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ABSTRACT

Past research on probabilistic databases has studied the
problem of answering queries on a static database. Ap-
plication scenarios of probabilistic databases however often
involve the conditioning of a database using additional in-
formation in the form of new evidence. The conditioning
problem is thus to transform a probabilistic database of pri-
ors into a posterior probabilistic database which is material-
ized for subsequent query processing or further refinement.
It turns out that the conditioning problem is closely related
to the problem of computing exact tuple confidence values.

It is known that exact confidence computation is an NP-
hard problem. This has led researchers to consider approx-
imation techniques for confidence computation. However,
neither conditioning nor exact confidence computation can
be solved using such techniques. In this paper we present ef-
ficient techniques for both problems. We study several prob-
lem decomposition methods and heuristics that are based on
the most successful search techniques from constraint satis-
faction, such as the Davis-Putnam algorithm. We comple-
ment this with a thorough experimental evaluation of the
algorithms proposed. Our experiments show that our ex-
act algorithms scale well to realistic database sizes and can
in some scenarios compete with the most efficient previous
approximation algorithms.

1. INTRODUCTION

Queries on probabilistic databases have numerous applica-
tions at the interface of databases and information retrieval
[13], data cleaning [4], sensor data, tracking moving objects,
crime fighting [5], and computational science [9].

A core operation of queries on probabilistic databases is
the computation of confidence values of tuples in the result
of a query. In short, the confidence in a tuple ¢ being in the
result of a query on a probabilistic database is the combined
probability weight of all possible worlds in which ¢ is in the
result of the query.

By extending the power of query languages for probabilis-

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

Dan Olteanu
Computing Laboratory
Oxford University
Oxford, OX1 3QD, UK
dan.olteanu@comlab.ox.ac.uk

tic databases, new applications beyond the mere retrieval of
tuples and their confidence become possible. An essential
operation that allows for new applications is conditioning,
the operation of removing possible worlds which do not sat-
isfy a given condition from a probabilistic database. Subse-
quent query operations will apply to the reduced database,
and a confidence computation will return conditional prob-
abilities in the Bayesian sense with respect to the original
database. Computing conditioned probabilistic databases
has natural and important applications in virtually all areas
in which probabilistic databases are useful. For example, in
data cleaning, it is only natural to start with an uncertain
database and then clean it — reduce uncertainty — by adding
constraints or additional information. More generally, con-
ditioning allows us to start with a database of prior proba-
bilities, to add in some evidence, and take it to a posterior
probabilistic database that takes the evidence into account.

Consider the example of a probabilistic database of social
security numbers (SSN) and names of individuals extracted
from paper forms using OCR software. If a symbol or word
cannot be clearly identified, this software will offer a number
of weighted alternatives. The database

R | SSN NAME

(Tr=2]7 =38} Jom
{4(p=3)|7 (=7} Bl

represents four possible worlds (shown in Figure 1), mod-
elling that John has either SSN 1 or 7, with probability .2
and .8 (the paper form may contain a hand-written symbol
that can either be read as a European “1” or an Ameri-
can “7”), respectively, and Bill has either SSN 4 or 7, with
probability .3 and .7, respectively. We assume independence
between John’s and Bill’s alternatives, thus the world in
which John has SSN 1 and Bill has SSN 7 has probability
2.7 =14

If A, denotes the event that Bill has SSN z, then P(A4) =
.3 and P(A7) = .7. We can compute these probabilities in
a probabilistic database by asking for the confidence values
of the tuples in the result of the query

select SSN, conf(SSN) from R where NAME = "Bill’;
, which will result in the table

Q | SSN CONF
1 3
5 7 7

Now suppose we want to use the additional knowledge
that social security numbers are unique. We can express this
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R' | SSN NAME R? | SSN NAME
1 John 7 John
4 Bill 4 Bill
P = .06 P=.24
R® | SSN NAME R* | SSN NAME
1 John 7 John
7 Bill 7 Bill
P=.14 P = 56

Figure 1: The four worlds of the input database.

using a functional dependency SSN — NAME. Asserting
this constraint, or conditioning the probabilistic database
using the constraint, means to eliminate all those worlds in
which the functional dependency does not hold.

Let B be the event that the functional dependency holds.
Conceptually, the database conditioned with B is obtained
by removing world R* (in which John and Bill have the same
SSN) and renormalizing the probabilities of the remaining
worlds to have them again sum up to 1, in this case by divid-
ing by .06+ .24+ .14 = .44. We will think of conditioning as
an operation assert[B] that reduces uncertainty by declaring
worlds in which B does not hold impossible.

Computing tuple confidences for the above query on the
original database will give us, for each possible SSN value
z for Bill, the probabilities P(A;), while on the database
conditioned with B it will give a table of social security
numbers x and conditional probabilities P(A, | B). For
example, the conditional probability of Bill having SSN 4
given that social security numbers are unique is

P(A4/\B) 7_3,\, 68
P(B) 44~ T
Using this definition, we could alternatively have com-

puted the conditional probabilities by combining the results

of two confidence computations,

select SSN, P1/P2

from (select SSN, conf(SSN) P1 from R, B
where NAME = "Bill’),
(select conf() P2 from B);

where B is a Boolean query that is true if the functional
dependency holds on R.

Unfortunately, both conditioning and confidence compu-
tation are NP-hard problems. Nevertheless, their study is
justified by their obvious relevance and applications. While
conditioning has not been previously studied in the con-
text of probabilistic databases, previous work on confidence
computation has aimed at cases that admit polynomial-time
query evaluation and at approximating confidence values [9].

Previous work often assumes that confidence values are
computed at the end of a query, closing the possible worlds
semantics of the probabilistic database and returning a com-
plete, nonprobabilistic relation of tuples with numerical con-
fidence values that can be used for decision making. In such
a context, techniques that return a reasonable approxima-
tion of confidence values may be acceptable.

In other scenarios we do not want to accept approxi-
mate confidence values because errors made while comput-
ing these estimates aggregate and grow, causing users to
make wrong decisions based on the query results. This is
particularly true in compositional query languages for prob-
abilistic databases, where confidence values computed in a

P(A4| B) =
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subquery form part of an intermediate result that can be
accessed and used for filtering the data in subsequent query
operations [19].

Similar issues arise when confidence values can be inserted
into the probabilistic database through updates and may be
used in subsequent queries. For example, data cleaning is
a scenario where we, on one hand, want to materialize the
result of a data transformation in the database once and
for all (rather than having to redo the cleaning steps every
time a query is asked) and on the other hand do not want
to store incorrect probabilities that may affect a very large
number of subsequent queries. Here we need techniques for
conditioning and exactly computing confidence values.

Exact confidence computation is particularly important in
queries in which confidence values are used in comparison
predicates. For an example, let us add a third person, Fred,
to the database whose SSN is either 1 or 4, with equal proba-
bility. If we again condition using the functional dependency
SSN — NAME, we have only two possible worlds, one in
which John, Bill, and Fred have social security numbers 1,
7, and 4, respectively, and one in which their SSN are 7, 4,
and 1. If we now ask for the social security numbers that
are in the database for certain,

select SSN from R where conf(SSN) = 1;

we should get three tuples in the result. Monte Carlo simu-
lation based approximation algorithms will do very badly on
such queries. Confidence approximation using a Karp-Luby-
style algorithm [17, 9, 21] will independently underestimate
each tuple’s confidence with probability ~.5. Thus the prob-
ability that at least one tuple is missing from the result of
such a query is very high (see also [19].

In this paper, we develop efficient algorithms for com-
puting exact confidences and for conditioning probabilistic
databases. The detailed contributions are as follows.

e In most previous models of probabilistic databases over
finite world-sets, computing tuple confidence values es-
sentially means the weighted counting of solutions to
constraint structures closely related to disjunctive nor-
mal form formulas. Our notion of such structures are
the world-set descriptor sets, or ws-sets for short. We
formally introduce a probabilistic database model that
is known to cleanly and directly generalize many pre-
viously considered probabilistic database models (cf.
[3]) including, among others, various forms of tuple-
independence models [9, 2], ULDBs [5], product de-
composition [4], and c-table-based models [3]. We use
this framework to study exact confidence computation
and conditioning. The results obtained are thus of im-
mediate relevance to all these models.

We study properties of ws-sets that are essential to
relational algebra query evaluation and to the design
of algorithms for the two main problems of the paper.

e We exhibit the fundamental, close relationship between
the two problems.

e We develop ws-trees, which capture notions of struc-
tural decomposition of ws-sets based on probabilistic
independence and world-set disjointness. Once a ws-
tree has been obtained for a given ws-set, both exact
confidence computation and conditioning are feasible
in linear time. The main problem is thus to efficiently
find small ws-tree decompositions.



W | Var  Dom P Ur | WSD | SSN NAME
J 1 2 {j—1} 1 John
J 7 .8 {j—7} 7 John
b 4 3 {b— 4} 4 Bill
b 7 7 {b— T} 7 Bill

Figure 2: Probabilistic database with ws-descriptors
made explicit and defined by world-table W.

e To this end, we develop a decomposition procedure
motivated by the Davis-Putnam (DP) procedure for
checking Propositional Satisfiability [12]. DP, while
many decades old, is still the basis of the best exact
solution techniques for the NP-complete Satisfiability
problem. We introduce two decomposition rules, vari-
able elimination (the main rule of DP) and a new in-
dependence decomposition rule, and develop heuristics
for chosing among the rules.

e We develop a database conditioning algorithm based
on ws-tree decompositions and prove its correctness.

e We study ws-set simplification and elimination tech-
niques that can be either used as an alternative to the
DP-based procedure or combined with it.

e We provide a thorough experimental evaluation of the
algorithms presented in this paper. We also experi-
mentally compare our exact techniques for confidence
computation with approximation based on Monte Carlo
simulation.

The structure of the paper follows the list of contributions.

2. PROBABILISTIC DATABASES

We define sets of possible worlds following U-relational
databases [3]. Consider a finite set of independent random
variables ranging over finite domains. Probability distri-
butions over the possible worlds are defined by assigning a
probability P({z — i}) to each assignment of a variable = to
a constant of its domain, i € Domg, such that the probabili-
ties of all assignments of a given variable sum up to one. We
represent the set of variables, their domains, and probabil-
ity distributions relationally by a world-table W consisting
of all triples (z,%,p) of variables z, values ¢ in the domain of
x, and the associated probabilities p = P({x — i}).

A world-set descriptor is a set of assignments x +— i with
i € Dom, that is functional, i.e. a partial function from vari-
ables to domain values. If such a world-set descriptor d is a
total function, then it identifies a possible world. Otherwise,
it denotes all those possible worlds w(d) identified by total
functions f that can be obtained by extension of d. (That
is, for all  on which d is defined, d(x) = f(z).) Because of
the independence of the variables, the aggregate probability
of these worlds is

P(d)

I PHz—idh.

{z—i}Cd

If d = @, then d denotes the set of all possible worlds.

We say that two ws-descriptors di1 and da are consistent
iff their union (as sets of assignments) is functional.

A ws-set is a set of ws-descriptors S and represents the
world-set computed as the union of the world-sets repre-
sented by the ws-descriptors in the set. We define the se-
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mantics of ws-sets using the (herewith overloaded) function

w extended to ws-sets, w(S) := U (w(d)).
des
A U-relation over schema ¥ and world-table W is a set

of tuples over X, where we associate to each tuple a ws-
descriptor over W. A probabilistic database over schema
{Z1,...,Z,} and world-table W is a set of n U-relations,
each over one schema ; and W. A probabilistic database
represents a set of databases, one database for each possible
world defined by W. To obtain a possible world in the rep-
resented set, we first choose a total valuation f over W. We
then process each probabilistic relation R; tuple by tuple.
If f extends the ws-descriptor d of a tuple ¢, then ¢ is in the
relation R; of that database.

ExXAMPLE 2.1. Consider again the probabilistic database
of social security numbers and names given in Figure 1. Its
representation in our formalism is given in Figure 2. The
world-table W of Figure 2 defines two variables j and b
modeling the social security numbers of John and Bill, with
domains {1,7} and {4, 7} respectively. The probability of
the world defined by f = {j +— 7,b+ 7} is .8-.7 = .56. The
total valuation f extends the ws-descriptors of the second
and fourth tuple of relation Ug, thus the relation R in world
fis { (7, John), (7, Bill) }. o

REMARK 2.2. Leaving aside the probability distributions
of the variables which are represented by the W table, U-
relations are essentially restricted c-tables [16] in which the
global condition is “true”, variables must not occur in the
tuples, and each local condition must be a conjunction of
conditions of the form = = v where x is a variable and v is
a constant. Nevertheless, it is known that U-relations are a
complete representation system for probabilistic databases
over nonempty finite sets of possible worlds.

U-relations can be used to represent attribute-level uncer-
tainty using vertically decomposed relations. For details on
this, we refer to [3]. All results in this paper work in the
context of attribute-level uncertainty.

The efficient execution of the operations of positive rela-
tional algebra on such databases was described in that paper
as well. Briefly, if U-relations Ur and Us represent relations
R and S, then selections o4R and projections m5R sim-
ply translate into 0 Ur and my,gp zUr, respectively. Joins
R <4 S translate into Ur pgay Us where 1 is the condi-
tion that the ws-descriptors of the two tuples compared are
consistent with each other (i.e., have a common extension
into a total valuation). The set operations easily follow from
the analogous operations on ws-sets that will be described
below, in Section 3.2. O

ExXAMPLE 2.3. The functional dependency SSN — NAME
on the probabilistic database of Figure 2 can be expressed
as a boolean relational algebra query as the complement of
mp(R <4 R) where ¢ := (1.SSN = 2.5SN N 1.NAME #
2.NAME). We turn this into the query

TwsD(Ur DXpA1.WSD consistent with 2.wsD UR)-

over our representation, which results in the ws-set {j —
7,b+— 7}. The complement of this with the world-set given
by the W relation, {{j — 1},{j — 7},{b — 4}, {b — 7}},
is {{j — 1},{j — 7,b — 4}}. (Note that this is just one
among a set of equivalent solutions.) m|



3. PROPERTIES OF WS-DESCRIPTORS

In this section we investigate properties of ws-descriptors
and show how they can be used to efficiently implement
various set operations on world-sets without having to enu-
merate the worlds. This is important, for such sets can be
extremely large in practice: [4, 3] report on experiments

with 10106 worlds.

3.1 Mutex, Independence, and Containment

Two ws-descriptors di and dsz are (1) mutually exclusive
(mutex for short) if they represent disjunct world-sets, i.e.,
w(d) Nw(d2) = 0, and (2) independent if there is no valu-
ation of the variables in one of the ws-descriptors that re-
stricts the set of possible valuations of the variables in the
other ws-descriptor (that is, di and dp are defined only on
disjoint sets of variables). A ws-descriptor di is contained
in ds if the world-set of di is contained in the world-set of
da, i.e., w(d1) C w(d2). Equivalence is mutual containment.

Although ws-descriptors represent very succinctly possi-
bly very large world-sets, all aforementioned properties can
be efficiently checked at the syntactical level: di and da,
where all variables with singleton domains are eliminated,
are (1) mutex if there is a variable with a different assign-
ment in each of them, and (2) independent if they have no
variables in common; d; is contained in ds if di extends da.

ExAaMPLE 3.1. Consider the world-table of Figure 2 and
the ws-descriptors d1 = {j — 1}, d2 = {j — 7}, ds
{j— 1,b— 4}, and d4y = {b — 4}. Then, the pairs (d1, d2)
and (d2,ds) are mutex, ds is contained in di, and the pairs
(d1,d4) and (d2,ds) are independent. O

We also consider the mutex, independence, and equiva-
lence properties for ws-sets. Two ws-sets S1 and Sz are
mutex (independent) iff d; and da are mutex (independent)
for any di € S1 and da € S2. Two ws-sets are equivalent if
they represent the same world-set.

ExXAMPLE 3.2. We continue Example 3.1. The ws-set
{d:1} is mutex with {d2}. {d1,d2} is independent from {d4}.
At a first glance, it looks like {d1,d2} and {ds,ds} are nei-
ther mutex nor independent, because di; and ds overlap.
However, we note that d3 C d4 and then w({ds,ds}) =
w({ds}) and {d4} is independent from {di,d2}. O

3.2 Set Operations on ws-sets

Various relevant computation tasks, ranging from deci-
sion procedures like tuple possibility [1] to confidence com-
putation of answer tuples, and conditioning of probabilistic
databases, require symbolic manipulations of ws-sets. For
example, checking whether two tuples of a probabilistic re-
lation can co-occur in some worlds can be done by intersect-
ing their ws-descriptors; both tuples co-occur in the worlds
defined by the intersection of the corresponding world-sets.

We next define set operations on ws-sets.

e [Intersection. Intersect(S1,S2) :=

{diNdz | di € S1,d2 € S2,d1 is consistent with da}.
e Union. Union(S1,S2) := S1 U Sa.

e Difference. The definition is inductive, starting with
singleton ws-sets. If ws-descriptors di and d2 are in-
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consistent, Diff({d1}, {d2}) := {d1}. Otherwise,

Diff({d1}, {d2}) :=
{dlu{ml = W, ...
d2—d1:{3}10—>’w1,...

1<i<k,w € domg, , w; ;éw:}

JTio1 > Wi, Ti > W)} |

y Tk — wk}7

Diff({d1}, S U {d2}) := Diff(Diff({d1}, S), {d2}).

Diff({d1,...,dn},S) == | ] Diff({d:},5).

1<i<n

ExAMPLE 3.3. Consider di = {j — 1}, d2 = {j — 7},
and d3 = {j — 1,b — 4}. Then, Intersect({d1}, {d2}) =
Intersect({d2}, {ds}) = 0 because ds is inconsistent with d
and ds. Intersect({d1},{ds}) = {ds}, because ds is con-
tained in dl. Diff({dg}7 {dl}) = Diff({dg}7 {dg}) = {dz} be-
cause ds is mutex with d; and ds. Diff({d1}, {ds}) = {{j —
1,b — 7}}. Diff({ds},{d1}) = {ds}, because d3 and di are
inconsistent. a

PROPOSITION 3.4. The above definitions of set operations
on ws-sets are correct:

1. w(Union(St, S2)) = w(S1) Uw(S2).
2. w(Intersect(S1,S52)) = w(S1) Nw(S2).
3. w(Diﬁ(Sl, Sz)) = w(Sl) — W(Sz).

The ws-descriptors in Diff(S1, S2) are pairwise mutez.

4. WORLD-SET TREES

The ws-sets have important properties, like succinctness,
closure under set operations, and natural relational encod-
ing, and [3] employed them to achieve the purely relational
processing of positive relational algebra on U-relational da-
tabases. When it comes to the manipulation of probabilities
of query answers or of worlds violating given constraints,
however, ws-sets are in most cases inadequate. This is be-
cause ws-descriptors in a ws-set may represent non-disjoint
world-sets, and for most manipulations of probabilities a
substantial computational effort is needed to identify com-
mon world-subsets across possibly many ws-descriptors.

We next introduce a new compact representation of world-
sets, called world-set tree representation, or ws-tree for short,
that makes the structure in the ws-sets explicit. This rep-
resentation formalism allows for efficient exact probability
computation and conditioning and has strong connections
to knowledge compilation, as it is used in system modelling
and verification [11]. There, too, various kinds of decision
diagrams, like binary decision diagrams (BDDs) [7], are em-
ployed for the efficient manipulation of propositional formu-
las.

DEFINITION 4.1. Given a world-table W, a ws-tree over
W is a tree with inner nodes ® and @, leaves holding the
ws-descriptor (), and edges annotated with weighted variable
assignments consistent with W. The following constraints
hold for a ws-tree:

e A variable defined in W occurs at most once on each
root-to-leaf path.



wWi|vVv D P
z 1 .1 ®
a o
y 12 ¢ . {z— 1},
y 2 .8 mb—>1/ \xHQ ub—>1/ \u»—>2 {z—2,y— 1},
> 1 4 0 ® ® 0 {w=2,2= 1},
z 2 .6 {ur— 10— 1},
u 1 :7 vt {u— 2}
u 2 .3 © & }
v 1 b yb—>l| |z»—>1
v 2 5 0 0

Figure 3: World-set table W, a ws-tree R over W, and an equivalent ws-set S.

e Each of its ®-nodes is associated with a variable v such
that each outgoing edge is annotated with a different
assignment of v.

e The sets of variables occurring in the subtrees rooted
at the children of any ®-node are disjoint. o

We define the semantics of ws-trees in strict analogy to
that of ws-sets based on the observation that the set of edge
annotations on each root-to-leaf path in a ws-tree represents
a ws-descriptor. The world-set represented by a ws-tree is
precisely represented by the ws-set consisting of the anno-
tation sets of all root-to-leaf paths. The inner nodes have
a special semantics: the children of a ®-node use disjoint
variable sets and are thus independent, and the children of
a @-node follow branches with different assignments of the
same variable and are thus mutually exclusive.

EXAMPLE 4.2. Figure 3 shows a ws-tree and the ws-set
consisting of all its root-to-leaf paths. ]

4.1 Constructing world-set trees

The key idea underlying our translation of ws-sets into
ws-trees is a divide-and-conquer approach that exploits the
relationships between ws-descriptors, like independence and
variable sharing.

Figure 4 gives our translation algorithm. We proceed re-
cursively by partitioning the ws-sets into independent dis-
joint partitions (when possible) or into (possibly overlap-
ping) partitions that are consistent with different assign-
ments of a variable. In the case of independent partitioning,
we create ®-nodes whose children are the translations of the
independent partitions. In the second case, we simplify the
problem by eliminating a variable: we choose a variable x
and create an @-node whose outgoing edges are annotated
with different assignments x +— 4 of z and whose children
are translations of the subsets of the ws-set consisting of ws-
descriptors consistent with & — i'. If at any recursion step
the input ws-set contains the nullary ws-descriptor, which
by definition represents the whole world-set, then we stop
from recursion and create a ws-tree leaf ). This can happen
after several variable elimination steps that reduced some of
the input ws-descriptors to 0.

1Our translation abstracts out implementation details. For
instance, for those assignments of x that do not occur in S
we have T'U Sz—; = T and can translate T only once.
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ComputeTree (WS-Set S) returns WS-Tree

if (S =0) then return L
else if (D € S)

then return 0

//S contains a universal ws-desc

else choose one of the following:
(independent partitioning)
if there are non-empty and independent ws-sets
S1,...,8)1 such that S=S5,U---U S|
then return ®(ComputeTree(Si))
iel
(variable elimination)
choose a variable z in S;
T:={d|deS, Ai € dom, : {x — i} Cd};
Vi € domy : Szi = {{y1 — 71, ., Ym — Jm} |
{e—d,91 = J1, .., ym = Jm} € S}
return @ (x — i : ComputeTree(Szi UT))

i€domy

Figure 4: Translating ws-sets into ws-trees.

ExXAMPLE 4.3. We show how to translate the ws-set S
into the ws-tree R (Figure 3). We first partition S into
two (minimally) independent ws-sets S1 and Sa: S1 consists
of the first three ws-descriptors of S, and S» consists of the
remaining two. For S1, we can eliminate any of the variables
x, y, or z. Consider we choose z and create two branches
for  — 1 and x — 2 respectively (there is no ws-descriptor
consistent with x — 3). For the first branch, we stop with
the ws-set {0}, whereas for the second branch we continue
with the ws-set {{y — 1},{z — 1}}. The latter ws-set can
be partitioned into independent subsets in the context of the
assignment x — 2. We proceed similarly for Sz and choose
to eliminate variable u. We create an @-node with outgoing
edges for assignments u +— 1 and u — 2 respectively. We
are left in the former case with the ws-set {{v — 1}} and in
the latter case with {(}.

Different variable choices can lead to different ws-trees.
This is the so-called wvariable ordering problem that applies
to the construction of binary decision diagrams. Later in



&)
u— 1 \u»—>2 z—1 T 2 r—3
®/ 0 (Z)/jaj i
PN N\

&5} &5} &5} a(8)
v»—>1| zt—>2/ z—1 | u—2 / \qu
0 ®(a) « 0 0 D
x»—>1/ \:r>—>2 |v»—>1
0 0 0

Figure 5: A ws-tree equivalent to R of Figure 3.

this section we discuss heuristics for variable orderings. O

THEOREM 4.4. Given a ws-set S, ComputeTree(S) and S
represent the same world-set.

Our translation can yield ws-trees of exponential size (sim-
ilar to BDDs). This rather high worst-case complexity needs
to be paid for efficient exact probability computation and
conditioning. It is known that counting models of proposi-
tional formulas and exact probability computation are #P-
hard problems [9]. This complexity result does not preclude,
however, BDDs from being very successful in practice. We
expect the same for ws-trees. The key observation for a good
behaviour in practice is that we should partition ws-sets into
independent subsets whenever possible and we should care-
fully choose a good ordering for variable eliminations. Both
methods greatly influence the size of the ws-trees and the
translation time, as shown in the next example.

ExAMPLE 4.5. Consider again the ws-set S of Figure 3
and a different ordering for variable eliminations that leads
to the ws-tree of Figure 5. We shortly discuss the construc-
tion of this ws-tree. Assume we choose to eliminate the
variable y and obtain the ws-sets

Sy2={{z— 1}, {z— 2,z— 1}, {u— 10— 1}, {u+— 2}}
Sy1 = Sya U {{z — 2}}

In contrast to the computation of the ws-tree R of Figure 3,
our variable choice creates intermediary ws-sets that overlap
at large, which ultimately leads to a large increase in the size
of the ws-tree. This bad choice need not necessarily lead to
redundant computation, which we could easily detect. In
fact, the only major savings in case we detect and eliminate
redundancy here are the subtrees a and 3, which still leave
a graph larger than R. m]

4.2 Heuristics

We next study heuristics for variable elimination and in-
dependent partitioning that are compared experimentally in
Section 7. We devise a simple cost estimate, which we use
to decide at each step whether to partition or which vari-
able to eliminate. We assume that, in worst case, the cost
of translating a ws-set S is 2!°! (following the exponential
formula of the inclusion-exclusion principle).

In case of independent partitioning, the partitions Si, ...,
Sy are disjoint and can be computed in polynomial time (by
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Estimate (WS-Set S, variable z in S) returns Real

missing_assignment := false;
foreach i € dom, do
compute Sz—; and T as shown in Figure 4
if |SzHZ| > 0 then s; = |Sm._,1 UT|
else s; = 0; missing_assignment = true; endif
if (missing_assignment) then e = |T'| else e =0
foreach j € dom, such that s; > 0 do
e=-e+log,(1+k%7°)
return e

Figure 6: Log cost estimate for a variable choice.

computing the connected components of the graph of vari-
ables co-occurring within ws-descriptors). We thus reduce
the computation cost from 2151 to 21511 4 ... 4 2l9»]l This
method is, however, not always applicable and we need to
apply variable elimination.

The main advantage of variable elimination is that S is
divided into subsets T'U S;.—; without the dependencies en-
forced by variable x and thus subject to independent parti-
tioning in the context of x +— i. Consider s; the size of the
ws-set T'U Sz—;. Then, the cost of choosing x is X 2°%.

i1€domy

Of course, for those assignments of  that do not occur in
S we have T'U Sgz—; = T and can translate 7" only once.
The computation cost using variable elimination can match
that of independent partitioning only in the case that the
assignments of the chosen variable partition the input ws-set
S and thus T is empty.

Our first heuristic, called minlog, chooses a variable that

domg

minimizes log( 21 2°). Figure 6 shows how to compute

incrementally the cost estimate by avoiding summation of
potentially large numbers. The variable missing_assignment
is used to detect whether there is at least one assignment of
x not occuring in S for which 7" will be translated; in this
case, T is only translated once (and not for every missing
assignment).

The second heuristic, called minmaz, approximates the
cost estimate and chooses a variable that minimizes the max-
imal ws-set T'U Sz ;. Both heuristics need time linear in the
sizes of all variable domains plus of the ws-set. In addition
to minmax, minlog needs to perform log and exp operations.

REMARK 4.6. To better understand our heuristics, we
give one scenario where minmax behaves suboptimal. Con-
sider S of size n and two variables. Variable z occurs with
the same assignment in n—1 ws-descriptors and thus its min-
max estimate is n, and variable y occurs twice with different
assignments, and thus its minmax estimate is n — 1. Using
minmax, we choose y, although the minlog would choose dif-
ferently: e(y) = log(2-2"7 1 4+2"72) > log(2-2"1) = e(x).0

4.3 Probability computation

We next give an algorithm for computing the exact proba-
bility of a ws-set by employing the translation of ws-sets into
ws-trees discussed in Section 4. Figure 7 defines the func-
tion P to this effect. This function is defined using pattern
matching on the node types of ws-trees. The probability of
an ®-node is the joint probability of its independent children
S1,...,8)1. The probability of an @®-node is the joint prob-



P(Q)S:) =1-]](-P(S)

P( @(x —i:S)) = ZP({QL’ —i}) - P(Si)
P) =1 P(L)=0

Figure 7: Probability computation for ws-trees.

ability of its mutually exclusive children, where the proba-
bility of each child S; is weighted by the probability of the
variable assignment x +— ¢ annotating the incoming edge
of S;. Finally, the probability of a leaf represented by the
nullary ws-descriptor is 1 and of L is 0.

EXAMPLE 4.7. The probability of the ws-tree R of Fig-
ure 3 can be computed as follows (we label the inner nodes

with [ for left child and r for right child):
P(R)=1-(1-P() - (1-P(r))
Pl) = P{z—1}) - P(0) + P({z — 2}) - P(Ir)

Pir)=1-(1-P({y—1})-P@)- (1 - P({z— 1})-P())
P(r)=P({ur—1}) - P({v—1}) - P(0) + P({u — 2}) - P(0)

We can now replace the probabilities for variable assign-
ments and ws-descriptor ) and obtain

P(r)=0.7-05-14+0.3 =0.65
Pilry=1-(1-02-1)-(1-0.4-1) =0.52
P(l1)=0.1-140.4-0.52=0.308
P(R)=1-(1-0.308) - (1 —0.65) = 0.7578 ]
The probability of a ws-tree R can be computed in one
bottom-up traversal of R and does not require the precom-
putation of R. The translation and probability computa-
tion functions can be easily composed to obtain the func-
tion ComputeTree o P by inlining P in ComputeTree. As a
result, the construction of the nodes @, ®, and () is replaced
by the corresponding probability computation given by P.

5. CONDITIONING

In this section we study the problem of conditioning a
probabilistic database, i.e., the problem of removing all pos-
sible worlds that do not satisfy a given condition (say, by
a Boolean relational calculus query) and renormalizing the
database such that, if there is at least one world left, the
probability weights of all worlds sum up to one.

We will think of conditioning as a query or update op-
eration asserty, where ¢ is the condition, i.e., a Boolean
query. Processing relational algebra queries on probabilistic
databases was discussed in Section 2. We will now assume
the result of the Boolean query given as a ws-set defining
the worlds on which ¢ is true.

ExXAMPLE 5.1. Consider again the data cleaning exam-
ple from the Introduction, formalized by the U-relational
database of Figure 2. Relation W represents the set of pos-
sible worlds and U represents the tuples in these worlds.

As discussed in Example 2.3, the set of ws-descriptors
S ={{j— 1},{j — 7,b — 4}} represents the three worlds
on which the functional dependency SSN — NAME holds.
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cond: conditioning algorithm

In: ws-tree R representing the new nonempty world-set
ws-set U from the U-relations
Out: (confidence value, ws-set U’)

if R =0 then return (1,U);
if R = ®(RZ) then
icl
foreach i € I do (¢, U;) := cond(R;, U);
return (1 —J[,(1 —c), UUi);
i€l

ifR= @ (z—i:Ri) then
iedom,
foreach i € dom, do
U; := the subset of U consistent with x — 4;
(ci, Uj) := cond(R;, U;);
ci=2 e Pz —i}) - e
let 2’ be a new variable;
foreach i € dom, such that ¢; # 0 do
add (', 1, M) to the W relation;
replace each occurrence of = in U/ by z/;
return (¢, U Uj);
iedom,

Figure 8: The conditioning algorithm.

The world {j — 7,b — 7} is excluded and thus the confi-
dence of S does not add up to one but to .2 4+ .8 -.3 = .44.
What we now want to do is transform this database into
one that represents the three worlds identified by S and
preserves their tuples as well as their relative weights, but
with a sum of world weights of one. This can of course be
easily achieved by multiplying the weight of each of the three
remaining worlds by 1/.44. However, we want to do this in a
smart way that in general does not require to consider each
possible world individually, but instead preserves a succinct
representation of the data and runs efficiently.

Such a technique exists and is presented in this section. It
is based on running our confidence computation algorithm
for ws-trees and, while returning from the recursion, renor-
malizing the world-set by introducing new variables whose
assignments are normalized using the confidence values ob-
tained. For this example, the conditioned database will be

W | Var  Dom P

b 4 3

b 7 e

J' 1 .2/.44

7 7 8..3/.44

U | WSD | SSN NAME

{7 —1} 1 John
{j/— 1} 7 John
{7/ —=1b—4} | 4 Bill
{f/—=1b—7} |7 Bill
{j' =7} 4 Bill

Note that the W relation actually models four possible worlds,
but two of them, {j' — 7,b+— 4} and {j' — 7,b+— 7} are
equal (contain the same tuples). Example 5.2 will show in
detail how conditioning works. m|

Figure 8 gives our efficient algorithm for conditioning a
U-relational database. The input is a U-relational database



U | WSD | A
{y—2,u—1} | a1
{u—1,v— 2} | a2

AW | Var Dom P
z’ 1 1/.308 v
z' 2 .208/.308
Y 1 1
2’ 1 1
u’ 1 .35/.65
u’ 2 .3/.65
v 1 1

/®\
b 5%

1 .208 .35 .3
£ 1/ \CE/ %2 u = 1/ \u' 22
0 ® ® 0
/ \ L3

5% S 0
y'»i>1| |z'»i>1
) )

Figure 9: U-relation U, additions AW to the W-relation, and a renormalized ws-tree.

and a ws-tree R that describes the subset of the possible
worlds of the database that we want to condition it to. The
output is a modified U-relational database and, as a by-
product, since we recursively need to compute confidences
for the renormalization, the confidence of R in the input
database. The confidence of R in the output database will
of course be 1. The renormalization works as follows. The
probability of each branch of an inner node n of R is re-
weighted such that the probability of n becomes 1. We re-
flect this re-weighting by introducing new variable whose
assignments reflect the new weights of the branches of n.

This algorithm is essentially the confidence computation
algorithm of Figure 7. We just add some lines of code along
the line of recursively computing confidence that renormal-
ize the weights of alternative assignments of variables for
which some assignments become impossible. Additionally,
we pass around a set of ws-descriptors (associated with tu-
ples from the input U-relational database) and extend each
ws-descriptor in that set by x +— ¢ whenever we eliminate
variable x, for each of its alternatives 1.

ExXAMPLE 5.2. Consider the U-relational database con-
sisting of the W-relation of Figure 3 and the U-relation U of
Figure 9. Let us run the algorithm to condition the database
on the ws-tree R of Figure 3 (R need not be precomputed
for conditioning).

We recursively call function cond at each node in the ws-
tree R starting at the root. To simplify the explanation, let
us assume a numbering of the nodes and of the ws-sets we
pass around: If R, is a (sub)tree then R, ; is its i-th child.
The ws-set passed in the recursion with R, is U, and the
ws-set returned is U,,. The ws-sets passed on at the nodes
of R are:

Ui1=z—1:U={{z— 1y~ 2,u— 1},
{z—1lu— 10— 2}}

Up=2—2:U={{zr—2,y—2u— 1},
{z—2,u— 10— 2}}
Uigni=y—1:Uio={{y— 1L,z —2,u— 1o~ 2}}
U221 =2—1:Ui2={{z— 1L,z+— 2,y 2, urs 1},
{z—1,2—2,u— 10— 2}}
Uy =u—1:Uz=U2
Uso=u—2:U; =

Usgip=v—1:U1={{v—1ly—2,ur 1}}
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When we reach the leaves of R, we start returning from
recursion and do the following. We first compute the prob-
abilities of the nodes of R — in this case, they are already
computed in Example 4.7. Next, for each @®-node represent-
ing the elimination of a variable, say «, we create a new
variable o/ with the assignments of o present at that node.
In contrast to «, the assignments of o’ are re-weighted by the
probability of that &-node so that the sum of their weights
is 1. The new variables and their weighted assignments are
given in Figure 9 along the original ws-tree R and in the
AW relation to be added to the world table W.

When we return from recursion, we also compute the new
ws-sets U/ from U;. These ws-sets are equal in case of leaves
and ®-nodes, but, in case of @®-nodes, the variable elimi-
nated at that node is replaced by the new one we created.
In case of @ and ® nodes, we also return the union of all U/
of their children. We finally return from the first call with
the following ws-set U":

{{z' = 1,y — 2,urs 1},

{z' = Lur 1,0 2},

{2’ 2,y" = Liur 1,0 2},
{x/HQ’Z/H17yH2’uH1}’
{2/ 2,2 = Lur 1,v— 2},
{w'— 1,0 — 1,y — 2}}.

O

Let us view a probabilistic database semantically, as a set
of pairs (I,p) of instances I with probability weights p.

THEOREM 5.3. Given a representation of probabilistic da-
tabase W = {(I1,p1),. .., (In,pn)} and a ws-tree R identify-
ing a nonempty subset of the worlds of W, the algorithm of
Figure 8 computes a representation of probabilistic database

D;
{(z ?]) | (I, pi) € W, I; €w(R)}
such that the probabilities p; add up to 1.

Thus, of course, ¢ is the confidence of R.

Three simple optimizations of this algorithm that simplify
the world table W and the output ws-descriptors are worth
mentioning.

1. Variables that do not appear anywhere in the U-relations
can be dropped from W.



2. Variables with a single domain value (obviously of weight
1) can be dropped everywhere from the database.

3. Variables 2’ and z” obtained from the same variable
z (by creation of a new variable in the case of vari-
able elimination on z in two distinct branches of the
recursion) can be merged into the same variable if the
alternatives and their weights in the W relation are the
same. In that case we can replace '/ by =’ everywhere
in the database.

EXAMPLE 5.4. In the previous example, we can remove
the variables 7', z’, and v’ from the W-relation and all vari-
able assignments involving these variables from the U-relation
because of (1). Furthermore, we can remove the variables x
and z because of (1). The resulting database is

U’ | WSD A
{'—>1Ly—2u—1} | a
{z/ = Lur— 1Lv— 2} | a2
{z' = 2,ur— 1,v— 2} | a2
{£'—2,y—2u—1} | a1
{z' = 2,ur— 10— 2} | az

{u — 1,y +— 2} a1

W’ | Var Dom P
21 1/308
& 2 .208/.308
Y 1 2
Y 2 .8
u 1 7
u 2 .3
W 1 .35/.65
W 2 .3/.65
v 1 .5
v 2 .5

Finally, we state an important property of conditioning
(expressed by the assert operation) useful for query opti-
mization.

THEOREM 5.5. Assert-operations commute with other as-
serts and the operations of positive relational algebra.

6. WS-DESCRIPTOR ELIMINATION

We next present an alternative to exact probability com-
putation using ws-trees based on the difference operation
on ws-sets, called here ws-descriptor elimination. The idea
is to incrementally eliminate ws-descriptors from the input
ws-set. Given a ws-set S and a ws-descriptor di in S, we
compute two ws-sets: the original ws-set S without d;, and
the ws-set representing the difference of {d1} and the first
ws-set. The probability of S is then the sum of the probabil-
ities of the two computed ws-sets, because the two ws-sets
are mutex, as stated below by function P,:

Pu(0) =0 P,({0}) =1
Pu(S) = Pu({d, ... dn}) + >

de({d1}—{da,....dn})

P(d)

The function P computes here the probability of a ws-descriptor.

ExXAMPLE 6.1. Consider the ws-set {d1,d2,ds} of Exam-
ple 3.1. The ws-descriptor d2 is mutex with both d; and ds

321

and we can eliminate it: P, ({d1,d2,ds}) = Pw({d1,ds}) +
P(d2). We now choose any to eliminate ds and obtain
Py({d1,ds}) = Pu({ds} — {d1}) + P(d1) = P(d1), as ex-
plained in Example 3.3. Thus P, ({d1,d2,ds}) = P(d2) +
P(d1) =1. Od

This method exploits the fact that the difference operation
preserves the mutex property and is world-set monotone.

LEMMA 6.2. The following equations hold for any ws-sets
Sl, SQ, and S3.'

C w

= W

= w

The correctness of probability computation by ws-descriptor
elimination follows immediately from Lemma 6.2.

THEOREM 6.3. Given a ws-set S, the function P, com-
putes the probability of S.

As a corollary, we have that

COROLLARY 6.4 (THEOREM 6.3). Any ws-set |J {d;} has
=1

n—1 n
the equivalent mutex ws-set |J ({di} — U {d;}) U{dn}.
=1 j=it1

Like the translation of ws-sets into ws-trees, this method
can take exponential time in the size of the input ws-set.
Moreover, the equivalent mutex ws-set given above can be
exponential. On the positive side, computing the exact
probability of such mutex ws-sets can be done in linear time.
Additionally, the probability of {d} —S4 can be computed on
the fly without requiring to first generate all ws-descriptors
in the difference ws-set. This follows from the fact that
the difference operation on ws-descriptors only generates
mutex and distinct ws-descriptors. After generating a ws-
descriptor from the difference ws-set we can thus add its
probability to a running sum and discard it before gener-
ating the next ws-descriptor. The next section reports on
experiments with an implementation of this method.

7. EXPERIMENTS

The experiments were conducted on an Athlon-X2 (46004 )
x86-64bit/1.8GB/ Linux 2.6.20/gcc 4.1.2 machine.

We considered two synthetic data sets.

TPC-H data and queries. The first data set consists of
tuple-independent probabilistic databases obtained from re-
lational databases produced by TPC-H 2.7.0, where each
tuple is associated with a Boolean random variable and the
probability distribution is chosen at random. We evaluated
the two Boolean queries of Figure 10 on each probabilis-
tic database and then computed the probability of the ws-
set consisting of the ws-descriptors of all the answer tuples.
Among the two queries, only the second is safe and thus
admits PTIME evaluation on tuple-independent probabilis-
tic databases [9]. As we rewrite constraints into Boolean
queries, we consider this querying scenario equally relevant
to conditioning.




Query Size of || TPC-H | #Input | Size of User
ws-desc. Scale Vars | ws-set | Time(s)
Q1: select true from customer c, orders o, lineitem 1 0.01 77215 9836 5.10
where c.mktsegment = 'BUILDING’ and c.custkey = o.custkey 3 0.05 | 382314 | 43498 99.76
and o.orderkey = l.orderkey and o.orderdate > ’1995-03-15’ 0.10 | 765572 | 63886 356.56
Q2: select true from lineitem 0.01 60175 3029 0.20
where shipdate between ’1994-01-01’ and ’1996-01-01’ 1 0.05 | 299814 | 15545 8.24
and discount between '0.05’ and ’0.08’ and quantity < 24 0.10 | 600572 | 30948 33.68

Figure 10: TPC-H scenario: Queries, data characteristics, and performance of INDVE(minlog).
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Figure 11: The two cases when the numbers of variables

#P-hard cases. The second data set consists of ws-sets
similar to those associated with the answers of nonhierarchi-
cal conjunctive queries without self-joins on tuple-independent
probabilistic databases, i.e. join queries such as Qs = R; X
-+ X Rs for schemas R;(A;, Ai+1) in which all relations are
joined together, but there is no single column common to
all of them. Such queries are known to be #P-hard [9].

The data generation is simple: we partition the set of
variables into s equally-sized sets Vi, ..., Vs and then sample
ws-sets {z1 — a1,...,%s — as} where z; is from V; and a;
is a random alternative for x;, for 1 < i < s. It is easy to
verify that each such ws-set is actually the result of query
Qs on some tuple-independent probabilistic database. (For
s = 3 this fact is used in the #P-hardness proof of [9].)

We use the following parameters in our experiments: num-
ber n of variables ranging from 50 to 100K, number r of
possible alternatives per variable (2 or 4), length s of ws-
descriptors, which equals the number of joined relations (2
or 4), and number w of ws-descriptors ranging from 5 to 60K.
For each variable, the alternatives have uniform probabili-
ties 1/r: our exact algorithms are not sensitive to changing
probability values as long as the numbers of alternatives of
the variables remain constant.

Note that the focus on Boolean queries means no loss of
generality for confidence computation; rather, the projection
of a query result to a nullary relation causes all the ws-sets
to be unioned and large.

Algorithms. We experimentally compared three versions
of our exact algorithm: one that employs independent parti-
tioning and variable elimination (INDVE), one that employs
variable elimination only (VE), and one with ws-descriptor
elimination (WE). We considered INDVE with the two heu-
ristics minlog and minmax. These implementations compute
confidence values and the modified world table (AW in Ex-
ample 5.2), but do not materialize the modified, conditioned
U-relations (U’ in Example 5.2). We have verified that the
computation of these additional data structures adds only
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Many variables (100k), few ws-descriptors, r=4, s=2
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and of ws-descriptors differ by orders of magnitude.

a small overhead over confidence computation in practice.
We therefore do not distinguish in the sequel between confi-
dence computation and conditioning. Note that our imple-
mentation is based on the straightforward composition of
the ComputeTree and conditioning algorithms and does not
need to materialize the ws-trees.

Although we also implemented a brute-force algorithm for
probability computation, its timing is extremely bad and not
reported. At a glance, this algorithm iterates over all worlds
and sums up the probabilities of those that are represented
by some ws-descriptors in the input ws-set. We also tried
a slight improvement of the brute-force algorithm by first
partitioning the input ws-set into independent subsets [22].
This version, too, performed bad and is not reported, as the
partitioning can only be applied once at the beginning on
the whole ws-set, yet most of our input ws-sets only exhibit
independence in the context of variable eliminations.

We experimentally compared INDVE against a Monte
Carlo simulation algorithm for confidence computation [21,
9] which is based on the Karp-Luby (KL) fully polyno-
mial randomized approximation scheme (FPRAS) for DNF
counting [17]. Given a DNF formula with m clauses, the
base algorithm computes an (e, d)-approximation & of the
number of solutions ¢ of the DNF formula such that

Prllc—¢[<e-f>1-94

for any given 0 < ¢ < 1, 0 < § < 1. It does so within
[4 - m - log(2/8)/€*] iterations of an efficiently computable
estimator. This algorithm can be easily turned into an (e, §)-
FPRAS for tuple confidence computation (see [19]). In our
experiments, we use the optimal Monte-Carlo estimation al-
gorithm of [8]. This is a technique to determine a small suf-
ficient number of Monte-Carlo iterations (within a constant
factor from optimal) based on first collecting statistics on the
input by running the Monte Carlo simulation a small num-
ber of times. We use the version of the Karp-Luby unbiased
estimator described in the book [24], which converges faster
than the basic algorithm of [17], adapted to the problem of
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Figure 12: Performance of INDVE and KL when
numbers of variables and ws-descriptors are close.

computing confidence values. This algorithm is similar to
the self-adjusting coverage algorithm of [18].

1. Queries on TPC-H data. Figure 10 shows that IN-
DVE(minlog) performs within hundreds of seconds in case of
queries with equi-joins (Q1) and selection-projection (Q2) on
tuple-independent probabilistic TPC-H databases with over
700K variables and 60K ws-descriptors. In the answers of
query @2, ws-descriptors are pairwise independent, and IN-
DVE can effectively employ independence partitition, mak-
ing confidence computation more efficient than for Q;.

The remaining experiments use the second data generator.

2. The numbers of variables and of ws-descriptors
differ by orders of magnitude. If there are much more
ws-descriptors than variables, many ws-descriptors share vari-
ables (or variable assignments) and a good choice for vari-
able elimination can effectively partition the ws-set. On
the other hand, independence partitioning is unlikely to be
very effective, and the time for checking it is wasted. Fig-
ure 11(a) shows that in such cases VE and INDVE (with
minlog heuristic) are very stable and not influenced by fluc-
tuations in data correlations. In particular, VE performs
better than INDVE and within a second for 100 variables
with domain size 4 (and nearly the same for 2), ws-descriptors
of length 4, and ws-set size above 1.2k. We witnessed a sharp
hard-easy transition at 1.2k, which suggests that the com-
putation becomes harder when the number of ws-descriptors
falls under one order of magnitude greater than the number
of variables. Experiment 3 studies easy-hard-easy transi-
tions in more detail. The plot data were produced from 25
runs and record the median value and ymin/ymax for the
error bars.

In case of many variables and few ws-descriptors, the in-
dependence partitioning clearly pays off. This case natu-
rally occurs for query evaluation on probabilistic databases,
where a small set of tuples (and thus of ws-descriptors) is se-
lected from a large database. As shown in Figure 11(b), IN-
DVE(minlog) performs within seconds for the case of 100K
variables and 100 to 6K ws-descriptors of size s = 2, and
with variable domain size » = 4. Two further findings are
not shown in the figure: (1) VE performs much worse than
INDVE, as it cannot exploit the independence of tuples and
thus creates partitions that overlap at large; (2) the case of
s =4 has a few (2 in 25) outliers exceeding 600 seconds.

3. The numbers of variables and of ws-descriptors
are close. It is known from literature on knowledge compi-
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Figure 13: Heuristics: minmax versus minlog.

lation and model counting [6] that the computation becomes
harder in this case. Figure 12 shows the easy-hard-easy
pattern of INDVE(minlog) by plotting the minimal, maxi-
mal, and median computation time of 20 runs (max allowed
time of 9000s). We experimentally observed the expected
sharp transitions: When the numbers of ws-descriptors and
of variables become close, the computation becomes hard
and remains so until the number of ws-descriptors becomes
one order of magnitude larger than the number of variables.
The behavior of WE (not shown in the figure) follows very
closely the easy-hard transition of INDVE, but in our exper-
iment WE does not return anymore to the easy case within
the range of ws-set sizes reported on in the figure.

4. Exact versus approximate computation. We ex-
perimentally verified our conjecture that the Karp-Luby ap-
proximation algorithm (KL) converges rather slowly. In case
the numbers of variables and of ws-descriptors differ by or-
ders of magnitude, INDVE(minlog) and VE(minlog) are def-
initely competitive when compared to KL with parameters
€ = 0.1 resp. € = 0.01, and § = 0.01, see Figure 11.

In Figure 11(b), KL uses about the same number of itera-

tions for all the ws-set sizes, a sufficient number to warrant
the running time. The reason for the near-constant line for
KL is that for s = 2 and 100k variables, ws-descriptors are
predominantly pairwise independent, and the confidence is
close to 1—(3/4)", where w is the number of ws-descriptors.
But this quickly gets close to 1, and the optimal algorithm
can decide on a small number of iterations that does not
increase with w. In case the numbers of variables and ws-
descriptors are close (Figure 12), KL with ¢ = 0.001 only
performs better than INDVE(minlog) in the hard cases.
5. Heuristics for variable elimination. Figure 13 shows
that, although the minmax heuristic is cheaper to compute
than the minlog heuristic, using minlog we find in general
better choices of variables and INDVE remains less sensitive
to data correlations. The plot data are produced from 10
runs and show the median value and ymin/ymax for the
error bars. Although VE exceeds the allocated time of 600
seconds for different data points, it does this less than five
times (the median value is closer to ymin).

8. RELATED WORK

To the best of our knowledge, this paper is the first to
study the conditioning problem for probabilistic databases.
In this section, we survey related work in the areas of prob-
abilistic databases and knowledge compilation procedures.

U-relations capture most other representation formalisms
for uncertain data that were recently proposed in the litera-
ture, including those of MystiQ [9], Trio [5], and MayBMS [3].



For each of these formalisms, natural applications in data
cleaning and other areas have been described [5, 4, 9].

Graphical models are a class of rich formalisms for rep-
resenting probabilistic information which perform well in
scenarios in which conditional probabilities and a known
graph of dependencies and independences between events
are available. There are, for instance, Bayesian network
learning algorithms that produce just such data. Unfortu-
nately, if probabilistic data is obtained by queries on tuple-
independent or similar databases, the corresponding graph-
ical models tend to be relatively flat [23] but have high
tree-width, which causes techniques widely used for confi-
dence computation on graphical models to be highly ineffi-
cient. Graphical models are more succinct than U-relations,
yet their succinctness does not benefit the currently known
query evaluation techniques. This justifies the development
of conditioning techniques specifically for the c-table-like
representations (such as U-relations) developed by the data-
base community.

It has been long known that computing tuple confidence
values on DNF-like representations of sets of possible worlds
is a generalization of the DNF model counting problem and
is #P-complete [10]. Monte Carlo approximation techniques
for confidence computation have been known since the orig-
inal work by Karp, Luby, and Madras [18]. Within the
database field, this approach has first been followed in work
on query reliability [14] and in the MystiQ project [9]. Sec-
tion 7 reports on an experimental comparison of approxima-
tion and our exact algorithms.

Our variable elimination technique is based on Davis-Put-
nam procedure for satisfiability checking [12]. This pro-
cedure was already used for model counting [6]. Our ap-
proach combines it with independent partitioning for ef-
ficiently solving two more difficult problems: exact confi-
dence computation and conditioning. [6] uses the minmax
heuristic (which we benchmark against) and discusses ex-
periments for CNF formulas with up to 50 variables and
200 clauses only. Our experiments also discuss new settings
that are more natural in a database context: for instance,
when the size of a query answer (and thus the number of
ws-descriptors) is small in comparison to the size of the in-
put database (and thus of variables). Follow-up work [15]
reports on techniques for compiling ws-sets generated by
conjunctive queries with inequalities into decision diagrams
with polynomial-time guarantees.

Finally, there is a strong connection between ws-trees and
ordered binary decision diagrams (OBDDs). Both make the
structure of the propositional formulas explicit and allow for
efficient manipulation. They differ, however, in important
aspects: binary versus multistate variables, same variable
ordering on all paths in case of OBDDs, and the new ws-
tree ®-node type, which makes independence explicit. It is
possible to reduce the gap between the two formalisms, but
this affects the representation size. For instance, different
variable orderings on different paths allows for exponentially
more succinct BDDs [20]. Multistate variables can be easily
translated into binary variables at a price of a logarithmic
increase in the number of variables [25].
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APPENDIX
Proof of Theorem 4.4

We prove that the translation from ws-sets to ws-trees is
correct. That is, given a ws-set S, ComputeTree(S) and S
represent the same world-set.

We use induction on the structure of ws-trees. In the
base case, we map ws-sets representing the empty world-set
to L, and ws-sets containing the universal ws-descriptor ()
(that represents the whole world-set) to (). We consider now
a ws-set S. We have two cases corresponding to the different
types of ws-tree inner nodes.

Case 1. Assume S = |J.S; with S; pairwise independent

icl
and R; = ComputeTree(S;). By hypothesis, w(R;) = w(S;).
Then, ComputeTree(S) = ) (R;) and w(ComputeTree(S))

el

Uw(Ri) = Uw(S:) = w(S).
i€l i€l

Case 2. Let x be a variable in S and consider the ws-
sets Sz—i (i € domg) and T as given by ComputeTree.
Because the whole world-set can be represented by A =

U {{z — i}}, it holds that w(A) Nw(S) = w(S). We
iedom,,
push the assignments of = in each ws-descriptor of S and
obtain

w(S) = U {du{z i} |deS}).

iedom,

We can remove all inconsistent ws-descriptors in the ws-set
of the right-hand side while preserving equivalence:

w{dU{z—i}|deS}) =

w{dU{z—i}|de S, Aj edom, : j #i,{z— j} Cd}) =
w{dU{z— i} | {z— i} Cde SHU
w{du{z— i} |de S, Aj € dom, : {z+—j} Cd}) =
w(Szi) Uw(T) = w(Sermi UT)

We now consider all values ¢ € dom, and obtain

w) =w( |J (SeeiUT))

Proof of Theorem 5.3

We prove that given a representation of probabilistic data-
base W = {(I1,p1),...,(In,prn)} and a ws-tree R identify-
ing a nonempty subset of the worlds of W, the algorithm of
Figure 8 computes a representation of probabilistic database

{1, B) | (I,p) € W.I; € w(R))

such that the probabilities p; add up to 1.

The conditioning algorithm computes the probability ¢ of
each node of the input ws-tree R as given by our probabil-
ity computation algorithm of Figure 7. We next consider
the correctness of renormalization using induction on the
structure of the input ws-tree.

Base case: The ws-tree () represents the whole world-set
and we thus return U unchanged (no conditioning is done).

Induction cases ® (independent partitioning) and @ (vari-
able elimination). For both node types, we return the union
of ws-sets U/ that are the ws-sets U; C U where the variables
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encountered at the nodes on the recursion path are replaced
by new ones. The ws-sets U; are the subsets of U consis-
tent with each child of the & or ® node. By hypothesis, the
ws-sets U, are conditioned correctly. In case of ®-nodes, no
further conditioning is done, because no re-weighting takes
place. In case of a ®-node, we re-weight the assignments of
the variable eliminated at that node.

Let I C dom, be the set of alternatives of x present at
that node. Since

P(R) = P(@(aﬂ—w

iel

=3 Pz i})-

iel

P(Ri),

if we create a new variable z’,

P({a’ i) = LUZ )

P(R)
This guarantees that

P(P@E —i:R)) =1

i€l

P(R

i)

If we ask which tuples of U should be in an instance
satisfying R, the answer is of course all those whose ws-
descriptors are consistent with one of the ws-descriptors in
z +— i : R; for some ¢ € I. The U-relation tuples in the
results of the invocations cond(R;, U;) grant exactly this.





