.

2In the menu, “insert existing view” means inserting a view over
an existing container.

3

165

Figure 3: Adding a form for creating new events. The resulting
form is shown in Figure 4.

Figure 4: Adding a table to show existing events. The resulting
table is shown in Figure 5.

Figure 5: Adding the presentation column to the table. Organizers
can add speakers for presentations. The resulting table is shown
in Figure 6.

Figure 6: Adding the topic column to the presentation nested table.
The resulting table is shown in Figure 2.

Figure 7: Start creating the View Volunteers page by creating a
view over Speaker and Event

Figure 8: Adding the volunteer column to the Event nested table

Figure 9: The View Volunteers Page

4

166

View Volunteers Page (Figure 9). Organizers can view the mem-
bers who volunteered to assist speakers. Volunteers are associated
with each speaker in each event.

1. Add a view over Speaker and Event by navigating from Speaker
to Event in the schema navigation menu (Figure 7.1, 7.2).
The resulting view is shown in Figure 8.1.

2. Click on the nested table for Event (Figure 8.1) and add a
column volunteer of type Users (Figure 8.2).

Automatic schema updates: an aggregation of Speaker and
Event is created, and then a 2-way relationship between the
aggregation and the Users entity is created.

View Comments Page (Figure 13). Organizers can view com-
ments by attendees on event speakers. The view should only show
events that have occurred in the past.

1. Add a view over User, Event and Speaker by navigating
through the schema navigation menu (Figure 10.1) The re-
sulting view is shown in Figure 10.2.

2. Click on the Date column (Figure 11.1) and create a filter
that specifies that the event date is earlier than the current
date (Figure 11.2).

3. Click on the Attend nested table (Figure 12.1) and create a
new column named Rating 12.2).

Automatic schema updates: a 3-way relationship with an at-
tribute Rating that connects Speaker, Event and Users is cre-
ated.

The above examples illustrate how AppForge provides a WYSI-
WYG environment. Developers always view the application the
same way as the end users, and they focus on what they want to
present in webpages while the underlying schema is created/updated
automatically (Figure 14 shows the final schema automatically gen-
erated in our running example). Also using the Schema Navigation
Menu (Figures 4.2, 7.2 and 10.2), developers can easily navigate
through the automatically generated schema and graphically con-
struct complex views (Figures 2, 9 and 13).

3. APPFORGE APPLICATION MODEL
As mentioned in the introduction, two of the key technical con-

tributions of this paper are (a) an algorithm for generating views
based on developers’ actions and (b) an algorithm for generating
the database schema based on page views. In AppForge, the appli-
cation views and schema is captured formally using an underlying
Application Model, which fully characterizes an application. We
now introduce the Application Model and describe the algorithms
in the subsequent sections.

3.1 Background
The Application Model is an extension of the well-known E-R

model [9], which is commonly used to model database entities and
relationships, and the Nested Relational Algebra (NRA) [1], which
is commonly used to represent nested views. We now briefly review
the E-R and the NRA model.

The E-R model models the world in terms of entities and rela-
tionships between entities. Figure 14 shows the database schema
automatically generated for our running example in the E-R model.
Entities are represented as rectangular boxes, e.g., Speaker, Event
and Users, and attributes of entities are represented as ellipses.

Figure 10: Start creating the View Comments page by creating a
view over speaker, event and attendee

Figure 11: Creating a filter to show only past events

Figure 12: Adding a ratings column for each attendee

Figure 13: The View Comments page

5

167

Figure 14: Automatically generated database schema

Figure 15: Flat and Nested Tables

Relationships are represented as diamond boxes, e.g., Presenta-
tion and Comment. Presentation is a 2-way relationship that con-
nects Speaker and Event, which captures the meaning that speakers
present in events. Comment is a 3-way relationships connecting
Speaker, Event and Users, which captures the meaning that an at-
tendee gives ratings for each speaker in each event. In the E-R
model, a relationship and all its participating entities can be treated
as an aggregation for the purpose of taking part in another relation-
ship. For example, the dashed rectangular boxes in Figure 14 is an
aggregation that aggregates Speaker and Event pairs. The aggre-
gation participates as an entity in the Volunteer relationship, which
captures the meaning that a club member can volunteer to help a
speaker who presents in a event.

In AppForge, views are tables in the nested relational model.
The nested relational model extends the relational model by relax-
ing the first normal form assumption i.e. a column can contain a
nested table. It is more flexible than the relational model because
it can model hierarchical data, which are commonly used in Web
applications. The nested relational algebra has two extra operators
compared to the relational algebra: nest (ν) and unnest (µ). νC

groups all the columns other than C based on the value of C. µ is
the reverse operation of ν. As an illustration, in Figure 15, the left
table is a flat table that shows a list of speakers, and the date and
location of the corresponding events. Nesting the table on the name
column (νname) would produce the right table. Columns other than
name are aggregated based on name and form a nested table. The
effect of unnest is the reverse of nest. Unnesting the right table on
the location and the date columns (µlocation,date) would produce
the left table. The schema of nested tables can be expressed as a
nested set of columns. For example, the schema for the right table
in Figure 15 is {name, {location, date}}.

3.2 Application Model
The AppForge Application Model contains the following com-

ponents.
Database Model: It specifies the application state.
• Schema. The database schema is represented as an E-R graph.

Figure 14 represents the automatically generated schema for
our running example.

• Constraints. Besides a database schema, an application can
have additional constraints on valid application states. In our

running examples, users can provide a rating for a speaker in
an event (the 3-way relationship in Figure 14). However, this
relationship only makes sense if the speaker presented in the
event (a 2-way relationship) and the user attended that event
(another 2-way relationship). Such constraints between n-way
and n − 1 (and lower) way relationship are captured in the
application model and enforced by the Application Runtime
System. This aspect is illustrated with an example at the end of
Section 5.2.

Page Model: The page model specifies the content, structure and
presentation of webpages.
• Content and Structure. The content and structure of a view

(and similarly, a form) is specified as a nested relational alge-
bra expression over the E-R graph. For example, the view in
Figure 2 can be defined by the following algebra expression:
νLocation,Date

(ΠLocation,Date,Name,Description,Topic

(Event ./LeftEvent.id=P resentation.eventid

Presentation ./LeftSpeaker.id=P resentation.speakerid Speaker)).
It joins Event and Speaker through Presentation, projects on
necessary columns and nests on columns for Event. The schema
of the view is {Location, Date, {Name, Description, Topic}}.

• Presentation. These capture presentation aspects of views and
forms such as background color, column captions and which
columns are updatable.

As mentioned earlier, the application model is automatically gen-
erated based on developers’ actions such as those illustrated in sec-
tion 2. Specifically, the Page Model is generated by the Page View
Creation module and the Database Model is generated by the Auto-
matic Schema Generation module (Figure 1). Further, the entities
and relationships are mapped to relational tables, and nested rela-
tional algebra queries are converted into SQL queries at run-time.
We now discuss the core abstractions and algorithms used in the
Page View Creation and Automatic Schema Generation modules.

4. CONSTRUCTING VIEWS
The Page View Creation module (Figure 1) constructs views based

on the database schema and developers’ actions. The main chal-
lenge is making this functionality accessible to developers with-
out database and programming knowledge. Specifically, we would
like to enable developers to (a) navigate through a database schema
without exposing the complexity of an E-R graph, and (b) create
complex NRA expressions without exposing the details of NRA
operators such as join and nest.

We address the above two challenges as follows. First, we intro-
duce the Schema Navigation Menu as a visual utility to transform
the E-R graph into a navigational tree menu. Using this menu, de-
velopers can easily navigate an E-R graph. Second, we describe a
set of three graphical primitives for creating and editing NRA ex-
pressions over the schema. We then prove that using only these
three primitives, developers can construct views that correspond to
the large set of NRA expressions with joins on primary/foreign key.

4.1 Schema Navigation Menu
A Schema Navigation Menu is a tree structured menu whose root

is an entity in the E-R graph. The construction of a menu is initi-
ated when a developer selects the root entity (Figures 4.1, 7.1 and
10.1). The options and structure of the menu are determined by the
attributes and relationships among entities in the E-R graph (Fig-
ures 4.2, 7.2 and 10.2). At each level of the menu tree, the list
of checkable options are produced using Algorithm 1. Note that

6

168

this algorithm is recursively invoked on demand for each level of
the Schema Navigation Menu to produce the hierarchical structure
displayed to the developer.

In Algorithm 1, we use term currentStep to denote the entity that
we are currently expanding. It is initialized to be the root entity.
We use term navigationPath of currentStep to represent the list of
entities and relationships through which we have navigated from
the root of the menu tree to currentStep. link represents the rela-
tionship through which we just reached currentStep from its parent
in the menu tree. If the current step is the root entity, link is null.
At each level of the tree, the following list of checkable options are
presented.
• Entity Attributes. The list of attributes in currentStep (line 2).

• Relationship Attributes. The attributes of link are shown as if
they were attributes of currentStep to avoid explicitly exposing
the relationship to developers (line 3). For example, in Figure
10.2, topic, which is an attribute of the Presentation relation-
ship, is shown along with other attributes of Speaker. For each
n-way (n > 2) relationships that currentStep participates in,
we check if navigationPath of the currentStep contains all the
entities that the n-way relationship connects. If so, we show
the attributes of the n-way relationship as well (lines 12-13).

• Navigational Link. If currentStep is connected with other enti-
ties by 2-way relationships, those entities will be shown in the
menu (lines 4-8). For example, in Figure 7.2, Event is shown
under Speaker since they are connected by the Presentation
relationship. If currentStep is connected with an aggregation
through a 2-way relationship, all the entities in the aggregation
will also be included in the menu (lines 4-10). A navigational
link is shown as an expandable item. Selecting this item will
expand the menu to show the options for that entity.

If link participates in a relationship as an aggregation, it is
treated in the same way as currentStep (lines 15-25). For ex-
ample, the Presentation relationship forms an aggregation and
connects with Users through the Volunteer relationship (Figure
14). When navigating from Speaker to Event (link is Presenta-
tion), the option volunteer (Users) is shown under Event in the
menu (Figure 10.2).

When displaying an entity name, we sometimes also include the
relationship name if we can navigate to the same entity through
more than one relationship. For example, in Figure 10.2, when
starting from Event, we can reach Users as attender or volunteer;
the relationship names are used to distinguish these cases.

4.2 Graphical Primitives for Editing Views
AppForge provides the following graphical primitives for devel-

opers to edit views. These primitives are automatically translated
into NRA expressions.
Select Menu Item. From the Schema Navigation Menu, we can
select the following options, each of which updates the underlying
view specification.
• Entity Attributes and Relationship Attributes. Developers can

select what attributes to show in the view. This action corre-
sponds to the projection operator in NRA. For example, in Fig-
ure 4, developers can select which attributes of Event are to be
shown in the table.

• Navigational Link. By navigating to a new entity, the underly-
ing view will be updated by joining the new entity through the
navigation relationship. By default, a nested column is created
to show the attributes selected after each navigation. For ex-
ample, if we navigate from Speaker to Event and then to Users

as in Figure 10.1, and select attributes to show along the way,
the view will be created by joining the three entities through
the Presentation and Attend relationships. Nested columns will
be created for columns of Event and Users, producing the view
shown in Figure 11.

Move up/down columns. Developers can change the nesting struc-
ture of the view by moving columns up and down the view. If
they move a column down, they will be asked which nested col-
umn it should be moved into, or if the system should create a new
nested column. For example, moving down both the Location and
Date columns in Figure 15(Left) into a newly created column called
Event will produce the nested table in Figure 15(Right). Similarly,
moving up the Location and Date columns in Figure 15(Right) will
produce Figure 15(Left).
Create filter. We can limit the data shown in a view by specifying
a filter predicate of the form (column operator value). Operator can
be any comparison operators supported by the underlying database
system. Developers can input a constant value or select from a list
of context variables supported by the system e.g., the current date.
Figure 11 shows an example filter that selects past events.

Input : currentStep : The current entity being expanded
link : The relationship through which currentStep

was reached
Output: Items : List of options that can be selected by

developers for currentStep
AttrForNextStep link, currentStep1

Items = currentStep.attributes2
Items += link.attributes3
foreach relationship r that currentStep is involved in do4

if r is 2-way relationship then5
nextStep = r.otherSide(currentStep)6
if nextStep is not an aggregation then7

Items += nextStep8
else9

Items += all entities in the nextStep10
aggregation

11

else if navigationPath of currentStep contains all12
entities participating in r then

Items += r.attributes13
14

if link forms an aggregation Agg then15
foreach relationship r that Agg is involved in do16

if r is 2-way relationship then17
nextStep = r.otherSide(Agg)18
if nextStep is not an aggregation then19

Items += nextStep20
else21

Items += nextStep.allEntities22
23

else if navigationPath of Agg contains all entities24
participating in r then

Items += r.attributes25
26

27

28
Algorithm 1: Algorithm for transforming a database schema into
a Schema Navigation Menu. The algorithm specifies how to gen-
erate options for each step in the menu tree.

7

169

4.3 Expressiveness Theorem
We now formally characterize the set of NRA views that can be

constructed using AppForge. For ease of exposition, we assume a
simple translation from the E-R model to the relational model that
maps each entity and each relationship into a separate table.

Definition 1 Let R be a n-way (n ≥ 2) relationship that relates
entities A1..An, and let e1 and e2 be nested relational algebra ex-
pressions whose output schema contains the ids of A1...Am and
Am+1...An (1 ≤ m ≤ n), respectively. We define operators:

• e1 ./R(A1...Am;Am+1...An) e2

= e1 ./(R.A1id=A1.id...∧R.Amid=Am.id) R

./(R.Am+1id=Am+1.id...∧R.Anid=An.id) e2.

• e1 ./leftR(A1...Am;Am+1...An) e2

= e1 ./left(R.A1id=A1.id...∧R.Amid=Am.id) R

./(R.Am+1id=Am+1.id...∧R.Anid=An.id) e2.

where ./b and ./leftb are the join and left join operators, respec-
tively, and b is the joining condition.

Intuitively, the two operators represent the join and left join based
on foreign key and primary key between two entities that are con-
nected by a relationship. For the rest of the paper, we interpret the
left join operator as being right associative, i.e., A ./left B ./left

C = A ./left (B ./left C).
The following definition defines the set of NRA expressions that

can be constructed using AppForge.

Definition 2 E is recursively defined as follows:

• For every entity en, en ∈ E

• If e ∈ E, then Πce ∈ E, σpe ∈ E, µce ∈ E and νce ∈ E,
where p is a logical expression on columns in schema of E. c
is columns in schema of E.

• If e1, e2 ∈ E, then e1 ./R(A;B) e2 ∈ E and e1 ./leftR(A;B)

e2 ∈ E, where A, B are sets of entities.

Theorem 1 Algorithm 1 in conjunction with the graphical primi-
tives in Section 4.2 can construct all and only expressions in E

Proof Sketch: Without loss of generality, we assume that all the
attribute names are unique. We first inductively prove that all the
expressions that can be constructed using the AppForge graphical
primitives are in E. Assume that expressions e, ẽ ∈ E are con-
structed using a sequence of AppForge graphical primitives, and
after applying another primitive, we get a new expression e′. We
need to show that e′ ∈ E. If the operation applied is:
• Select Menu Item.
(a) Entity or Relationship Attributes If we select a set of at-

tributes m shown in the menu, then e′ = Πme

(b) Navigational Link. If we navigate through a link from entity
n (e is an expression over n), and reach entity m (ẽ is an
expression over m) by following the link r, and then e′ =
e ./leftr(m,n) ẽ

• Move up/down columns. Let NODE(t) represent the nested
table that contains t as an attribute, ATTR(T) represent all the
attributes of table T , NS(T) represent the schema for nested
table T , and PARENT (T) represent the table that contains
the nested table T as a column. Assume that we want to move
column t, and T1 = NODE(t). So, we have t ∈ NS(T1).

(a) Move up columns: We can move t out of the nested column
to the upper level in the table. Let T2 = PARENT (NODE(t)),
where T2 is the destination we want to move t to. The result-
ing expression would be e′ = e[νNS(T2)−{NS(T1)} →
νNS(T1)∪{t}−{NS(T2)−{t}}]

(b) Move down: We can move t down to an existing nested col-
umn or create a new nested column. In the former case, as-
suming T2 is the schema tree for the nested column we want
to move t into, e′ is e[νNS(T1)−{NS(T2)} →
νNS(T1)−{t}−{NS(T2)∪{t}}]. In the latter case, e′ is
e[νNS(T1)−{NS(T2)} → νNS(T1)−{NS(T2)}νNS(T1)−{t}]

• Create filter. We can create a filter as a boolean predicate p
then e′ = σpe

So after each graphical command, the resulting expression is still
a valid expression in E.

Next, we inductively prove that for every expression in our al-
gebra E, we can construct it using the set of graphical primitives.
Assume we can construct e1, e2 using graphical commands, let e
be an expression built from e1, e2 by following the inductive steps
in Definition 2.
• If e = en, where en is a relation, we can construct e by select-

ing en as the root entity or by navigating to en.

• If e = Πce1, we can construct e by selecting the set of at-
tributes c from the menus for the table corresponding to e1.

• If e = σpe1, we can construct e by creating a filter p on the
table corresponding to e1.

• If e = µce1, we can construct e by moving the columns c down
in the table corresponding to e1.

• If e = νce1, we can construct e by moving the columns c up in
the table corresponding to e1.

• If e = e1 ./leftR(A,B) e2, we can find an attribute of A in
columns/nested columns of e1. We start navigation from that
column and reach B through link R. The we can construct e2

using graphical commands based on the inductive assumption.

• If e = e1 ./R(A,B) e2. Since we can use the left join operator
and the not NULL predicate to represent the join operator, we
can use the previous procedure with an extra predicate B.id is
not NULL to create e = e1 ./R(A,B) e2.

Besides proving the expressiveness of the UI operators, Theorem
1 also illustrates how views (NRA expressions) can be constructed
through UI operations.

5. AUTOMATIC SCHEMA GENERATION
In the previous section, we described how developers can graph-

ically construct arbitrarily complex views over a given database
schema. However, constructing a database schema itself is not
an easy tasks for developers. To address this issue, the Automatic
Schema Generation module automatically generates complex schemas
based on just two simple developers actions: (a) creating forms/views,
and (b) adding columns to forms/views. The graphical context (po-
sition in form/view) of these two actions is powerful enough to
construct arbitrarily complex schemas, including those with n-way
relationships and aggregations.

The schema generation algorithm is given in Algorithm 2 . We
now walk through this algorithm for the different cases.

5.1 Editing Entities
Entities are created when developers add new forms or views

(lines 1-3). The columns of tables and fields of forms map to the
attributes of entities. The attributes types information are inferred

8

170

/* Triggered when developers add new
forms/views to a page. */

Input : name : Name of the new form/view
attrs : Columns in the new form/view

onNewFormViewEvent name, attrs1
AddEntity (name, attrs)2

3
/* Triggered when developers add columns

to views. */
Input : target : The position in the view where the developer

clicks
newAttrName : The name of the column to be added
type : The type of the column to be added

onAddAttributeEvent target, newAttrName, type4
if target is a non-nested column of the view or beside the5
view then

targetEntity = root entity of the view6
else7

targetEntity = the entity that the target column belongs8
to

if NOT isEntity(type) then9
if targetEntity is root entity then10

AddAttribute (targetEntity, newAttrName, type)11
else12

navigationPath = getNavigationPath(targetEntity)13
if navigationPath contains two entities then14

r = the relationship that connects the two15
entities in navigationPath

else if exists relationship r that connects all16
entities in the navigationPath AND exists a
constraints that r depends on all 2-way
relationships in the navigationPath then

r = getTheRelationship(navigationPath)17
else18

r = createRelationship(navigationPath)19
create a constraint that r depends on all 2-way20
relationships in navigationPath.

AddAttribute (r, newAttrName, type)21

22

else23
if targetEntity is root entity then24

createRelationship (targetEntity, getEntity(type),25
newAttrName)

else26
navigationPath = getNavigationPath(target)27
if exists an aggregation over the navigationPath)28
then

aggregation = getAggregation(navigationPath)29
else30

aggregation =31
createAggregation(navigationPath)

createRelationship(aggregation, getEntity(type),32
newAttrName)

33

34

35
Algorithm 2: Algorithms for automatically generating a database
schema when editing views

from the types of graphical components used in the page. The type
can be a primitive type such as link, text, email and form compo-
nents, or it can be an entity type (Figure 5.2) . Developers can edit
forms and views later by adding fields and columns. If developers
add new columns of a primitive type by clicking besides the view
or on the top level columns of the view, new attributes will be added
to the root entity of the view (lines 5-6, 10-11).

As an illustration, in Figure 3, adding a form automatically cre-
ates an Event entity (Figure 4) and the fields in the form are mapped
to the attributes of the entity. An id attribute is also automatically
created, which is the key for the entity.

5.2 Editing Relationships
Relationships are created when developers create and edit views

that show information about multiple entities.

5.2.1 2-way Relationships without Aggregation

Figure 16: The schema generated for the Create Event page
(Figure 2)

When a developer adds a new column of type entity to a table, a
new relationship is created to connect the entity associated with the
table and the entity associated with the new column (lines 24-25).
As an illustration, in the Create Event page (Figure 2), creating a
view over Event and then adding a new column to the view (Figure
5.1) of type Speaker (Figure 5.2), creates a 2-way relationship that
connects Speaker and Event.

Attributes can be added to 2-way relationships as follows. When
developers add a primitive type column to a nested table, the system
adds a new corresponding attribute to the relationship between the
top level and nested entities (lines 13-14, 21). For example, in Fig-
ure 6, adding the topic column to presentation adds a corresponding
attribute to the Presentation relationship because this relationship
relates Event and Speaker. Note that this is the desired semantics:
topic is associated with a speaker-event pair. The schema generated
for the Create Events Page is shown in Figure 16.

5.2.2 2-way Relationships with Aggregation
Adding a column of type entity to a nested table establishes a re-

lationship between an entity and the aggregation of the related en-
tities in the view (lines 28-32). As an illustration, in the View Vol-
unteers page (Figure 9), adding a volunteer column of type Users

Figure 17: The schema generated for the View Volunteers page
(Figure 9)

9

171

to the event nested table creates an aggregation of the Event and
Speaker entities, and a 2-way relationship between the aggregation
and the Users entity. Note that this is the desired semantics be-
cause volunteers are associated with speaker-event pairs. Figure 17
shows the schema generated from the View Volunteers page.

5.2.3 n-way relationships

Figure 18: The schema generated for the View Comments page
(Figure 13)

n-way relationships are created by adding primitive type columns
to nested tables in views. If an n-way relationship that relates all
the entities in the nested view already exists, then an attribute cor-
responding to the new column is added to the relationship; else the
n-way relationship is first created (lines 16-21) before adding the
new column. In the View Comments page (Figure 9), adding a new
column rating to the nested table for attendees creates a three way
relationship between users, events and speakers as in Figure 18,
and adds the rating attribute to the relationship. Note that this is
the desired semantics because the rating is associated with a group
member for a particular speaker in a specific event.

Note, however, that there are some semantic constraints that are
not captured here in the E-R graph. The 3-way relationship should
only connect users that attend the event and speakers that present
in the same event. Put another way, the 3-way relationship should
connect users, events and speakers that are connected by the two 2-
way relationships through which we construct the underlying view
(Figure 7.2). Such constraints cannot be captured by participation
constraints in E-R model because they related multiple inter-related
relationships. So besides the 3-way relationship, AppForge will
also create a data constraint that the 3-way relationship depends
on the two 2-way relationships. By saying that a n-way relation-
ship depends on a set of n − 1 2-way relationships, we mean the
instances of entities that are connected by the n-way relationship
also have to be connected by the n− 1 2-way relationships.

5.3 Expressiveness Theorem
We now formally characterize the set of E-R graphs that can be

constructed using AppForge. An E-R graph can be formally de-
fined as a graph G = (EN, RE, E) where EN represents the set
of entities and RE represents the set of relationships. E represents
the set of edges that connects entities with relationships and edges
that connects relationships with relationships as in the case of ag-
gregations, i.e., E ⊆ {(u, v)|u ∈ EN and v ∈ RE or u ∈ RE
and v ∈ RE}.

Definition 3 For e1, e2 ∈ EN ∪RE, we define R(e1, e2) =
{r|(e1, r) ∈ E and (e2, r) ∈ E}. R(e1, e2) is the set of 2-way
relationships that exist between entities/aggregations e1 and e2.

Definition 4 For EA ⊆ EN ∪ RE and |EA| > 2, we define
M(EA) = {r|∀e ∈ EA∃(e, r) ∈ E}. M(EA) is the set of n-way
(n = |EA|) relationships that connects all the entities/aggregates
in EA.

The following theorem fully characterizes the set of E-R graphs
that can be constructed using AppForge.

Theorem 2 Algorithm 2 generates all and only E-R diagrams that
satisfy the following constraints:

∀EA ⊆ EN∪RE where |EA| > 2, |M(EA)| ≤ Πe1,e2∈EA|R(e1, e2)|
The intuition is that n-way relationship created will depend on

n − 1 2-way relationships, so the number of n-way relationships
that could be created on top of a set of n entities cannot be more
than the product of the number of 2-way relationships between any
2 entities in the set.

6. PRELIMINARY USER STUDY OF THE
APPFORGE INTERFACE

Given that our primary aim was to support developers who are
not experts in databases, we carried out a preliminary user study to
test our first interface iteration. The user study consisted of three
groups of two people, pairs, who were given three tasks to com-
plete. The tasks were described as follows:

Members of a Yahoo! Group would like to give away unwanted
stuff for free. Please create an application that provides the follow-
ing functionality to members:
1. Post items that they want to give way. Each item includes a

name, a description and the original owner (who posted the
item).

2. List all the items posted by everyone up to now. Each listing
should include the name, description and the owner of the item,
and the list of members who have placed a request for the item.
The current member can add herself to the requesters list.

3. List the items given away by the current member. Each list-
ing should show the name and description of an item, and the
persons requesting the item.

Group 1: Our first pair were two researchers who have advanced
degrees in computer science. Both are actively involved in design-
ing, programming and using databases.

Group 2: Our second pair were both researchers trained with
advanced degrees in computer science, but neither is a database
expert.

Group 3: Our third pair were both experienced computer users.
One trained in computer science, but currently in a managerial posi-
tion with no programming responsibilities; and the other a recruiter
familiar with using complex database-backed web applications, but
with little formal training in computer science.

Groups were given up to an hour to complete the tasks. Each
group was videotaped interacting with the AppForge interface, and
all conversation and questions were recorded. The system devel-
opers were present to listen to the user interactions, with one of
our developers providing advice when needed. Following the trials
the development team watched the videos together, made notes and
excerpted issues from the sessions, and various redesigns of the in-
terface and considerations for the application were generated and
prioritized.

The main finding of our user study was that people who had ex-
tensive database experience found mapping the visual presentation
we offered to the underlying system structure and logic very easy,
completing all three tasks within 20 minutes. Those who were less
experienced with database programming did not find the visual pre-
sentation quite so intuitive. Group 2 had minor issues with termi-
nology and interface presentation, taking slightly longer to com-
plete the tasks, and asking more questions of us.

10

172

Figure 19: Multiple levels of abstractions for developers

Figure 20: Personalization

Group 3 were the most challenged, and for us the most inter-
esting of the groups, as they most closely represent our target au-
dience. Therefore we paid special attention to the issues they en-
countered and have addressed these in our interface redesign.

In particular, Group 3 were confused by the different levels of ab-
straction that they were required to switch between while develop-
ing the application. These levels are illustrated in Figure 19. When
creating/adding pages, AppForge developers are the creators of the
application, while when viewing and interacting with the pages
they have created, they are viewing the pages as members of the
Yahoo! Group. In addition, some pages are non-parameterized as
for all members (Task 1), and others are parameterized pages where
the parameter is the current logged in member (Tasks 2 and 3).
Creating parameterized pages proved confusing, with our Group 3
participants struggling to understand the difference between an in-
stance and a variable in place of an instance. We note that these
issues are commonly noted in research with novice programmers,
and often require careful interface and instruction based scaffold-
ing.

To address this problem, we first redesigned our initial inter-
face to distinguish between the operations AppForge developers
can perform as creators and as the intended end users of the ap-
plications that they create. We put all the operations for creators in
pop-up windows and accessible by right mouse clicks, while all op-
erations for end users were interactive components in the page, e.g.
input fields, buttons. To help AppForge users create parameterized
pages, we developed the personalization pop-up window, Figure
20, to give suggestions for how to personalize the views (Owner
and Requestor are relationships that relate members to items). Our
AppForge developers can now choose to view the parameterized
pages as a specific user (Figure 21, an instantiated page) which
effectively fills in the parameter with a specific user. Using this
method, the AppForge developer can see what their intended user

Figure 21: Viewing Pages as a Specific User

would see for the page. Essentially, we developed a WYSIWYG
and also a WYSIWTS (what you see is what they see) interface.

In addition to the problem discussed above, we developed a clearer
model of containers and views. In our original implementation, we
tried to hide the concept of the containers from AppForge users,
but our Group 3 participants got confused when multiple forms or
views were mapped from the same container. We therefore exposed
the notion of containers as collections of data in the visual interface.

Other minor issues exposed during the user study include con-
fusion with the database terminology and poorly delineated inter-
active areas in the application window (right-clicking on different
areas of the application interface revealed different menus). We
have addressed these by creating an introductory help panel and a
wizard where terms are explained in a Tool-Tips fashion. We also
created visual indications of interactive/non-interactive areas, and
created consistent menu pop-up and selection.

Having implemented these changes in response to our study re-
sults, we are planning a further user study to assess the effect of our
modifications on AppForge usability.

7. RELATED WORK
Many CASE tools such as UML [7] and WebML [8] have been

developed over the past few decades to help developers build ap-
plications. WebML extends UML with links and operations — ab-
stractions tailored specially for web applications — and provides a
graphical way of specifying the database schema, application logic
and navigational structure of web applications. The main differ-
ence between WebML and AppForge is that WebML separates the
phases for designing the database schema and designing Web page
content. Further, WebML separates the query specification from
the output and hence does not provide WYSIWYG interface for
creating web pages. In contrast, in AppForge, the database schema
is generated implicitly, and changing the queries that populate the
page contents will result in instantaneous changes in web pages,
which allows users to continuously refine the query as they are con-
structing it.

There has been a lot of work on graphically creating SQL queries
such as Query-By-Example [38] ,Visual Query Builder [6], Visual
Query Language [5, 25]. While these approaches hide the SQL
syntax from users, they still expose the full schema in terms of re-
lational tables. This is especially confusing when relationships are
normalized into tables and users are required to use joins to “stitch”
information back together [22]. In contrast, AppForge hide the
complexity of the E-R and the relational models, and instead ex-
poses a simple hierarchal Schema Navigation Menu. Another ma-
jor difference is that AppForge provides a WYSIWYG experience
that is tightly integrated with schema generation.

Forms-based approaches [10, 16, 24] for query interface design
have been proposed to provide users with visual tools to frame
queries and to perform tasks such as database design and view def-
inition. However, like Query-By-Example based methods, they re-
quire the users to deal with joins across multiple normalized tables,
and they are not truly WYSIWYG, which reduces their usability
for our target audience.

In [26], an instantaneous-response interface is proposed to allow
users to continuously refine the query as they are typing the ini-
tial query. By the time the user has typed out the entire query, the
query has been correctly formulated and the results have returned.
We share the same philosophy in making the database more usable.
Our system extends the same WYSIWYG methodology for query
formulation (view creation) to other aspects of creating web appli-
cations such as schema creation and form creation.

Many other commercial website creation tools such as Dreamweaver [15]

11

173

and Frontpage [19] provide a WYSIWYG interface for creating
Web pages. However, they are mainly used for creating static Web
pages, and the backend application server and database have to be
developed separately. Our system take these systems a step further
by providing WYSIWYG development not only for Web pages, but
also for application logic and backend database development.

Zoho Creator [13], CogHead [11], App2You [2] DabbleDB [14],
and Wyaworks [36] provide developers with a form-oriented, drag-
and-drop interface to build data driven Web applications. Sales-
force [33], QuickBase [32] and Instant Application Platform (IAP)
[21] provides extensive solution libraries for developers to cus-
tomize applications to fit their business requirements. While a few
of these systems provide a WYSIWYG environment, and most of
them do not require developers to edit the database schema directly,
they do not provide an abstraction for complex schemas, including
n-way relationships and aggregation, and complex views including
joins, aggregations and nesting.

Ning [27] is a website that allows developers to create and cus-
tomize their own social network portal. While simple customiza-
tion can be performed using templates, more sophisticated cus-
tomization involving new entities and relationships requires ex-
plicit programming. JotSpot [23] is a related website that extends
Wiki [35] with rich structured content, forms [3], and a WYSIWYG
interface. However, it is not designed for general Web applications
with multiple entities and complex relationships. There are also
many other enterprise tools designed to improve developer pro-
ductivity, e.g., SAP Visual Composer [12] and Oracle Forms [18].
While these tools are more powerful, they are mostly targeted to-
wards professional developers.

8. CONCLUSION AND FUTURE WORK
A growing breed of advanced users are increasingly facing the

following dilemma: use a simple graphical tool to build a stripped
down version of an application, or go through a steep learning
curve and build the more sophisticated application they really want.
AppForge tries to provide a solution to this dilemma by expand-
ing the boundary of applications that can be built using a graphical
WYSISYG framework. As we have illustrated, AppForge can be
used to build fairly sophisticated applications, involving complex
schemas and sophisticated page views, without programming or
database knowledge.

We have also conducted a small and preliminary user study to
evaluate the effectness of AppForge. Based on this study, we have
identified some concepts that can be confusing to developers, such
as multiple levels of user abstraction. While we have made some
changes based on this feedback, fully addressing and evaluating
these aspect is an interesting topic for future work. We are also
exploring graphical primitives for capturing more sophisticated ap-
plication logic such as notifications, workflows, and other forms of
information passing between pages (e.g., allowing a user to select
an event from a list and navigate to a new page that shows all the
events that occur on the same day as the selected event).

9. REFERENCES
[1] Serge Abiteboul and Nicole Bidoit. Non first normal form

relations: An algebra allowing data restructuring. J. Comput.
Syst. Sci., 33(3):361–393, 1986.

[2] App2You. http://app2you.com/site/.
[3] Form Assembly. http://www.formassembly.com/.
[4] Visual Basic.

http://msdn2.microsoft.com/en-us/vbasic/default.aspx/.

[5] Francesca Benzi, Dario Maio, and Stefano Rizzi. Visionary:
a viewpoint-based visual language for querying relational
databases. Journal of Visual Languages and Computing,
1999.

[6] Active Query Builder. http://www.activequerybuilder.com/.
[7] Rainer Burkhardt. UML: Unified Modeling Language.

Addison-Wesley, 1997.
[8] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web

modeling language (webml): a modeling language for
designing web sites. In WWW’00, 2000.

[9] Peter P. Chen, editor. Entity-Relationship Approach to
Information Modeling and Analysis, Proceedings of the
Second International Conference on the Entity-Relationship
Approach (ER’81). North-Holland, 1983.

[10] J. Choobineh, M. V. Mannino, and V. P. Tseng. A form-based
approach for database analysis and design. In CACM, 35(2),
1992.

[11] CogHead. http://www.coghead.com.
[12] SAP NetWeaver Visual Composer.

https://www.sdn.sap.com/irj/sdn/visualcomposer.
[13] Zoho Creator. http://creator.zoho.com/index.jsp?serviceurl=
[14] DabbleDB. http://dabbledb.com/.
[15] Adobe Dreamweaver.

http://www.adobe.com/products/dreamweaver/.
[16] D. W. Embley. Nfql: The natural forms query language. In

ACM Trans. Database Syst., 1989.
[17] Evite. http://www.evite.com/.
[18] Oracle Forms. http://www.oracle.com/.
[19] Microsoft Office FrontPage.

http://msdn2.microsoft.com/en-us/office/aa905421.aspx.
[20] Google Gadgets. http://www.google.com/apis/gadgets/.
[21] Interneer. http://www.interneer.com/.
[22] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh

Jayapandian, Yunyao Li, Arnab Nandi, and Cong Yu.
Making database systems usable. In SIGMOD ’07, 2007.

[23] JotSpot/Google. http://www.jot.com.
[24] K. Mitchell and J. Kennedy. Drive: An environment for the

organized construction of user-interfaces to databases. In
Interfaces to Databases (IDS-3), 1996.

[25] N. Murray, N. Paton, and C. Goble. Kaleidoquery. A visual
query language for object databases. In Advanced Visual
Interfaces, 1998.

[26] A. Nandi and H. V. Jagadish. Assisted querying using
instant-response interfaces. In SIGMOD, 2007.

[27] Ning. http://www.ning.com/.
[28] Ruby on Rails. http://www.rubyonrails.org/.
[29] Yahoo! Pipe. http://pipes.yahoo.com/pipes/.
[30] Facebook Platform. http://developers.facebook.com/.
[31] Microsoft Popfly. http://www.popfly.ms/.
[32] QuickBase. http://www.quickbase.com/p/home.asp.
[33] Salesforce. http://www.salesforce.com/.
[34] Yahoo! Widgets. http://widgets.yahoo.com/workshop/.
[35] Wiki. http://www.wiki.org/.
[36] WyaWorks. http://www.wyaworks.com/.
[37] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald,

and Johannes Gehrke. Hilda: A high-level language for
data-drivenweb applications. In ICDE ’06.

[38] M. M. Zloof. Query-by-example: the invocation and
definition of tables and forms. In VLDB, 1975.

12

174

Appendix A:
In this appendix, we will prove Theorem 2. An E-R graph G can

be represented as (EN, RE, E), where EN represents the set of
entities and RE represents the set of relationships. E represents
the set of edges that connects entities with relationships and edges
that connects relationships with relationships as in the case of ag-
gregations, i.e., E ⊆ {(u, v)|u ∈ EN and v ∈ RE or u ∈ RE
and v ∈ RE}. Theorem 2 fully characterizes the set of E-R graphs
that can be constructed using AppForge.

Theorem 2 Algorithm 2 generates all and only E-R diagrams that
satisfy the following constraints:

∀EA ⊆ EN∪RE where |EA| > 2, |M(EA)| ≤ Πe1,e2∈EA|R(e1, e2)|

Proof: We first prove that all schemas constructed by graphical
primitives in Algorithm 2 are E-R graphs that satisfy the above con-
straints inductively. For the rest of this proof, all the line numbers
we refer to are for Algorithm 2.

Assume the E-R graph G are constructed using a sequence of
graphical primitives in Algorithm 2 and G satisfies the above con-
straint. After applying another operation as follows, we get a new
E-R graph G′ and we need to show G′ is also a E-R graph satisfy-
ing the above constraint. If the operation applied is:

• Create a form/view N . G′ is formed by adding entity N to G.
For ∀EA′ ⊆ EN ′ ∪RE′, |EA′| > 2, if N 6∈ EA′, the con-
straints hold based on the induction hypothesis. Otherwise,
|M(EA′)| = |M(EA′ −N)| and Πe1,e2∈EA′ |R(e1, e2)| =
Πe1,e2∈EA′−N |R(e1, e2)|, so the inequation still hold. There-
fore G′ is still a valid E-R graph with the constraint satisfied.

• Adding a new column to a view. According to Algorithm 2,
the operations can result in following updates to the schema
based on where the column is added to.

– A new attribute is added to an entity (Line 11) or to a
relationship (Line 21). Both sides of inequation are left
unchanged. So it still holds.

– A new n-way relationship r is added (Lines 19, 20). Let
S(r) be the set of entities/aggregations that r connects.
Based on Lines 16-18, the new n-way relationship r can
be created only when there are no other n-way relation-
ship that connects all entities in the navigationPath and
also depends on all the 2-way relationships in the naviga-
tionPath. This means |M(S(r))| < Πe1,e2∈S(r)|R(e1, e2)|
holds in G. In G′, M(S(r)) is increased by one. The
inequation in the constraint would still hold. For other
EA′ ⊆ EN ′ ∪ RE′, both sides of the inequation are
unchanged thus the constraint holds trivially.

– A new 2-way relationship is added (Line 25). ∀EA ∈
EN ∪ RE, M(EA) is unchanged while the right side
can only be increased. Thus the inequation still holds.

– A new aggregation (Line 31) and a 2-way relationship
(Line 32) is added. ∀EA′ ∈ EN ′ ∪ RE′, M(EA′)
is unchanged while the right side can only be increased.
Thus the inequation still holds.

Next we prove for every E-R graph satisfying the given con-
straints can be constructed by a sequence of graphical primitives
according to Algorithm 2.

We can use the following sequence of operations to construct a
given E-R graph G = (EN, RE, E). First, for every EN , we
construct a corresponding view (Lines 1-3). Next, for all r ∈ RE
and r is a 2-way relationship connecting entity A and entity B, we

add a column of type B to the view for A (Line 25). Then for all
r ∈ RE and r is a 2-way relationship connecting entity A and ag-
gregation B, we first create a view for entities and relationships in
B and then add a column of A to the view (Lines 31-32). Last, for
all r ∈ RE, r is a n-way relationship and r depends on n-1 2-way
relationships R, we first create a view for entities and relationships
in R and then add an attribute to the view (Lines 19-21).

13

175

