
Scalable Ranked Publish/Subscribe

Ashwin Machanavajjhala∗ , Erik Vee† , Minos Garofalakis† , and Jayavel Shanmugasundaram†
∗Cornell University and †Yahoo! Research

ABSTRACT
Publish/subscribe (pub/sub) systems are designed to efficiently match in-
coming events (e.g., stock quotes) against a set of subscriptions (e.g., trader
profiles specifying quotes of interest). However, current pub/sub systems
only support a simple binary notion of matching: an event either matches a
subscription or it does not; for instance, a stock quote will either match or
not match a trader profile. In this paper, we argue that this simple notion of
matching is inadequate for many applications where only the “best” match-
ing subscriptions are of interest. For instance, in targeted Web advertising,
an incoming user (“event”) may match several different advertiser-specified
user profiles (“subscriptions”), but given the limited advertising real-estate,
we want to quickly discover the best (e.g., most relevant) ads to display.

To address this need, we initiate a study of ranked pub/sub systems. We
focus on the case where subscriptions correspond to interval ranges (e.g,
age in [25,35] and salary > $50, 000), and events are points that match all
the intervals that they stab (e.g., age=28, salary = $65,000). In addition,
each interval has a score and our goal is to quickly recover the top-scoring
matching subscriptions. Unfortunately, adapting existing index structures
to solve this problem results in either an unacceptable space overhead or
a significant performance degradation. We thus propose two novel index
structures that are both compact and efficient. Our experimental evaluation
shows that the proposed structures provide a scalable basis for designing
ranked pub/sub systems.

1. INTRODUCTION
The exploding volume of information available on the Internet

has fueled the development of middleware systems that are based
on the publish/subscribe (or pub/sub) paradigm. Such systems rely
on efficiently matching streams of published events to a large num-
ber of subscriptions that correspond to subscriber interests in spe-
cific classes of events. A canonical example of pub/sub systems
involves stock trading: publishers such as the New York Stock Ex-
change publish stock quotes and stock traders register their interest
in specific stock events, e.g., notify me when the stock price of
Apple exceeds $200.

While there has been a large body of work on building scalable
pub/sub systems (e.g., [3, 6, 13, 15, 25]), all of them rely on a sim-
ple binary notion of matching that assumes that each event either
matches a subscription or it does not, and all matching subscrip-
tions are returned. However, many emerging applications require
a more sophisticated notion of matching, where only the “best”

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

matching subscriptions are of interest. This gives rise to a new
class of pub/sub systems that we call ranked pub/sub systems. We
motivate the need for such systems using three application scenar-
ios.(Note that we are using the term “pub/sub” in a somewhat un-
conventional manner, to capture scenarios where a dynamic stream
of events must be quickly matched against a large collection of
standing subscriptions. These subscription matchings are not nec-
essarily tied to an underlying event-notification or data-dissemination
service.)

Targeted Web Advertising: An emerging trend in online adver-
tising is enabling advertisers to target users based on information
such as user demographics, profile information and online activ-
ity [1, 11, 28]. For instance, a mortgage vendor may wish to target
online users between 20 and 35 years of age, who have a credit
score between 400 and 500, and who have visited a real estate Web
site at least 3 times in the past month, and show an ad tailored to
such users when they visit an online website. This can be modeled
as a pub/sub problem, where the stream of incoming users corre-
sponds to events (e.g., a user with age = 25, credit score = 441, and
real estate count = 6), and the advertiser specifications are subscrip-
tions (e.g., 20 ≤ age ≤ 35 and 400 ≤ credit score ≤ 500 and real
estate count≥ 3). However, unlike traditional pub/sub systems, we
do not wish to retrieve all the subscriptions (ads) that correspond
to a given event (user) because we can only show a small number
of ads in a Web page. Rather, we only wish to retrieve the “best”
subscriptions based on some criteria such as the most targeted ads
(tightest enclosing rectangles), the most profitable ads, the most
underserved ads, etc.

Online Job Sites: Several online job sites (e.g., HotJobs.com,
Monster.com) allow job seekers to register profiles, and also allow
job posters to specify job seeker profiles that they are interested in.
For instance, a job seeker may register a profile for nursing jobs that
pay $50 per hour and have a 25 hour work week, while a job poster
may express an interest in nurses who are willing to work between
20 and 30 hours per week for $45-60 per hour. Then, when a job
seeker visits the site, she can be presented with jobs that match her
profile. This can again be modeled as a pub/sub problem, where
the events are job seekers (e.g., job type = nursing, hourly rate =
$50 and hours per week = 25) and the subscriptions are job poster
interests (e.g., job type = nursing, 45 ≤ hourly rate≤ 60, and 20≤
hours per week≤ 30). However, as in the targeted advertising case,
we cannot show all the jobs that match a user profile because of the
limited real estate on the Web page. Thus, we want to retrieve only
the best jobs for a given user based on criteria such as the monetary
value to the job poster, fairness of exposure across job postings, etc.

Application-level Routers: In information dissemination applica-
tions, application-level routers are commonly used to route docu-

451

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

ments based on their content [3, 6, 25]. For instance, in a financial
news feed application, a news document can have fields such as
the date posted and average analyst ratings, and subscribers can re-
quest documents within a specified date and analyst rating range.
This corresponds to a typical pub/sub application, where the events
are news documents (e.g., date posted = 16 Nov 2007 and analyst
rating = 3) and the subscriptions are subscriber interests (e.g., date
posted > 1 Nov 2007 and analyst rating < 4). However, in high-
volume applications, an application-level router may be required to
shed some load (i.e., avoid delivering some events to certain sub-
scribers) due to CPU and/or network bandwidth limitations, and
this load shedding needs to be guided by factors such as subscriber
priority or service level agreements. This can again be modeled
as a ranked pub/sub problem, where the score of a subscription is
the subscriber priority or the deviation from the service level agree-
ment.

In this paper, we initiate a study of scalable and efficient tech-
niques for the ranked pub/sub problem. We focus on the problem
where each event is represented as a point (v1, . . . , vd) over a d-
dimensional space, and each subscription is represented as a set of
intervals (I1, . . . , Id) over that space. (It is easy to see how the
above motivating examples can be mapped to this model.) Further,
we consider two notions of matching: exact matching and relaxed
matching.

Exact Matching: A subscription (I1, . . . , Id) matches an event
(v1, . . . , vd) if and only if ∀i ∈ [1, d](vi ∈ Ii), i.e., the event is
fully contained in the subscription’s hyper-rectangle. Further, every
subscription has an associated score, and the goal is to return the top
few subscriptions ordered by the score.1 As an illustration of this
semantics, consider an application-level router where we only wish
to route messages that satisfy all the subscription constraints, and
the score of a subscription represents the priority of the subscriber.

Relaxed Matching: A subscription (I1, . . . , Id) matches an event
(v1, . . . , vd) if and only if ∃i ∈ [1, d](vi ∈ Ii), i.e., at least one
dimension of the event is contained in the corresponding interval
of the subscription. Further, a weight wd is associated with each
dimension of a subscription, and the score of a subscription is the
sum2 of the weights of the matching dimensions, i.e.,
Σi∈{j|j∈[1,d]∧vj∈Ij}wi. For instance, in online advertising and job
sites, it is preferable but not necessary to satisfy all the subscrip-
tion constraints (e.g., we might show an ad even if it does not fully
satisfy the user profile). Further, different dimensions of an ad may
be weighted differently (e.g., a credit score match may be more
important to an advertiser than an age match).

Given the above problem statement, a natural question arises:
How do we implement the these ranked pub/sub systems in order
to achieve scalability and efficiency? One naive approach is to use
a traditional (unranked) pub/sub system to retrieve all the subscrip-
tions that match an event, and then perform some post-processing
to retrieve the top few matches. Such a naive solution, however, is
clearly inefficient since it produces all the matching subscriptions
even though only the top few matches are desired. This issue is par-
ticularly problematic in applications like online advertising and job
sites, where the number of matches (i.e., ads, jobs) far exceeds the
number that can be shown on a single Web page, and in application-
level routers, where producing all the matches consumes already

1In our work, we assume that subscription scores are given and are inde-
pendent of the matching event/point — extending our techniques to handle
event-dependent subscription scores is a challenging area for future work.
2More generally, the score of a subscription can described by any mono-
tonic function of the weights.

Space

T
im

e

Scored
Segment TreeScore-Optimal

R-Tree

IR-Tree

Scored R-Tree

Scored
Interval Tree

Figure 1: Space-Time Tradeoffs for Scored Interval Indices

scarce resources.
Hence, we propose an alternative solution that works as follows.

For each dimension i, we build a Scored Interval Index over the
subscription intervals in that dimension. A Scored Interval Index
is designed to take in a event value vi and provide an efficient
getnext() iterator that returns the intervals containing vd in the
order of their score. (For exact matching, the score of a subscrip-
tion interval is simply the score of the subscription; for flexible
matching, the score is the weight of the subscription interval in the
given dimension.) Given these indices, an incoming event (v1, . . . ,
vn) is processed as follows. First, the indices are probed with the
event values to produce a set of iterators. Then, in the case of ex-
act matching, the intervals produced by the iterators are intersected
to produce the subscriptions in score order. In the case of flexi-
ble matching, the Threshold Algorithm [17], which is an instance-
optimal algorithm for merging multiple ranked lists with different
rank (weight) orders, is used to efficiently find the subscriptions
with the highest scores.

Our decision to use many one-dimensional Scored Interval In-
dices instead of using a single multi-dimension index warrants some
discussion. The primary reason for this choice is our requirement
to support relaxed matching, which requires the ability to drop cer-
tain subscription dimensions from consideration at event process-
ing time. While we are not aware of any multi-dimensional in-
dex with this capability, the Threshold Algorithm easily handles
this case by ignoring the weights for the dropped dimensions when
computing the overall score. The other reason for our choice is
more pragmatic: to the best of our knowledge, there are no inter-
val index structures (one-dimensional or multi-dimensional) in the
literature that are optimized for ranked retrieval of scored matches.
So, the focus of this paper is on the easier (albeit still challenging!)
problem of developing scored one-dimensional indices for process-
ing multi-dimensional events.

Given the above system architecture, the main technical chal-
lenge is devising efficient Scored Interval Indices. Existing inter-
val index structures such as interval trees [23], segment trees [12]
and (1-dimensional) R-trees [18] are not directly applicable to this
problem because they do not produce results in score order. Thus,
we propose some simple adaptations to these structures that can
produce results in score order. Unfortunately, our analytical and
experimental results show that these adaptations are either time-
inefficient (i.e., slow response time) or space-inefficient. Figure 1
pictorially depicts this qualitative tradeoff (not drawn to scale).

Based on the above observations, one of our main contributions
is the development of two new index structures – the Interval R-
tree (IR-tree) and the Score-Optimal R-Tree (SOPT-R-tree) – that

452

are both time- and space- efficient (Figure 1). The SOPT-R-tree,
which relies on intelligent pre-processing of the underlying interval
set before indexing it using an R-tree, is the most efficient in terms
of both time and space. In fact, we can prove that we can retrieve
the top-k results in O(k × log n) time, where n is the number of
subscriptions. However, SOPT-R-trees cannot handle incremental
updates easily. On the other hand, the IR-tree, which is a hybrid
between an Interval Tree and an R-tree, is marginally slower than
the SOPT-R-tree, but is incrementally updateable.

In summary, the main contributions of this paper are:

• We propose and formalize the novel problem of ranked pub-
lish/subscribe.

• While exploring simple adaptations of existing structures to
support scoring, we identify an interesting space-time trade-
off (Section 2) for ranked subscription retrieval.

• We devise new, score-aware index structures that are both
space and time efficient (Section 3).

• We give an experimental evaluation of the proposed indexing
structures that convincingly demonstrates the benefits of our
approach (Section 4)

2. RANKED RETRIEVAL USING EXISTING
INTERVAL INDEX STRUCTURES

In this section we describe three existing interval index struc-
tures, namely the Interval Tree, the Segment Tree and the R-tree.
These index structures are designed to support interval stabbing
queries, i.e., queries that return the set of all intervals that are
stabbed by a given query point. We, however, are interested in
top-k interval stabbing queries, i.e., queries that return the top-
k scoring intervals that are stabbed by a query point. In the latter
part of this section, we describe scored adaptations of these index
structures that support top-k interval stabbing queries.

2.1 Standard Interval Index Structures
Interval- and segment-tree indexes are the “standard” known so-

lutions for efficiently processing simple interval-stabbing queries
over the real line. We now briefly describe the key ideas behind
each index. In either case, the input comprises of a collection of
n intervals I, where each interval Ii ∈ I is a pair of left/right
endpoints (Ii = [xl

i, x
r
i], i = 1, . . . , n).

2.1.1 Interval Trees
An interval tree [23] over I is constructed in a recursive man-

ner as follows. We pick the median endpoint xmed of the interval
collection, and let I(xmed) ⊂ I denote the subset of intervals
in our collection that are stabbed by xmed. Also, let Il(xmed)
(Ir(xmed)) be the subset of intervals completely to the left (resp.,
right) of the median xmed. Create an interval-tree node v contain-
ing two sorted lists of the intervals in I(xmed): one sorted by inter-
val left-endpoints and one sorted by interval right-endpoints. Then,
for the left and right child subtree of v, recurse the above construc-
tion on Il(xmed) and Ir(xmed), respectively. Note that, assuming
a roughly even split of intervals across the xmed (i.e., |Il(xmed)| ≈
|Ir(xmed)|), the height of the interval tree is O(log n). To process
a stabbing query for point q over the interval tree, start from the
root node, and, for each visited tree node v: If q = xmed at v, then
simply return all the intervals in the v node; else, if q < xmed at v,
then traverse the left-endpoint-sorted list at v to return all intervals
that begin before q, and recurse the search on the left child of v;
otherwise, traverse the right-endpoint sorted list at v to return all

4,8

10

2

5
6

9

1
3

4
7

8

395,9

2,7

4

816

10

0 10 30 45 55 65 75 90 100

1, 3, 10

2,4,7,85,6,9

10

2

5
6

9

1
3

4
7

8

100500 20 80

Figure 2: Interval and Segment Trees

intervals that end after q, and recurse the search on the right child
of v.

It is not difficult to see that the space requirements of the interval
tree over I are O(n) (as each interval is stored only in a single
tree n node and replicated in two lists). The construction time for
the interval tree is O(n log n), and, letting m(q) denote the size
of the answer set for a stabbing query q, the time to answer q is
O(m(q) + log n).

EXAMPLE 1. Figure 2 (on the left) shows a set of ten intervals
(labeled 1 through 10) on a line segment between 0 and 100. 50
is the median end point. This partitions the intervals into the set of
intervals stabbed by 50, {1, 3, 10}, the set of intervals completely
to the left of 50, {5, 6, 9}, and the set of intervals to the right of 50,
{2, 4, 7, 8}. The recursive construction stops at the next level after
finding medians 20 and 80 that stab all the intervals in {5, 6, 9}
and {2, 4, 7, 8}, respectively. The left end-point and the right end-
point sorted lists maintained in the root node (not shown in the fig-
ure), for instance, would be {10, 1, 3} and {1, 3, 10}, respectively.

2.1.2 Segment Trees
In contrast to interval trees, a segment tree [12] over I relies on

partitioning the intervals in I into a collection of disjoint, atomic
segments, and then indexing these segments using a binary-tree
structure. The atomic segments are simply defined by sorting the
collection of all 2n endpoints in I and taking the segments defined
by consecutive endpoints in the list (including −∞ and +∞ as the
leftmost and rightmost points, respectively); note that this results in
at most 2n+1 atomic segments over I. The segment tree over I is
a balanced binary tree over the above sequence of atomic segments.
Note that each node v of the tree can be described by a single extent
interval interval(v) that is equal to the union of all atomic seg-
ments under v’s subtree. A node v stores the interval ids for all in-
tervals I ∈ I such that interval(v) ⊆ I but interval(u) 6⊆ I ,
where u is the parent node of v (in other words, interval(v) is
a maximal node-extent interval in the tree that is completely con-
tained in I). Processing a stabbing query using a segment tree is
greatly simplified by the fact that the atomic segments partition the
underlying domain, which, in turn, implies that, at each level of the
segment tree, the query point q stabs exactly one of the node-extent
intervals. Thus, starting from the root, we only need to follow a
path of stabbed nodes to a leaf and return all the interval ids stored
at each stabbed node.

453

The construction time and query time requirements for a seg-
ment tree are similar to those for an interval tree: O(n log n) and
O(m(q)+log n), respectively (where m(q) is again the size of the
answer set for q). A key difference lies in the space requirements of
the two structures: By partitioning each interval in I across node-
extent intervals, in the worst case, each interval id can be replicated
across at most two distinct (non-sibling) nodes at each level of a
segment tree. Thus, the worst-case space requirements of the seg-
ment tree are O(n log n).

EXAMPLE 2. Figure 2 (on the right) shows the same set of in-
tervals {1, . . . , 10}when indexed by a segment tree. Let x1, . . . , x9

denote the 9 distinct end points. Each segment [xi, xi+1], i =
, 1 . . . , 8, is an atomic segment. Hence, the segment tree has four
levels, with the lowest level containing one node vxi,xi+1 for each
atomic segment. The interval 9, for instance, is stored in the nodes
v10,30 and v30,45, since both [10, 30] and [30, 45] are contained in
interval 9, but none of their parent nodes are contained in 9. To
illustrate query processing, let 75 < q < 90. An interval stabbed
by q contains the atomic segment [75, 90] and hence should appear
in the node v75,90 or one of its parents. Therefore, the intervals
{10, 2, 7, 4, 8} intersect q.

2.1.3 R-Trees for Stabbing Queries
Conventionally, R-trees [18] have been used for indexing hyper-

rectangles in order to efficiently search for all rectangles that over-
lap with a query rectangle. In a single dimension, intervals “over-
lap” a query point q if and only if they are stabbed by q. Hence,
we can use R-trees to solve our problem. The R-tree groups in-
tervals into partitions of size at most b, where b is the branching
factor. Various heuristics can be used for grouping intervals, in-
cluding minimizing the size of the bounding interval for a group,
minimizing bounding interval overlap between groups, or grouping
intervals by their start or end points.

Each group of intervals is stored in a leaf node of the R-tree.
The leaf node is associated with an extent interval which is the
minimum bounding interval of the intervals in leaf node. Suppose
[`g

i , rg
i], i = 1, . . . , b, are the intervals in a leaf node g. Then Ig =

[`g, rg], where `g = mini `g
i and rg = maxi rg

i is the minimum
bounding interval. The R-tree is constructed recursively on these
minimum bounding intervals. Finally, we add a child pointer from
the entry corresponding to interval Ig to the leaf node g. In order to
answer a stabbing query q, we start from the root and keep chasing
child pointers as long as q is in the extent of each intermediate
node. Once, we reach a leaf node, we return the set of intervals
that contain q. Note that intervals in multiple leaf nodes might
contain the point q, and hence we might need to go down multiple
root-to-leaf paths. It can be shown that an R-tree only requires
O

(
n×

(
1 + 2

b−1

))
space, but in the worst case might take O(n)

time to return all the stabbed intervals.

EXAMPLE 3. Figure 3 shows a set of intervals indexed by an
R-tree with branching factor 4. The intervals are grouped so as to
try and minimize the size of the bounding intervals. The leaf nodes
partition the intervals into groups of at most 4 and each entry in the
root node is a minimum bounding interval of the leaf nodes. The
R-tree constructed in Figure 3 is especially bad since, for instance,
every node in this R-tree needs to be visited to answer a query
q = 35.

2.2 Scored Interval Index Structures
We now describe Scored Interval trees, Scored Segment trees,

and Scored R-trees, simple adaptations of the three standard inter-
val indexes. Our analysis demonstrates that these scored variants

5

9

1
3

10

2

4
7

8
6

965

0-10030-1000- 45

321 8 1074

100300 10 45 55 65 75 90

Figure 3: R-Tree

of the standard index structures give rise to an interesting space/-
time tradeoff: While being very space efficient, interval trees and
R-trees require significantly more time to process top-k stabbing
queries (time linear in the number of intervals, in the worst case);
in contrast, segment trees allow for extremely efficient ranking but,
of course, can also incur a O(log n) factor blowup in space. Note
that, with subscription numbers n in the millions, such O(log n)
can be very significant — in the worst case, they can render main-
memory indexing infeasible.

We first introduce some basic notation that will be useful for our
analysis of the scored interval- and segment-trees. Given an index
node v (in either an interval tree or a segment tree) and a query
point q, we use nv to denote the number of intervals in I that are
stored in node v, and mv(q) to denote the number of those intervals
that are stabbed by q. We also define mv(q̄) = nv −mv(q) (i.e.,
the number of v’s intervals that do not contain q). Finally, we let
path(q) denote the set of nodes on a root-to-leaf tree path that are
traversed when processing query point q.

2.2.1 Scored Segment Trees
A segment-tree index can be easily adapted to return the top-k

scoring intervals of I stabbed by a query point q. Recall that, for
each I stored in v, I ⊇ interval(v). Hence, the key observation
here is that if the extent interval of v is stabbed by q (and, thus,
accessed during the basic retrieval algorithm), then all interval ids
stored in node v are also guaranteed to be stabbed by q.

For score-based retrieval, the intervals in each segment-tree node
are stored sorted in the order of their scores. (Note that this does not
increase the asymptotic segment-tree construction cost, which re-
mains O(n log n).) Then, since a query point only stabs O(log n)
tree nodes along a root-to-leaf path, we can retrieve the stabbed
intervals in rank order by simply maintaining a max-heap of size
O(log n) across these stabbed nodes. A getnext() operation sim-
ply extracts the maximum element from the heap (belonging to,
say, stabbed node v), and then replenishes the heap by inserting
the next-best interval from node v — the total cost of both opera-
tions is only O(log log n). (In fact, since this next-best interval has
a lower score, we can use the more efficient decreaseKey() op-
eration on the heap [10].) The overall cost for retrieving the top-k
scoring stabbed intervals for q (including the cost to build the initial
max-heap) is O(log n log log n+ k log log n).

2.2.2 Scored Interval Trees
In contrast to segment trees, the intervals stored in an interval-

tree node that is explored during a (conventional) stabbing query,
are not all guaranteed to be stabbed by the query point. Thus, to
support ranked stabbing queries, the retrieval algorithm needs to
query both interval end points and scores at each interval tree node.
Hence, the interval tree can be adapted to support ranking naturally
in two ways.

Conventional (Endpoint-Sorted) Interval Tree. One approach is
to simply employ the basic interval-tree index structure. Like in the
basic stabbing query algorithm, at each visited tree node v, we re-

454

trieve the intervals stabbed by the query point q. We also keep track
of the top-k scoring intervals in v using a per-node max-heap struc-
ture of size k. (Of course, the heap is only needed if mv(q) > k.)
Then, to extract the global top-k stabbed intervals in the tree, we
maintain a global max-heap of size O(log n) to keep track of each
of the nodes on path(q). Each call to getnext() extracts the best
interval (say, from node v) from the global max-heap, which then
replenishes itself by inserting the next-best interval from v (simi-
lar to the heap described for the segment-tree scheme). The over-
all (worst-case) time complexity, which includes the time to build
the per-node max-heaps as well as the time to build and probe the
traversed-path max-heap is O(m(q) log k + k(log k + log log n)).

Score-Sorted Interval Tree. Rather than sorting intervals in a
node by their endpoints, an obvious alternative is to sort intervals
by their scores (thus, essentially, favoring score ranking instead of
stabbing-based selection). Each node in this score-sorted interval
tree index also maintains the minimum and maximum endpoints
across all intervals stored in the node — this allows us to quickly
determine whether the intervals in a node are potentially stabbed
by an input query point.

In order to retrieve the top-k stabbed intervals, we maintain a
global max-heap of size O(log n) across the nodes on the root-to-
leaf path stabbed by the query point q (i.e. path(q)) that, at each
point, contains the next-best stabbed interval from each node. The
problem here is that, since intervals in each node v are sorted by
score, getting the next-best interval from v that is actually stabbed
by q might require an expensive linear scan over the score-sorted
list; in the worst case, we may need to examine (and discard) O(mv(q̄))
intervals from each node v on the query path. Thus, we expect
this indexing scheme to perform well only if most of the inter-
vals in the stabbed nodes on path(q) are actually stabbed by q
(i.e., the mv(q̄)’s are small). The overall worst-case time com-
plexity for top-k retrieval using the score-sorted interval tree is
O(

∑
v∈path(q) mv(q̄)+ (log n + k) log log n).

Our experiments have shown that the score-sorted interval tree
is typically much more efficient than the conventional interval tree
for top-k stabbing queries, since the running time only depends on
the number of intervals not stabbed along a path, rather the total
number of intervals stabbed by the query. Hence, in the rest of the
paper, we define the scored interval tree to be a score-sorted interval
tree.

2.2.3 Scored R-Trees
Recall that in an R-tree, we have the flexibility to group inter-

vals together based on different criteria. In order to answer top-k
stabbing queries, it is natural to group intervals by their scores so
that the top scored intervals are grouped together, the next lower
scored intervals are grouped together, and so on. In other words,
we order intervals in decreasing order of their scores and pick con-
secutive blocks of size b to form the leaf node groups. Recursively,
if (g1, . . . , gk) are the set of internal nodes at any level of the R-
tree (in that order), then every interval in the subtree of g1 has a
score at least as large as that of every interval in the subtree of g2.
This property ensures that the following simple [left-first] depth-
first traversal implements a getnext(): Starting with the root node
of the R-tree, at each internal node, scan each entry from left to
right and recurse on its child node only if its extent interval con-
tains the query point q. At a leaf node, scan the intervals from left
to right and record an interval if it is stabbed by q. Return from the
recursive call either if all entries in the node have been processed
or if k intervals have been recorded.

LEMMA 2.1. Given an R-tree on a set of intervals I arranged

5

9

1
3

10

2

4
7

8
6

321

0-1000-10030-100

654 9 1087

100300 10 45 55 65 75 90

Figure 4: Scored R-Tree (Interval Ids Sorted by Score)

in descending order of score and a query q, performing a [left-first]
depth-first search till k intervals stabbed by q correctly returns the
top-k scoring intervals stabbed by q.

The problem with the above simple solution is that, in many
cases, this [left-first] depth-first search traversal ends up visiting
leaf nodes where the query point does not stab any of the intervals.
The reason should be intuitively obvious: Recall that a scored R-
tree groups intervals based solely on their score ranking and with
no regard to their spatial extents. Unfortunately, this implies that
the coverage of the “bounding” extent intervals for internal nodes
in the resulting R-tree often contains a large number of “holes” —
in other words, there will often be a large number of sub-ranges in a
node’s coverage that do not intersect any actual interval in the un-
derlying collection. As a simple example, consider the collection
of intervals depicted in Figure 4, where the ordering of intervals
on the y-axis corresponds to their scores. (Thus, interval 1 is the
highest-scoring interval, interval 2 is the second highest, and so
on.) Figure 4 also shows an example scored R-tree for that inter-
val collection. Note that the [left-first] depth-first traversal for, say,
q = 90 would visit all the nodes in the tree incurring O(n) time
for a single getnext().

In summary, our analysis quantifies parts of the qualitative space/-
time tradeoff illustrated in Figure 1. Scored segment trees are very
efficient in answering top-k stabbing queries; however, they are
space inefficient and might not allow an in-memory implementa-
tion. On the other hand, scored interval trees and R-trees are very
space efficient. However, modulo the score-sorted variant, scored
interval tree adaptations are only good at indexing the intervals but
not their score. Similarly, R-trees can only index either scores or
the intervals, but not both. Hence, these index structures are lacking
in terms of time efficiency. Nevertheless, we carry over the insights
from these simple adaptations to design two novel index structures
– the IR-tree (Section 3.1) and the SOPT-R-tree (Section 3.2) – that
are as space-efficient as interval and R-trees, and, at the same time,
can answer top-k stabbing queries as quickly as segment trees.

3. TIME AND SPACE EFFICIENT TOP-K
INTERVAL INDEXES

While requiring significantly smaller space than the segment-tree
solution (essentially, avoiding the O(log n) replication blowup),
the interval-tree schemes described above can also be significantly
more expensive in terms of computation time. Likewise, the scored
R-tree, although compact, has unpredictable performance times.
We now describe two novel scored interval indexing structures, In-
terval R-trees (IR-trees) and Score-Optimal R-trees (SOPT-R-trees),
that are provably efficient in terms of both query time and memory
requirements.

3.1 The IR-Tree Index Structure
We saw earlier that interval trees and their variants store lists

of intervals at their nodes; in the worst case, answering a query

455

may require traversing the entire list. The key idea in IR-trees is
to employ a more time-efficient data structure than a list — more
specifically, we index the set of intervals at each interval tree node
by an R-tree. For example, in Figure 2(a), intervals 5, 6, 9 are
indexed with an R-tree, and similarly 2, 4, 7, 8 and 1, 3, 10. As
we mentioned earlier, R-trees may still have linear search times in
the worst case. However, we are saved by a crucial technical ob-
servation: By the construction of interval-tree nodes, every interval
stored at a node is stabbed by a common point (namely, the median
point corresponding to the node). For instance, intervals 5, 6, 9 are
stabbed by a common point in Figure 2(a). This observation allows
us to guarantee efficient query times.

More formally, we can prove the following lemma, which relies
on the fact that the extent of every internal node in this R-tree index
has no “holes” in the node’s coverage; in other words, if the R-tree
node is stabbed by a query point q, then at least one interval stored
in its subtree is guaranteed to contain q. This fact ensures efficient
ranked retrieval.

LEMMA 3.1. Given an R-tree constructed over a set of n in-
tervals in which every pair of intervals overlap and a query q,
retrieving the set of top-k scoring intervals stabbed by q takes
O(bk logb

n
k
) steps.

PROOF. The extent interval Ig of an internal node g is the min-
imum bounding interval of all the intervals in its subtree. Since
every pair of intervals intersect, if q stabs Ig , there should exist an
interval I in g’s subtree such that q stabs I . If we ever go down a
child pointer, we are guaranteed that the extent interval in one of the
entries in the child node contains q. Hence, one root to leaf traversal
is enough to find the top scoring interval stabbed by q. Thereafter,
finding the next best interval involves at most traversing back up to
the root and an additional root-to-leaf traversal. Hence, this takes
at most O(bk logb(n/k)) steps.

We construct an IR-tree over I as follows. First, we build a
score-sorted interval tree on I. Then, at each node v of the tree,
we index the sorted list of nv intervals at v (in order of decreasing
score) by building a (scored) R-tree index on top of the list.

The top-k interval retrieval algorithm over an IR-tree is similar
to the basic interval-tree search algorithm, but also employs the
embedded R-tree structure at each traversed node v to efficiently
find the top-scoring interval stored in v. More specifically, starting
with v = root of the IR-tree, we can find the top-scoring interval in
v by performing the [left-first] depth-first traversal of the R-tree at
node v until we find an interval that is stabbed by the query q. That
is, we call getnext() on the R-tree at node v. A trivial extension
of Lemma 3.1 shows that each of these calls to getnext() takes
time only O(b logb nv).

Once the above step for searching node v is complete, we check
the location of q compared to the median endpoint of v, and recurse
on the left or right child of v in the IR-tree as in traditional interval-
tree search. Finally, we return the best interval found from amongst
the O(log n) nodes we traversed.

To discover the next-best interval (for a getnext() operation
on the IR-tree) during top-k processing, we maintain an O(log n)-
size max-heap for the best intervals along the traversed query path
(as earlier). If we returned the best interval from node v, then we
must replenish the heap with the next-best interval from node v.
Hence, we call getnext() on the R-tree associated with node v. If
the call returns an interval, we place it into our max-heap. Other-
wise, we have exhausted node v’s stabbed intervals. As shown in
Lemma 3.1, fetching k items from node v has total time complexity
of just O(bk logb(nv/k)), and, in general, is quite fast.

The time to set up the initial max-heap (which requires a traversal
of the I-tree from the root to a leaf node) takes time O((b logb n +
log log n) log n). Each subsequent call to getnext() for the IR-
tree, along with a heap update, takes time O(b logb n + log log n).
Hence, the worst-case running time for a top-k retrieval is bounded
by O((k + log n) b logb n).

In terms of space complexity, the IR-tree clearly requires only
O(n) space (in fact, its size is at most 1.5× the size of a conven-
tional interval tree, even with an R-tree of branching factor b = 2).
Using an R-tree with branching factor b > 2 decreases the space
blow-up over score-sorted interval trees (which take even less space
than conventional interval trees) to be just 1 + 2

b−1
. However, it

also increases the worst-case running time asymptotics by a factor
O(b/ log b). Due to caching affects and other overhead, perfor-
mance can actually improve for modest values of b, while simul-
taneously decreasing memory requirements. We summarize these
performance guarantees below.

THEOREM 3.1. An IR-tree indexing n intervals has space com-
plexity O(n), and in general takes at most a factor (1+ 2

b−1
) more

space than a score-sorted interval tree, where b is the branching
factor of the R-trees at the nodes of the IR-tree. The time to pro-
cess a top-k query is bounded by O((k + log n) b logb n).

3.2 The SOPT-R-Tree Index Structure
We now explore the SOPT-R-tree data structure which has the

memory requirements of an R-tree, but also guarantees fast query
times — its worst-case running time is just O(kb logb n) to produce
a top-k list over n items.

The SOPT-R-tree is, in fact, a scored R-tree, in which we care-
fully sort the intervals in such a way that we hit very few “holes”.
Recall that, in the score-sorted R-tree discussed earlier, intervals
are sorted by their score, and the R-tree is built on top of these inter-
vals. For certain distributions, this approach works well. However,
for many distributions, this will produce many “holes,” leading to
poor performance. By a clever rearrangement of the intervals, our
SOPT-R-tree index can avoid most of these holes. In fact, we prove
that, for any top-k query, we explore at most 2k leaf nodes of the
tree, corresponding to hitting at most k holes.

The main optimization idea stems from the following realization.
Suppose that I1 and I2 are intervals that we wish to index. Further,
suppose that the score of I1 is greater than the score of I2, and
that no interval has a score between the score of I2 and the score
of I1. If I1 and I2 intersect, then any R-tree indexing them must
place I1 before I2. (To see this, suppose that q ∈ I1 ∩ I2; then,
a query q must return I1 before I2.) However, if I1 and I2 do not
intersect, we are free to place them in either order, since no query
point can stab both intervals — their relative ordering is immaterial.
In the next section, we show how to leverage this simple property
to produce a provably good interval arrangement.

3.2.1 Generating a SOPT-R-tree
Before describing the underlying arrangement of intervals in a

SOPT-R-tree, we first define a constraint graph for the intervals. In
essence, this constraint graph captures the allowable arrangements
of intervals.

Consider the set I of n input intervals, each with a score, and
define G̃(I) to be the directed graph (V, Ẽ), where V and Ẽ are as
follows: The set V consists of n nodes, one node for each interval
I ∈ I. We refer to the node associated with I by node(I). We
include an edge in Ẽ from node(I1) to node(I2) if and only if
I1 ∩ I2 6= ∅ and score(I1) > score(I2).

However, it will be useful for us to use a more efficient repre-
sentation of this simple intersection graph that, intuitively, tries to

456

0-55 10-100 0-100
1 3

5 6 1 9 3 2 4 7 8 10
2 4 7 8

5 6 9 10

Figure 5: SOPT-R-Tree

avoid some extraneous “transitive” edges. Formally, define graph
G = (V, E) to have the same vertex set as G̃, and E defined as
follows. Suppose I1, I2 ∈ I with score(I1) > score(I2). Then,
E contains an edge from node(I1) to node(I2) if and only if (a)
I1 ∩ I2 6= ∅; and, (b) there exists a point q ∈ I1 ∩ I2 such that,
for all I ∈ I with score(I1) > score(I) > score(I2), the point
q /∈ I . Clearly G contains only a subset of the edges in G̃; further-
more, it is not difficult to see that, if there is an edge from node(I1)

to node(I2) in Ẽ, then there is a path from node(I1) to node(I2)
in E. Note that G includes some unnecessary “transitive” edges;
however, we will be able to compute G extremely efficiently.

EXAMPLE 4. Figure 5 shows the constraint graph G for our
running example of intervals (see, e.g., Figure 4 — recall that the
y-axis and interval ids are sorted by score). Interval 1 intersects in-
tervals 3 and 9, and score(1) > score(3), score(1) > score(9);
furthermore, 1 ∩ 3 and 1 ∩ 9 do not intersect any other intervals
of intermediate scores. Hence, edges (1, 3) and (1, 9) appear in
G. Note that, even though interval 1 also intersects interval 10 and
score(1) > score(10), there is no edge (1, 10) in G; however,
this edge is “covered” by the (1, 3, 10) path in G.

We say that an arrangement of the intervals in I respects G(I)
if for all intervals I1, I2 ∈ I such that there is an edge from
node(I1) to node(I2), the interval I1 comes before I2 in the ar-
rangement. Note that, by the fact that edges in G̃(I) always map
to paths in G(I), an arrangement respects G(I) if and only if it re-
spects G̃(I). Also, note that the arrangement described for scored
R-trees, in which the highest scored intervals come first, clearly
respects G(I). The following lemma shows that any R-tree that
groups intervals based on any arrangement respecting G(I) will
produce a ranked top-k list in the expected way.

LEMMA 3.2. Let I be a set of scored intervals, and suppose ar-
rangementA respects G(I). Let T be the R-tree built on arrange-
ment A. Then, for any query q, performing [left-first] depth-first
search on T to find the first k intervals stabbed by q will produce
the top k scored intervals stabbed by q.

PROOF. An R-tree built on arrangement A, when performing
depth-first search for query q, will simply return intervals stabbed
by q in the order they appear in A. So we only need to argue that
for all k and q, the first k intervals appearing in A that are stabbed
by q are in fact the top k scoring intervals stabbed by q.

Suppose not. Then we can find an interval I that is among the
first k intervals according to A stabbed by q, and an interval J
that is in the true top k list, but such that score(I) < score(J).
Thus, there is an edge from node(J) to node(I) in G̃. That is,
A does not respect G̃(I), hence does not respect G(I). This is a
contradiction.

We are now ready to describe the algorithm that builds the inter-
val arrangement for SOPT-R-trees. In a nutshell, the idea is to ex-
ploit the freedom allowed by the partial-ordering constraints spec-

ified in the constraint graph G, to ensure intervals are grouped to-
gether in terms of their spatial proximity (as long as that does not
violate G). More specifically, let left(I) denote the left endpoint
for interval I . The first interval in the arrangement is the inter-
val I with the smallest left(I) value, taken over all I who have
node(I) with indegree 0. We remove the node(I) from G(I) and
repeat this step recursively, until all intervals have been added. We
restate this algorithm below. For convenience, we define indeg(I)
to be the indegree of node(I). (We set this to -1 if node(I) is not
in G(I).)

Algorithm 1 Arrangement for SOPT-R-trees
Require: Interval set I and constraint graph G(I).
1: while G(I) is not empty do
2: Let I be the interval with the smallest left(I) value, taken over all

I with indeg(I) = 0.
3: Add I to the arrangement, and remove node(I) from G(I).
4: end while
5: Output the arrangement.

For any set of intervals I with scores, the b-way SOPT-R-tree for
I is defined to be the b-way R-tree created using the arrangement
produced using Algorithm 1. As an example, Figure 5 shows the
SOPT-R-tree created for our running-example interval collection
from its corresponding constraint graph.

Since the algorithm respects the constraint graph G(I), we know
that it produces correct results. But the key property of SOPT-R-
trees is in the lemma below. It guarantees that while processing a
top-k query for point q using the SOPT-R-tree, we explore at most
k leaf nodes of the tree that do not contain an interval stabbed by q.
(That is, we hit at most k “holes.”) This translates directly into an
upper bound on the running time of any top-k query.

THEOREM 3.2. Let I be a set of n scored intervals, and let T
be the b-way SOPT-R-tree generated for I. For any query q, the
time to return a top-k list is at most O(bk logb n). The total space
taken by T is the same as an R-tree on I, and can be implemented
in (1 + 2

b−1
) times the space of the original interval data.

PROOF. Fix a level of the tree T , and label the nodes on that
level from left to right by ν1, ν2, ..., νm, where m is the number of
nodes on that level. Fix any query point q. We will first show that
if there are two nodes, νi and νj with i < j, whose extent intervals
both contain q, and there are no intervening nodes whose extent
interval contains q, then either νi or νj (or both) index an interval
that contains q.

Suppose not. That is, suppose that neither νi nor νj index an
interval containing q. Let A be the arrangement produced by Al-
gorithm 1. Since i < j, all of the intervals indexed by νi appear in
A before the intervals indexed by νj . Let I be the lowest-scoring
interval indexed by νi that is entirely to the right of q. (Since the
extent interval of νi contains q, while no interval indexed by νi

contains q, we know such an interval exists.) Let S be the set of
all intervals that appear after the intervals indexed by νi in arrange-
ment A, and let J be the highest-scoring interval in S that lies
entirely to the left of q.

By the ordering specified in Algorithm 1, J would appear before
I (since its left() value is smaller) unless there were a path from
node(I) to node(J) in G(I). This path consists of intervals that
intersect each other, and they stretch from the left of q to the right
of q. Hence, one of those intervals, say K, must cross q. Further-
more, since node(K) lies on the path from node(I) to node(J),
the arrangement A must order K between I and J . Hence, an
intervening node must contain K (which is stabbed by q), a contra-
diction.

457

So, for every two nodes the algorithm explores, at least one will
contain a stabbed interval. Hence, it will explore at most 2k nodes
per level. Each node takes O(b) time to explore, and there are
O(lgb n) levels. The running time follows. The space claims fol-
low directly from the fact that the SOPT-R-tree is an R-tree.

Note that, in the worst case, this is essentially the best query time
we can hope to prove for any R-tree structure. There are interval
sets such that for any arrangement and any k, there will be a query
q whose stabbed intervals are contained in k different leaf nodes
of the R-tree. Hence, the top-k search will explore at least k leaf
nodes.

Although we are primarily concerned with the query time, the
pre-processing time must be kept subquadratic, since we are fre-
quently dealing with millions of intervals. Note that Algorithm 1
runs in time O(n log n + |E(I)|), where |E(I)| is the size of
the edge-set for G(I): The find operation in step 2 can be per-
formed using a heap (of size at most n); it is executed n times,
taking O(n log n) time. Every time we remove a node(I) from
G(I), we touch every out-edge of node(I) and update the heap
by adding any nodes that now have indegree 0. This takes an addi-
tional O(|E(I)|) time overall. In the next section, we show that the
graph G(I) can be generated efficiently, and we also bound |E(I)|
by 3n. Using these ideas, we prove that the pre-processing time to
produce a SOPT-R-tree is O(n log n).

Handling Updates. While the SOPT-R-tree clearly offers the best
time/space tradeoff among the different scored interval index struc-
tures explored in this work, it also raises some issues with respect
to the update-ability of the data structure (when dealing with dy-
namic interval/subscription collections). The problem, of course, is
that our constraint-graph optimizations are highly sensitive to the
underlying interval collection: a single update could drastically al-
ter the constraint graph structure, rendering the SOPT-R-tree index
obsolete. Devising techniques for efficiently updateable SOPT-R-
tree indexes is definitely an interesting area for future work; in the
meantime, IR-tree indexes seem to offer the best tradeoff with re-
spect to time/space requirements and the ability to incrementally
update the index structure.

3.2.2 Efficient Construction of the Constraint Graph
There is an obvious O(n2) algorithm to produce the constraint

graph G(I). However, since n may well be in the millions, this is
an unacceptably long pre-processing time. We show in this section
that G(I) can be constructed in time O(n log n), and that it has
at most 3n edges. Since Algorithm 1 runs in time O(n log n +
|E(I)|), this immediately shows the following result.

THEOREM 3.3. Given any set I of n scored intervals, a SOPT-
R-tree for I can be constructed in time O(n log n).

In order to describe the efficient process for constructing G(I),
we will need an additional concept. For a subset J ⊆ I of scored
intervals, we say an endpoint p is visible with respect to J if there
is some interval I ∈ J for which p is an endpoint, and further,
there is no other interval J ∈ J with score(I) > score(J)
and p ∈ J . It may be helpful to consider the example drawn in
Figure 3. (Again, recall that intervals are numbered by decreasing
score.) Imagine looking upward from below the intervals. If J
consists of the intervals 1 through 10, then the point p = 30 is not
a visible endpoint with respect to J — intuitively, we may think of
interval 10 as obscuring it. However, if J consists of the intervals
1 through 8, then p = 30 is a visible endpoint with respect to J
— 30 is an endpoint of interval 6, and no lower-scoring interval
contains (i.e., “obscures”) 30.

The set of endpoints that are visible with respect to J break the
real line into intervals, which we refer to as visible blocks to avoid
confusion. We denote this set of visible blocks by visBlks(J);
the set visBlks(∅) contains only the interval (−∞,∞). For every
block B ∈ visBlks(J), we say interval I ∈ J is associated with
B if I is the lowest scoring interval in J such that B ⊆ I .

EXAMPLE 5. In Figure 3, visBlks({1, 2, ..., 7}) consists of
the blocks (−∞, 0],[0, 30], [30, 45], [45, 55], [55, 65],[65, 75], [75, 100],
[100,∞). Interval 6 is associated with block [0, 30]. Interval
1 is associated with block [30, 45], interval 3 with [45, 55], in-
terval 4 with [65, 75], and interval 7 with [75, 100]. The blocks
(−∞, 30], [55, 65], and [100,∞) have no associated intervals. No-
tice that each block has at most one interval associated with it.

Our algorithm uses the following key property. In essence, it says
that when considering the ith interval Ii, we only need to find the
set of visible blocks that Ii intersects in order to find all edges point-
ing to node(Ii) in G(I).

LEMMA 3.3. Let I = {I1, I2, ..., In} be a set of scored inter-
vals, labeled so that score(Ii) > score(Ij) for all i < j. Fur-
ther, let J` = {Ii|i ≤ `} for ` ≥ 1. For any interval I ∈ Ji−1,
there is an edge from node(I) to node(Ii) in G(I) if and only if
I is associated with a visible block B ∈ visBlks(Ji−1) such that
B ∩ Ii is nonempty.

PROOF. First suppose that I is associated with B ∈ visBlks(Ji−1)
with B ∩ Ii nonempty. Let x ∈ B ∩ Ii. Then x ∈ I ∩ Ii as well.
Furthermore, if there were an interval J ∈ Ji−1 such that x ∈ J
and score(I) > score(J) > score(Ii), it would violate the
“visibility” condition on B. Hence, there is an edge from node(I)
to node(Ii).

On the other hand, suppose there is an edge from node(I) to
node(Ii). Then there is some x ∈ I ∩ Ii such that no interval J
with score(I) > score(J) > score(Ii) is such that x ∈ J . In
other words, there is a block B containing x that is visible with
respect to Ji−1.

Below, we give the algorithm to produce the constraint graph
G(I). For convenience, we assume that I contains the interval
(−∞,∞) with score∞, so that every visible block throughout the
algorithm will have an associated interval. The algorithm works
through the intervals in I in decreasing order of their score, say
I1, I2, For each interval Ii, we determine the set of visible
blocks from visBlks(Ji−1) that intersect Ii, where Ji−1 is de-
fined as in Lemma 3.3. We can then add all edges in G(I) pointing
to node(Ii). We repeat this until all intervals are processed.

Algorithm 2 Computing the constraint graph
Require: Interval set I = {I1, I2, ..., In}, sorted in descending order by

score.
1: Initialize J ← {I1}, and initialize G to have no edges and vertices

node(I1), .., node(In).
2: for i = 2 to n do
3: foreach block B ∈ visBlks(J) such that B ∩ Ii do
4: Set I to be the interval associated with block B.
5: Add an edge from node(I) to node(Ii).
6: end foreach
7: Add interval Ii to set J .
8: end for
9: Output graph G.

Note that step 3 of the algorithm can be performed in time O(log n+
bi), where bi is the number of visible blocks that intersect Ii: At
each step, we maintain the set of visible endpoints with respect to

458

J , sorted by value; we may do so using a tree. Given interval Ii,
let x be its left endpoint and y be its right endpoint. We find con-
secutive visible endpoints with respect to J , say z1 < z2, such
that z1 ≤ x < z2. (By a natural extension, we allow z1 = −∞
or z2 = ∞.) This can be done in a tree in O(log n) time. Since
the visible endpoints are maintained in sorted order, we may then
find all visible endpoints greater than x and less than y in time
O(bi). Note that to maintain the list of visible endpoints when we
add interval Ii, we simply insert x and y, and remove all previously
visible endpoints that lie between x and y.

Hence, the total running time of Algorithm 2 is O(n log n +∑n
i=1 bi). But notice that bi is precisely the number of edges that

point to node(Ii), by Lemma 3.3. Hence,
∑n

i=1 bi = |E(I)|. We
will show in the next lemma that |E(I)| ≤ 3n, hence the total
running time is bounded by O(n log n).

LEMMA 3.4. Let I be a set of n scored intervals. The graph
G(I) has at most 3n edges. Furthermore, G(I) can be constructed
in O(n log n) time.

PROOF. We show G(I) has at most 3n edges via a charging
argument. Consider running Algorithm 2. Initially, we add I1 to
J so that there are three visible blocks. (The interval I1 is asso-
ciated with the middle block; the other blocks have no associated
intervals.) We charge each of these three blocks to I1.

In general, if I` is about to be added to J in the `th iteration,
I` will intersect a number of visible blocks, say B1,B2,..., Bk or-
dered by their left endpoint. When I` is added to to J , the blocks
B2,B3,...,Bk−1 will cease to be visible. Block B1 is reduced to
cover just B1− I`, and likewise Bk reduces to Bk − I`. Call these
reduced blocks B′

1 and B′
k, respectively. So the addition of I` pro-

duces 3 new blocks, B′
1, B′

k, and the block whose range is I`. We
charge each of these three blocks to I`.

But note that whenever an edge is added to a graph, we remove
a visible block. (In the case outlined above, we may think of re-
moving B1 and adding block B′

1; likewise with Bk.) Every time
we add a block, it is charged to some interval, so the total number
of edges is at most the number of charged blocks. But every time
we add an interval, exactly 3 blocks are charged to it. So the total
number of edges is at most 3n. The runtime thus follows from our
previous discussion.

COROLLARY 3.1. An SOPT-R-tree for interval set I can be
constructed in O(n log n) time.

4. EXPERIMENTS
In this section, we present an experimental evaluation of the data

structures we proposed for ranked pub/sub. As part of our exper-
imental setup, we consider subscriptions on a d dimensional nu-
meric domain. Recall that, each subscription I defines an interval
Id in each dimension (i.e., a hyper-rectangle). We focus our exper-
imental evaluation on the more general relaxed matching problem.
Accordingly, a score fj(Ij) is associated with each dimension k.
An event is a point q = (q1, . . . , qd) in the d dimensional domain.
A subscription matches the event if in each dimension qj stabs Ij .
The combined score of a matching subscription is the sum of the
scores of the matched intervals

f(I) =

d∑
j=1

δjfj(Ij) where, δj =

{
1 if q stabs Ij

0 else.

We build d single-dimensional indices using each of the follow-
ing five indexes – the Scored Interval Tree, the Scored Segment
Tree, the Scored R-tree, our IR-tree and our SOPT-R-tree. We also

experimented with the conventional interval tree and R-tree struc-
tures, but as expected, they were orders of magnitude slower than
their scored counterparts, and we thus do no consider them further.
Since we only deal with the scored variants of the standard struc-
tures, we will henceforth drop the ’scored’ prefix when referring
to them. All indices are implemented in main-memory in keeping
with the response time requirements for online and routing appli-
cations.

We implement Fagin’s Threshold Algorithm [17] over the d sin-
gle dimensional indices that aggregates scores based on the above
combination function. The algorithm retrieves the next best inter-
vals from each of the indexes in a round-robin fashion. On re-
trieving an interval, the algorithm finds out the scores of the sub-
scription in all the other dimensions, and computes the total score
for this subscription. The algorithm maintains a heap of size k to
keep track of the k best subscriptions retrieved at any point of time.
Simultaneously, a threshold value, which is the sum of the scores
of the most previous best interval retrieved from every dimension,
is also updated. When the kth smallest subscription has a higher
score than the threshold, the algorithm terminates and returns the
top-k subscriptions.

Data Set: We use a synthetically generated subscription workload
for our experiments. We actually did have access to a data set of
real subscriptions from Yahoo!’s Behavioral Targeting (BT) group,
but on inspecting that data set, we found that most interval pred-
icates were on pre-specified non-overlapping intervals. This was
not due to a lack of demand for arbitrary intervals, but due to a lim-
itation of the current user interface; specifically, the interface pre-
cluded subscribers from specifying arbitrary intervals because the
underlying system did not support such intervals. Since our goal is
to enable arbitrary intervals, we decided to use a synthetic data set
instead because it illustrates the fundamental tradeoffs between the
index structures.

We generate a workload of subscriptions and queries based on a
d-dimensional Zipfian data generator [7] described in the literature.
The data generator, which we shall describe shortly, is used to gen-
erate a distribution of points. We then generate the query workload
by sampling nqueries points from this distribution. The subscrip-
tions are generated as follows. We draw a point xmid from the data
generator. We then independently pick a length `i for each dimen-
sion from a Zipfian distribution of skew controlled by skewlength.
The resulting subscription is the hyper-rectangle I = (I1, . . . , Id),
where Ii = [xmid − `i, xmid + `i].

Recall that the R-tree and, hence, the SOPT-R-tree indices are
very efficient when there is a large amount of overlap amongst the
subscriptions. On the contrary, interval trees should perform better
when there is lesser interval overlap as they allow for a finer parti-
tioning of the intervals. The Zipfian parameter skewlength controls
the overlap between intervals and, hence, is a crucial parameter that
we can vary to study the performance of our index structures across
a variety of scenarios. We believe that subscription scores are typ-
ically correlated with their selectivities. So, we set the score of the
subscription in each interval as fi(Ii) = 1− `i.
The Zipfian Data Generator: The Zipfian data generator [7] as-
sumes that each dimension is discrete and finite. We simulate this
by dividing the [0, 1) interval of real numbers into ci equal parts
and numbering them 0 through ci−1. The data generator randomly
selects nregions hyper-rectangles. The number of points within
each region is bound by the parameters vmin and vmax. The points
that are generated are divided across the different regions according
to a Zipfian distribution with a parameter skewacross. Within each
region, the points are distributed again based on a Zipfian distribu-
tion with a parameter skewwithin that makes points farther away

459

Param Description Default
k Top-k Parameter 20

nintervals # Subscriptions 1 million
nqueries # Queries 1000

d # Dimensions 1
b Tree Branching Factor 50

skewlength Length Zipfian Param 0.75
nwarm−up # Warmup Queries 100

Zipfian Data Generator Parameters
nregions # Regions 10

ci # Points in dimension i 100

vmin, vmax Volume (min,max) per region 100d/20

skewacross
Zipfian Parameter to partition

points across regions 0

skewwithin
Zipfian Parameter for points
distribution within a region 1

Table 1: Parameters for Synthetic Data

from the mid point of the region more unlikely. Table 1 describes
the defaults values for the various parameters.

The Zipfian data generator returns a discrete point in d dimen-
sions. We need to convert this into a point in our original domain
[0, 1)d.Recall that a point (p1, . . . , pd) corresponds to the hyper-

rectangle R = (R1, . . . , Rd), where Ri =
[

pi
ci

, pi+1
ci

)
. We return

a point chosen uniformly at random from R.
We are now ready to describe our experimental results. In every

experiment, we first generate a subscription workload and build all
the indices. The build time for all the indices was very fast — under
a minute per dimension even when we had a million subscriptions.
We then perform nwarm−up queries on the index and measure its
performance on then next nqueries queries. We implemented these
algorithms in Java and performance measurements were made on a
dual core machine with 4 GB RAM.

100,000 200,000 500,000 1,000,000
Interval 0.92M 1.7M 4.2M 8.3M

R 1.2M 2.4M 6M 12M
Segment 40M 89M 214M 429M

IR 1.76M 3.43M 8.35M 16.5M

Table 2: Memory usage of interval indexes (in MB)

Experiment 1 Space Complexity of Data Structures: We mea-
sure the memory usage of an index structure by measuring the
amount of heap space used by the implementation just before and
just after constructing the index. Heap space measurements could
be misleading since old objects might not have been garbage col-
lected. However, such effects are eliminated by averaging over a
large number of observation. Table 2 shows the memory usage of
the index structures per dimension as we vary the number of index
intervals. We did not plot the SOPT-R-tree since it is essentially
an R-tree. As shown, the Segment Tree requires more than an or-
der of magnitude more space than the other structures, and quickly
becomes impractical when the number of intervals increases (note
that these are space requirements per dimension). Regarding the
other structures, the IR-tree takes up more space than the interval
and R-tree indexes, but it is at most twice as large as the interval
tree. This validates our claim that the IR-tree index and the SOPT-
R-tree index have a low space overhead.

Experiment 2 Varying the number of getnext() calls: The

 0.015625

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 1 2 4 8 16 32 64 128 256 512

T
im

e
in

 m
s

(lo
gS

ca
le

)

Number of getNext() calls (logScale)

Interval
R
S

IR
SOPT-R

Figure 6: Varying the number of getnext() calls

speed of our index structures depends on the time taken for ev-
ery getnext(). Figure 6 shows the total time taken as we vary
the number of getnext() calls (this is equivalent to varying k in
1 dimension). There are several interesting aspects to note from
the graph. First, as expected, the Interval Tree is the least efficient
because of the high initial processing cost to find the right interval
range (since the lists are in score order). Second, the performance
of the Scored R-Tree degrades as the number of getnext() calls
increase because they encounter many “holes” in their depth-first
traversal. Third, the performance of the Segment Tree and the IR-
tree are about the same, even though the IR-tree consumes at least
an order of magnitude less space. Finally, and perhaps most inter-
estingly, the SOPT-R-tree is always the most efficient and provides
up to a factor of 2 speed-up over the other approaches. Note, how-
ever, that the difference in performance between the different index
structures decreases with the number of getnext() calls; this is
because almost all the intervals are retrieved when the number of
calls is large, and the index structures are roughly similar in this
case.

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 1 2 3 4 5 6 7 8

T
im

e
re

la
tiv

e
to

 O
P

T
-R

 tr
ee

numDimensions

Interval
R
S

IR
SOPT-R

Figure 7: Varying Number of Dimensions

Experiment 3 Varying the number of dimensions: Figure 7 shows
the performance of a query when varying the number of dimen-
sions, and Figure 8 shows the performance of the different indices
relative to SOPT-R-treewhen varying the number of dimensions
(note the log scale on both the y axes). The first striking aspect
is that as the dimensionality increases, the performance of all the
indices converges. This is because, at higher dimensions, the num-
ber of getnext() operations needed to retrieve the top 20 becomes
very large and hence almost all the stabbed intervals have to be re-

460

 1

 2

 4

 8

 16

 1 2 3 4 5 6 7 8

T
im

e
re

la
tiv

e
to

 O
P

T
-R

 tr
ee

numDimensions

Interval
R
S

IR
SOPT-R

Figure 8: Varying Number of Dimensions

trieved. Since all the index structures are roughly equally efficient
in returning the set of all matches, their performance converges
(this is one manifestation of the dimensionality curse). However,
for a reasonable number of dimensions (1, 2, 3, 4), the SOPT-R-
tree still offers significant benefits ranging from 16x to 1.5x over
other approaches. Further, the IR-tree offers roughly similar ben-
efits with the added benefit of supporting incremental subscription
insertions and deletions. Finally, while the Segment Tree has a
good response time, it ran out of memory at 8 dimensions, showing
that it is not well suited for for in-memory implementations.

 30

 35

 40

 45

 50

 55

 60

 0.0625 0.125 0.25 0.5 1 2 4

T
im

e
T

ak
en

 p
er

 q
ue

ry
 (

m
s)

skew-length

Interval
R

S
IR

SOPT-R

Figure 9: Varying subscription overlap

Experiment 4 Varying subscription overlap: Figure 9 shows the ef-
fect of varying subscription overlap (a lower value for skewlength

means larger hyper-rectangles and hence more overlap amongst
the subscriptions). We fix the number of dimensions to 4. The
most interesting take-away from this graph is that while all the
interval indexes become faster as skewlength increases, (scored)
R-trees degrade in performance. Recall from Section 2.2.3 that
Scored R-trees group intervals based on their score rather than
their spatial intent. Larger values of skewlength cause “holes”
in the R-tree structure. Performance degrades as the [left-first]
depth-first traversal visits many leaf nodes which do not contain
any stabbed interval. The same problem does not affect the SOPT-
R-tree since non-overlapping intervals are intelligently rearranged
to avoid gaps. The rest of the index structures improve in perfor-
mance because it is easier to partition a space with large gaps.

In summary, the SOPT-R-tree has the best performance across
the board for a reasonable number of dimensions, while the IR-tree
comes a close second.

5. RELATED WORK
To the best of our knowledge, this is the first piece of work to ad-

dress the ranked publish/subscribe problem; still, there are several
related problems that have been studied in the research literature.
As mentioned earlier, the bulk of conventional pub/sub engines
and indexing tools (e.g., [3, 6, 13, 15, 25]) are based on the con-
cept of strict binary matches (i.e., find all subscriptions matching
an event), and do not incorporate notions of subscription ranking.
Of course, our ranked pub/sub problem can be naively solved by
first finding the set of all matching subscriptions (e.g. using a sys-
tem like LeSubscribe [15] or Gryphon [3]), and then ranking these
matches in a post-processing step. This can be a very wasteful,
time-consuming approach, especially for events that are not very
“selective” (e.g., vague job seeker profiles — common in practice),
and end up matching a very large number of standing subscriptions.
In a sense, the arguments here are very similar to those for optimiz-
ing top-k query evaluation in relational systems [20].

More recent work on symmetric pub/sub [27] considers a set-
ting where both events and subscriptions are specified as constraints
(or, ranges for numeric attributes), and shows how they can be ex-
pressed as PostgreSQL queries using its geometric overlap and
contains predicates. Subscription ranking is not considered in
their study. Extending our fast interval indexing schemes to the
symmetric pub/sub setting is an interesting problem. Liu and Ja-
cobsen [22] propose an interesting extension to traditional pub/sub
models by allowing for fuzzy matchings of events to subscriptions,
using ideas from fuzzy logic and possibility theory. Still, they also
do not consider subscription ranking; instead, their schemes rely
on using a user-defined threshold for the fuzzy-match score and re-
turning all matches above that threshold. Investigating the applica-
bility of these ideas for ranked retrieval under such fuzzy-matching
score functions opens up a very interesting area for future work.

In traditional Nearest-Neighbor (NN) search (e.g., [9, 26]), the
goal is to find the top few points that are close to other points.
In contrast, in ranked pub/sub, we are interested in finding points
close to intervals. This seemingly simple distinction requires a fun-
damental rethinking of index structures based on intervals, which
is the main focus of this paper. Some variants of NN search do
return regions that are close to a query point [24], but the defini-
tion of “close” is hard-coded based on geometric distances, and the
techniques do not generalize to the ranked pub/sub scenario where
each dimension of a subscription can have its own weighted score.
Rank-sensitive B-tree structures [5] aim to efficiently rank the re-
sult points of interval range queries by maintaining ranked lists of
data points in the B-tree nodes; similarly, in preference queries [2,
8], the goal is to find the best data points that match a given user
query. In contrast, ranked pub/sub considers the inverse problem,
where the goal is to find the best queries (subscriptions) that match
a given data point (event). Again, this fundamental distinction of
indexing intervals as opposed to points requires the development
of new index structures. Work on bounded continuous queries [19]
considers the problem of selecting the top-k events for a given sub-
scription over a specified time period. The ranked pub/sub problem,
on the other hand, considers the problem of selecting the top-k sub-
scriptions that match a given event.

There are other data structures that are related to our problem.
Aggregate R-trees (like Ra? trees [16]), that store aggregates (e.g.,
the maximum score) at each internal node can be adapted to solve
the ranked pub/sub problem if the top-k parameter is known up
front. Partially-persistent data structures (such as, multi-version
B-trees [4]) capture the evolution of a data structure (e.g., a B-tree
index) over time, and allow for query points to address any ver-
sion of the data structure in time. This work obviously has some

461

strong connections to our ranked pub/sub indexing problem: sub-
scriptions can be viewed as temporal intervals in a multi-version
index and stabbing events essentially query a particular version of
that index in time. At the same time, compared to, say, the optimal
multi-version B-trees of [4], our approach exhibits some key ben-
efits for ranked pub/sub indexing. First, our winning index strate-
gies offer much stronger space-efficiency guarantees. For instance,
in the space analysis of [4], the constants hidden in the O() fac-
tors can actually introduce up to a factor 11.5 blowup in the space
requirements of the basic B-tree structure. (This is mainly due to
splitting intervals into multiple segments based on their end points
(i.e., version changes).) In contrast, the space blowup of our SOPT-
R-tree is always upper bounded by a factor of (1 + 2

b−1
) (Theo-

rem 3.2), which is typically less that 10% (for realistic values of b).
Second, unlike IR-trees, multi-version B-trees do not allow for in-
cremental updates to the subscription set, since temporal intervals
(i.e., versions) can only be inserted in increasing order of their left
endpoints. We should, of course, note that it might be possible to
extend/adapt ideas from partially-persistent data structures to pro-
vide effective solutions specifically targeted to our ranked pub/sub
setting — exploring such adaptations and comparing them to the
techniques presented here is an interesting avenue for future work.

6. CONCLUSIONS AND FUTURE WORK
We have introduced the new problem of ranked pub/sub systems,

developing indexing solutions for the case where events are points
in a n-dimensional space, and subscriptions are intervals in that
space. The index structures — IR-tree and SOPT-R-tree— are com-
pact and efficient, and scale well for reasonable values of n. We be-
lieve that this work is only the first step towards building truly flex-
ible and sophisticated ranked pub/sub systems, and that addressing
the following open issues will lead us closer to that goal:

More expressive subscriptions: Many applications such as content-
based filtering [14, 25] have subscriptions that are specified as paths
over hierarchical XML documents. Further, such applications also
mix structural and content filters. Supporting such subscriptions
would require the development of new scored subscription indexing
techniques that go beyond those for indexing intervals.

More expressive events: In applications such as online job sites,
the events themselves could be intervals, e.g., a job seeker might
be interested in jobs that require 20-30 hour work weeks. A related
issue occurs in online advertising where some user behavior is in-
ferred and is hence uncertain, e.g., we might be infer an approxi-
mate probability of a user being interested in sports, but his estimate
may have an error bound. Modeling such events with intervals and
uncertainty again requires a rethinking of scored interval indices.

Score updates: Score updates can be very useful in applications
such as online advertising, where the priority of a line can depend
on how far it is from the delivery goal of, say 10,000 million im-
pressions a day, and can thus change after just a few ads are served
in a space of a few minutes. While some of our proposed index
structures can support incremental addition/deletion of subscrip-
tions, they do not support score updates, which would require the
development of new techniques.

Scaling to high dimensions: With the advent of behavioral targeting
in online advertising [1, 11, 28], there can be hundreds of dimen-
sions associated with an user (e.g., propensity for sports, propen-
sity for shopping, etc.). Scaling to such a large number of dimen-
sions requires new techniques that go beyond our current solution
of 1-dimensional indices using the Threshold Algorithm. Possible
solutions to this problem include the development of scored multi-

dimensional indices and dimensionality reduction techniques.

Acknowledgements. We would like to thank Pat O’Neil, Jun Yang,
and Pankaj Agarwal for several helpful comments and suggestions.

7. REFERENCES
[1] AOL Audience Targeting.

www.aolmedianetworks.com/index.php?id=1936
[2] R. Agrawal, E. Wimmers. A Framework for Expressing and

Combining Preferences. SIGMOD 2000.
[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao. An Efficient

Multicast Protocol for Content-Based Publish-Subscribe Systems.
ICDCS 1999.

[4] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer. An
Asymptotically Optimal Multiversion B-Tree. The VLDB Journal
5(4), 1996.

[5] W. Bialynicka-Birula, R. Grossi. Rank-Sensitive Data Structures.
SPIRE 2005.

[6] A. Carzaniga, A. L. Wolf. Forwarding in a Content-Based Network.
SIGCOMM 2003.

[7] K. Chakrabarti, M. Garofalakis, R. Rastogi, K. Shim Approximate
Query Processing Using Wavelets VLDB 2000.

[8] J. Chomicki. Querying with Intrinsic Preferences. EDBT 2002.
[9] K. L. Clarkson. A Randomized Algorithm for Closest Point Queries.

SIAM Journal of Computing 17(4), 1988.
[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to

Algorithms. MIT Press, 1990.
[11] DoubleClick Targeting Filters.

www2.doubleclick.com/dk/advertisers/brand/filters.htm
[12] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf.

Computational Geometry: Algorithms and Applications.
Springer-Verlag, Heidelberg, 2000.

[13] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, P. Fischer. Path
Sharing and Predicate Evaluation for High-Performance XML
Filtering. TODS 28(4), 2003.

[14] Y. Diao, S. Rizvi, M. J. Franklin. Towards an Internet-Scale XML
Dissemination Service. VLDB 2004.

[15] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
D. Shasha. Filtering Algorithms and Implementation for Very Fast
Publish/Subscribe. SIGMOD 2001.

[16] M. Jurgens, H. J. Lenz. The Ra*-tree: An Improved R-tree with
Materialized Data for Supporting Range Queries on OLAP-Data.
DEXA Workshop, 1998.

[17] R. Fagin, A. Lotem, M. Naor. Optimal Aggregation Algorithms for
Middleware. J. Comput. Syst. Sci. 66(4), 2003.

[18] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. SIGMOD 1984.

[19] D. Kukulenz, A. Ntoulas. Answering Bounded Continuous Search
Queries in the World Wide Web. WWW 2007.

[20] C. Li, K. C. Chang, I. Ilyas, S. Song. RankSQL: query algebra and
optimization for relational top-k queries. SIGMOD 2005.

[21] Z. Liu, S. Parthasarthy, A. Ranganathan, H. Yang. Scalable Event
Matching for Overlapping Subscriptions in Pub/Sub Systems. DEBS
2007.

[22] H. Liu, H.A. Jacobsen. Modeling Uncertainties in Publish/Subscribe
Systems. ICDE 2003.

[23] F. P. Preparata, M. I. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 1985.

[24] N. Roussopoulos, S. Kelley, F. Vincent. Nearest Neighbor Queries.
SIGMOD 1995.

[25] A. C. Snoeren, K. Conley, D. K. Gifford. Mesh-Based Content
Routing using XML. SOSP 2001.

[26] R. L. Sproull. Refinements to Nearest-Neighbor Searching in
k-Dimensional Trees. Algorithmica 6, 1987.

[27] A. Tomasic, C. Garrod, K. Popendorf. Symmetric Publish/Subscribe
via Constraint Publication. ExpDB 2006.

[28] Yahoo! Advertising Targeting Options.
advertising.yahoo.com/central/marketing/targeting.html

462

