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ABSTRACT
Though inevitable for effective cost-based query rewriting,
the derivation of meaningful cardinality estimates has re-
mained a notoriously hard problem in the context of XQuery.
By basing the estimation on a relational representation of
the XQuery syntax, we show how existing cardinality esti-
mation techniques for XPath and proven relational estima-
tion machinery can play together to yield dependable fore-
casts for arbitrary XQuery (sub)expressions. Our approach
benefits from a light-weight form of data flow analysis. Ab-
stract domain identifiers guide our query analyzer through
the estimation process and allow for informed decisions even
in case of deeply nested XQuery expressions. A variant of
projection paths [15] provides a versatile interface into which
existing techniques for XPath cardinality estimation can be
plugged in seamlessly. We demonstrate an implementation
of this interface based on data guides. Experiments show
how our approach can equally cope with both, structure-
and value-based queries. It is robust with respect to inter-
mediate estimation errors, from which we typically found
our implementation to recover gracefully.

1. INTRODUCTION
Modern database implementations derive much of their

performance from sophisticated optimizer components that
transform incoming queries into efficient execution plans.
To properly select access paths, join order, or materializa-
tion strategies, optimizers heavily depend on accurate pre-
dictions of the value distribution and cardinality of individ-
ual query sub-results.

Such cardinality forecasts have been notoriously hard to
make in the context of XQuery, where the absence of a
strict database schema, the expressiveness of the XQuery
language, and the dualism between structural and value-
based querying all add to the complexity of the estimation
problem. In this work, we show how relational plan equiv-
alents for XQuery—originally developed to enable scalable
XQuery processing on relational back-ends—can be used to
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determine dependable cardinality forecasts for XQuery. By
faithfully keeping the connection between the relational plan
and the original query, we make sure these forecasts are valu-
able even if the evaluation strategy of the actual back-end
is not relational.

Consider the following XQuery query against weather.com
forecast data for New Zealand (which we hope takes the else
branch more often than the then branch during VLDB 2008):

for $d in doc ("forecast.xml")/descendant::day
1©

let $day := $d/@t

let $ppcp := data ($d/descendant::ppcp)

return

if ($ppcp > 50)

then ("rain likely on", $day,

"chance of precipitation:", $ppcp)

3©

else ("no rain on", $day)
4©

2© (Q1)

Although existing techniques (e.g., [1, 8, 16]) could well esti-
mate the cardinality of the rooted path expression doc (·)/
descendant::day, the remaining expression kinds in this
query (for loops, conditionals, sequence construction, and
implicit existential quantification), let alone the arbitrary
nesting of such clauses, are beyond the capabilities of ex-
isting work. It is our goal to derive accurate cardinality
estimates for any subexpression in this query, and we will
illustrate our approach for the ones marked 1© to 4©.

Interlude: The importance of cardinality forecasts.
To pinpoint the impact of such fine-grained cardinality fore-
casts, we used the Pathfinder relational XQuery compiler [11]
to generate a SQL formulation of the XQuery expression

doc("forecast· · · ")/descendant::day/descendant::ppcp

For two predicates p1,2 in this SQL query we injected anno-
tations SELECTIVITY s that forced IBM DB2 to assume that
the pi have selectivity 0 % 6 s 6 5 %:
p1, a predicate emitted by the compiler to extract the docu-

ment node of the particular document forecast.xml from
Pathfinder’s tabular XML node encoding, and

p2, a predicate that selects the XML elements that are reach-
able by the subsequent descendant::day XPath location
step.

The assumed selectivities led DB2 to yield nine different ex-
ecution plans as documented by Figure 1 (inspired by Har-
itsa’s Picasso optimizer visualizer [17]). The actual selectiv-
ities of p1 and p2 are about 0 % and 1.1 %, respectively.
Equipped with this information, DB2 finds an execution
plan that runs in three orders of magnitude less the exe-
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Figure 1: Impact of (assumed) selectivities on DB2’s
choice of execution plan: the optimizer proposes a
variety of nine different plans (gray shades).

cution time of the worst plan. Clearly, there is something to
be gained from cardinality forecasts at the XQuery subex-
pression level.

Expressions like Query Q1 are easily handled by the ap-
proach we pursue here. We compile the input query into an
equivalent relational representation. While this provides an
immediately optimizable and executable specification of the
XQuery semantics (a route taken by the Pathfinder XQuery
compiler [5, 10]), note that execution is not our original in-
tent here. Instead, we build on the equivalence of original
input XQuery expression and its associated relational plan
and call upon existing techniques for relational plan analy-
sis to derive cardinality estimates for XQuery. To this end,
we use plan variants that maintain a direct correspondence
between row count and number of XQuery items. The proce-
dure is carefully designed to interoperate with a wide range
of the existing estimation techniques for XPath and, con-
versely, to make the outcome of the plan analysis accessible
to any XQuery processor, whether it is based on a relational
back-end or not.

The most effective component of our inference procedure
turns out to be the introduction of abstract domain identi-
fiers as an approximation of the value space that individual
query subexpressions take at runtime. An inferred inclusion
property between value domains, together with an approxi-
mation of the size of each domain capture enough informa-
tion to estimate the cardinality of relational XQuery plans.

We will present our approach as follows. Section 2 recapit-
ulates all relevant aspects of relational XQuery processing,
followed by the principles of relational XQuery cardinality
estimation in Section 3. In Section 4, we add support for
structural (XPath-) and value-based queries and illustrate
the cardinality inference process for Query Q1 in Section 5.
Sections 6 and 7 discuss related work and wrap up.

2. RELATIONAL XQUERY
We map XQuery syntax to relational plans via loop lift-

ing [12], a compilation technique—originally developed for
the XQuery compiler Pathfinder [11]—that derives algebraic
queries from the compositional XQuery dialect shown in Ta-

literal values document order (e1 << e2)
sequences (e1 , e2) node identity (e1 is e2)
variables ($v) arithmetics (+, -, . . . )
let $v := e1 return e2 comparisons (eq, lt, . . . )
for $v in e1 return e2 Boolean op.s (and, or, . . . )
if (e1) then e2 else e3 fn:doc (e)
typeswitch clauses fn:root (e)
element { e1 } { e2 } fn:data (e)
text { e } fs:distinct-doc-order (e)
e1 order by e2, ..., en fn:count (e), fn:sum (e), . . .
XPath (e/ax::nt) fn:empty (e)
user-defined functions fn:position (), fn:last ()

Table 1: Supported XQuery subset (excerpt).

π...,b:a,... column projection, renaming (a into b)
σa selection (select rows with a = true)
1a=b,× equi-join, Cartesian product
·∪, \ disjoint union (append), difference
δ duplicate row elimination
%a:〈b1,...,bn〉‖c row numbering (grouped by c)
~a:(b1,b2) arithmetic/comparison operator ∗

a:ax::nt(b) XPath step operator (a = b/ax::nt)

a:b XQuery atomization (a = fn:data (b))
doca:b XML document access (a = fn:doc (b))
ε, τ element/text node construction
agga‖b aggregation, grouped by b

Table 2: Table algebra used for cardinality estima-
tion (agg ∈ {count, sum, max, . . . }).

ble 1. The compiler’s target language is a table algebra (Ta-
ble 2) that has been designed to ease query analysis—the
focus in this work—as well as efficient execution on modern
SQL-style database engines [10, 12].

We work with rather restricted operator variants that
consume and emit tables (not sets) of rows. Projection π
extracts and renames columns and does not incur dupli-
cate elimination— the latter is explicit in terms of opera-
tor δ. Selection σa selects rows whose Boolean column a
carries value true. Such a Boolean column a is typically
established through prior application of comparison opera-
tors like 4a:(b1,b2)—the instance of ~ with ∗ = <—which
map a comparison of columns b1 and b2 over the entire
input table. The loop lifting compilation scheme guaran-
tees that all occurring 1 are indeed equi-joins and that the
rows of the input tables of operator ·∪ are disjoint. The
primitive %a:〈b1,...,bn〉‖c groups its input table by column c
and then attaches new column a holding unique row num-
bers in b1, . . . , bn order (this mimics the SQL:1999 clause
RANK() OVER (PARTITION BY c ORDER BY b1,. . .,bn) AS a). The
compilation scheme uses % mainly to embed row order in-
formation in the table data itself—this enables the use of
compilation targets whose native data model is unordered
(e.g., relational database systems).

The non-textbook operators, , , doc, ε, τ reflect spe-
cific aspects of the XQuery semantics and are discussed in
Section 4 when they are in context.

In the loop-lifting compiler, the XQuery for clause is the
core language construct: any expression e is considered to be
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const (πa:v(q)) ⊇ {a=v}
(Const-1)

a=v ∈ const (q)

const
`
π...,b:a,...(q)

´
⊇ {b=v}

(Const-2)
const (σa(q)) ⊇

˘
a=true

¯ (Const-3)

Figure 2: Examples of const (·) (columns holding a constant value) inference rules.

in the scope of its innermost enclosing for iteration.1 For
each such e, the compiler emits two algebraic plan pieces
which jointly compute a tabular encoding of e’s result:
(1) loope, a unary table with single column iter that holds

value i iff e is evaluated in the ith iteration of its enclos-
ing for loop, and

(2) qe, a ternary table iter|pos|item in which a row [i, p, v]
indicates that, in iteration i, e evaluates to an item se-
quence in which v (an atomic value or XML node iden-
tifier) occurs at position p.

To illustrate, consider the subexpression 5© in the follow-
ing slightly contrived XQuery Query Q2 which evaluates to
(<gust>80 mph</gust>,<gust/>,<gust>95 mph</gust>):

for $gust in (80,5,95) return

element gust { if ($gust > 70)

then (string($gust),"mph")
5©

else ()
6©

7©
}

(Q2)

iter
1
3

According to compilation invariant (1), the alge-
braic plan for Q2 will contain a sub-plan that com-
putes the unary two-row table loop 5© shown on the
left: subexpression 5© is evaluated for the first and
third binding of variable $gust.

iter pos item
1 1 "80"
1 2 "mph"
3 1 "95"
3 2 "mph"

As per invariant (2), the compiler fur-
ther emits a sub-plan that evaluates to
the sequence-encoding table q 5© on the
right: expression 5© evaluates to two
xs:string items each in iterations 1
and 3 of the enclosing for loop. From
the cardinality of table q 5© we infer that, overall, expres-
sion 5© contributes four items.

Exactly this direct correspondence of the cardinalities of
tables loope and qe and the number of items returned by
XQuery expression e is what we exploit in this work. If we
annotate the original input XQuery expression Q2 with the
table cardinalities we have observed, we get

for $gust in (80,5,95) return

element gust { if ($gust > 70)

then (string($gust),"mph")
4
else ()

0

4 (1.33/iteration)

}

The empty sequence () maps to an empty iter|pos|item ta-
ble [12] while the if-then-else essentially maps into a dis-
jount union ·∪, so we can derive its cardinality as 4 + 0 = 4.
With the cardinality three of loop 7© at hand, we can even
report that the entire if-then-else clause will contribute an
average of 4/3 ≈ 1.33 items per iteration of the for loop.

Figure 3 depicts the complete plan DAG for Query Q1 of
the Introduction. Note that one source of plan sharing in
this DAG is due to the fact that all subexpressions in the
scope of the same for loop may share their loop tables. The
desired forecast for the cardinalities of subexpressions 1©
to 4© in Q1 may be made based on the table cardinalities of
q 1© to q 4©. Note that this forecast does not depend on the

1Around a top-level expression e we assume the void loop
for $_ in (0) return e where $_ does not occur free in e.

actual presence of a relational execution engine. Any (non-
relational) XQuery processor can exploit this agreement of
row count and number of XQuery items. Since loop lift-
ing defines a fully compositional compilation scheme [11], it
is especially simple to keep track of the correspondence of
XQuery subexpression e and its associated subplan qe.

2.1 Analyzing Relational XQuery Plans
We analyze the relational plan DAGs in a peephole-style

fashion. Based on a set of inference rules, we perform a
single pass over the plan to annotate a set of properties to
each operator. These annotations are local in the sense that
they only depend on the operator’s immediate plan vicinity.

Figure 2 shows a subset of the inference rules for one such
property, const (·)—we will add more in the course of this
work. An entry a=v in the set-valued property const (q)
(denoted const (q) ⊇ {a=v}) indicates that, in the result
of sub-plan q, column a holds value v in all rows. We
use Rules Const-1 through Const-3 to infer such columns
that hold a constant value. The projection operator π is
one means to introduce columns of this kind (reflected by
Rule Const-1), but other operators may lead to statically-
known constants, too (as shown, e.g., in Rule Const-3).
Rule Const-2 propagates constant column information af-
ter column renaming. Further inference rules for const (·)
are explained in [10].

In the remainder of this text, we will also use the property
cols(·) to access the column schema of its table argument,
such that cols(qe) = {iter, pos, item} according to compila-
tion invariant (2), for example.

3. CARDINALITY INFERENCE
The ultimate goal of this work is to infer an additional

property |q| for each sub-plan q, the estimated number of
rows after sub-plan evaluation. For a large class of algebra
operators, we can directly turn their definition into an infer-
ence rule for |·|. Most of the unary operators, e.g., preserve
the cardinality of their input, as captured by Rule Card-1:

� ∈
˘
π... , %a:〈b1,...,bn〉‖c ,~a:(b1,...,bn) , a:b

¯
|�(q)| = |q|

(Card-1)

The binary operators ·∪ and × are other examples where
the operator definition straightforwardly translates into a
cardinality inference rule (recall that ·∪ preserves duplicates):

|q1 ·∪ q2| = |q1|+ |q2|
(Card-2)

|q1 × q2| = |q1| · |q2|
(Card-3)

In relational XQuery evaluation plans, operator ·∪ is used,
e.g., to combine the subexpressions of the then and else

branches of an if conditional (sub-plan q 2© in Figure 3) or
to implement sequence construction (remaining ·∪ operators
in Figure 3).

The traditional approach to estimate the cardinality of
the selection σa and equi-join operators 1a=b operators in
relational databases is the one taken in System R [20]. Rules
Card-4 and Card-5 implement the heuristic “10 %” rule of
System R:
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iter
1

πiter,item:"forecast.xml"

docitem

item:descendant::day(item)

%pos:〈item〉‖iter

%inner:〈iter,pos〉

πiter:inner,item πinner,outer:iter,ord:pos

item:descendant::ppcp(item)

πiter1:iter,pos1:1,item1:50

item:attribute::t(item)

%pos:〈item〉‖iter
%pos:〈item〉‖iter

πiter1:iter,pos,item

item

πiter1:iter,pos,item1iter=iter1

=res:(item,item1)

σres

πiter

δ

\

πiter,pos:1,ord:1,
item:"rain..."

1iter=iter1

πiter,pos,item,ord:2

·∪
·∪

·∪

1iter1=iter

πiter,pos:1,ord:3,
item:"chance..."

πiter,pos,item,ord:4

%pos1:〈ord,pos〉‖iter

πiter,pos:pos1,item

1iter1=iter

πiter,pos:1,ord:1,
item:"no rain..."

πiter,pos,item,ord:2

·∪
%pos1:〈ord,pos〉‖iter

πiter,pos:pos1,item

·∪
1iter=inner

%pos1:〈ord,pos〉‖outer

πiter:outer,pos:pos1,item

πiter

loop 1©

q 1©

loop 2©

loop 4©

loop 3©

q 4©

q 3©

q 2©

Figure 3: Complete plan DAG for XQuery expression Q1 (see text for annotations).

|σa(q)| = |q| · 1/10
(Card-4)

|q1 1
a=b

q2| = |q1| · |q2| · 1/10
(Card-5)

Both rules implement rather crude estimates, since the
System R optimizer assumes that persistent indexes are typ-
ically present to provide statistics for the argument relations
q1 and q2. Unfortunately, this assumption is met only rarely
in plans generated from XQuery. Nested XQuery expres-
sions more often lead to selections and joins over computed
subexpressions, instead of input from persistent storage. A
peephole-style implementation of data flow analysis in our
estimator remedies this situation, as we discuss next. Our
actual plan analyzer uses Rules Card-4 and Card-5 as a
last resort only if no useful information can be inferred about
the input relations computed by q1 and q2. Only rarely did
we see them being applied to real-world queries by our pro-
totype.

3.1 Abstract Domain Identifiers
The selectivities involved in the evaluation of the σ or

1 operators could be estimated more accurately with know-
ledge about the active domain of any column c in the operand
relations, i.e., the actual values taken by c at runtime. Ob-
viously, the actual value space of any column is not yet
known during static query analysis. Instead, we introduce
abstract domain identifiers, denoted by Greek letters α, β,
γ in this text, to represent the runtime domains. We infer

just as much information about value domains as necessary
to compute reliable cardinality estimates. A similar device
has been used in [10] to aid the algebraic optimization of
XQuery joins.

Fresh value domains are usually introduced by operators
that establish new table columns, such as, e.g., the row-
numbering operator %a:〈b1,...,bn〉. We write aα ∈ dom (q) to
indicate that in the result relation computed by q the active
domain of column a is α (for a fresh identifier α, not used
before):

dom
`
%a:〈b1,...,bn〉(q)

´
⊇ dom (q) ∪ {aα}

.

In our example plan (Figure 3), other instances of oper-
ators that introduce fresh domains are projection operators
that set up constant columns (π...,a:v,...), the comparison op-
erator =res:(item,item1), or the XPath-related operators doc, ,
and , whose semantics we discuss in Section 4.

3.1.1 Domain Sizes
For each newly established value domain, our plan ana-

lyzer also tries to infer additional information that is valu-
able for our aim, the inference of table cardinalities. To-
wards this end, we estimate the size of each domain, writ-
ten as ‖α‖. ‖α‖ denotes the number of distinct values in the
value domain α.
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Domain sizes and table cardinalities often interact. Oper-
ator %a:〈b1,...,bn〉(q), e.g., establishes a new key column a over
the input relation q. The size of a’s value domain, hence, co-
incides with the cardinality of q, as reflected in Rule Dom-1
of our inference rule set (this is a refinement of the above
inference):

dom
`
%a:〈b1,...,bn〉(q)

´
⊇ dom (q) ∪

n
aα ∧ ‖α‖ =! |q|

o (Dom-1)

The notation ‖α‖ =! |q| indicates that we are inferring the
domain size of α to be the cardinality of q here (rather than
deriving it from a domain size inferred earlier).

Conversely, the size of a domain determines the cardinal-
ity of aggregates:

bβ ∈ dom (q)˛̨̨
agga‖b(q)

˛̨̨
= ‖β‖

(Card-6)

or the output of the duplicate elimination operator δ for
single-column inputs:

cols(q) = {a} aα ∈ dom (q)

|δ(q)| = ‖α‖
(Card-7) .

Further examples of domain usage and inference are shown
in Figure 4. The size of a constant-column domain is triv-
ially 1 (Rule Dom-2). The output domain of operators with
a Boolean result is the two-item set {true, false} (Rule Dom-
3). Rules Dom-4 to Dom-6 propagate domain information
bottom-up through the inference process.

Rule Dom-7 shows the domain inference for the row-num-
bering operator %a:〈b1,...,bn〉‖c in the presence of a grouping
column c. The operator creates ‖γ‖ groups, where γ is the
domain associated with c. Assuming equi-sized groups, the
average group size is |q|/‖γ‖. Since % produces numbers be-
tween 1 and the group size, this is also the domain size we
estimate for the new column a. Rule Dom-8 is the dual to
the aforementioned cardinality inference rule for agga‖b.

In our example plan (Figure 3), we use domain sizes, e.g.,
to infer the cardinalities of the loop 3© and loop 4© relations,
which correspond to the number of times the then and else

branches are taken in the original query Q1, respectively.

3.1.2 Domain Inclusion
So far we have only considered algebra operators that

strictly propagate all values (i.e., the full value domain) from
one column to the operator output. Operators such as se-
lection (σa), equi join (1a=b), or difference (\), by contrast,
typically compute a restriction of their input domains.

The domain inference for the selection operator σa (see
Rule Dom-9, Figure 4) uses the expression

‖γ2‖ =! ‖γ1‖ ·
“

1− (1− 1/10)
|q|/‖γ1‖

”
(1)

to compute the domain sizes for all output domains. The
factor 1/10 is the System R 10 % heuristic for the general
selection operator. Details about the remaining terms in
Expression 1 are beyond our current discussion. Interested
readers may find them in Appendix B.

Restricting domains also leads to an inclusion relationship
between the input and output domains. Domain α is a sub-
domain of β (α v β) if all values in α are also a member of

β. The values in σa(q), e.g., are a subset of those in q, hence
the inference of γ2 v γ1 in Rule Dom-9. Domain inclusion
is transitive (α v β∧β v γ ⇒ α v γ) and reflexive (α v α).

System R-style domain inference for joins is covered by
Rule Dom-10. However, our plan analyzer can typically
avoid the application of this rule and rather derive more
fine-grained domain information based on domain inclusion
knowledge. Rule Dom-11 presupposes a subdomain rela-
tionship α v β between the value domains α and β associ-
ated with the join attributes a and b of the input relations
q1 and q2 (respectively). A common instance is the foreign
key dependence when column a of q1 references column b in
q2.

Under the premise of α v β, all rows from q1 are retained
in the join result, hence dom (q1) ⊆ dom (q1 1a=b q2). Rows
from the right-hand-side relation, by contrast, are filtered
depending on the containment of their b values in domain
α. α has been derived earlier as a restriction of β with
a selectivity of ‖α‖/‖β‖. Rule Dom-11 uses this factor to
compute the sizes of those domains that originally come from
q2. Columns a and b are identical in the join result by
definition, hence bα ∈ dom (q1 1a=b q2).

In Figure 3, the input to the = operator is a join operation
of this kind. The domain associated with the iter column
of the right join input is a subdomain of its left-hand-side
counterpart here.

γ

α β

v v

More generally, domain inclusion defines a
tree-shaped hierarchy of domains. In Rule
Dom-12, we consider join operators 1a=b where
α and β, the domains of a and b, have a subdo-
main relationship to a common superdomain γ
(as illustrated here on the right). Domain α in
join operand q1 contains ‖α‖/‖γ‖ of the values of
γ. Based on the assumption that α and β have
been derived from γ independently,2 Rule Dom-12 uses this
factor and the domain restriction formula from Appendix B
to derive the domain sizes associated with all columns com-
ing from input relation q2 (and, vice versa, ‖β‖/‖γ‖ for col-
umn values from q1).

The join operator on top of subexpression loop 4© in Fig-
ure 3 is an instance of this pattern. The right input of
this join contains the iter values of those iterations over
doc ("forecast.xml")/descendant::day that did not sat-
isfy $ppcp > 50 (i.e., the iterations that belong to the else

branch). The left-hand side contains information only for
iterations for which a @t attribute could be found. The do-
main established by %inner:〈iter,pos〉 (in the bottom part of the
plan) is a common superdomain of both join attributes.

Note that Rule Dom-11 actually is a special instance of
Rule Dom-12.

Rule Dom-13 introduces a System R-like 10 % factor for
domains that result from the relational difference operator
\. In Pathfinder-generated plans, operator \ is predomi-
nantly used to work over single-column tables.3 Virtually

2The last premise in Rule Dom-12 ensures that γ is the
smallest common subdomain of α and β.
3Pathfinder uses \ operators over single columns, e.g., to
compute the loop relation of an XQuery else branch (as
shown in Figure 3) or to handle empty sequences (which are
encoded as the absence of their iter value in the loop-lifted
sequence encoding). Multi-column differences are, in fact,
only needed to evaluate the XQuery except operator.
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dom (π...,a:v,...(q)) ⊇
n

aα ∧ ‖α‖ =! 1
o (Dom-2)

� ∈ {< ,= ,> , . . . }

dom
`
�a:(b1,b2)(q)

´
⊇ dom (q) ∪

n
aα ∧ ‖α‖ =! 2

o (Dom-3)

aα ∈ dom (q)

dom
`
π...,b:a,...(q)

´
⊇ {bα}

(Dom-4)
dom (δ(q)) = dom (q)

(Dom-5)
dom (q1 × q2) = dom (q1) ∪ dom (q2)

(Dom-6)

cγ ∈ dom (q)

dom
`
%a:〈b1,...,bn〉‖c(q)

´
⊇ dom (q) ∪

n
aα ∧ ‖α‖ =! |q|/‖γ‖

o (Dom-7)
cols(q) = {b} bβ ∈ dom (q)

dom
“
agga‖b(q)

”
⊇ dom (q) ∪

n
aα ∧ ‖α‖ =! ‖β‖

o (Dom-8)

dom (σa(q)) ⊇
n

aα ∧ ‖α‖ =! 1
o
∪
n

cγ2 | cγ1 ∈ dom (q) ∧ γ2 v! γ1 ∧ ‖γ2‖ =! ‖γ1‖ ·
“
1− (1− 1/10)

|q|/‖γ1‖
”o (Dom-9)

dom (q1 1
a=b

q2) ⊇
n

cγ2 | cγ1 ∈ dom (q1) ∪ dom (q2) ∧ γ2 v! γ1 ∧ ‖γ2‖ =! ‖γ1‖ ·
“
1− (1− 1/10)

|q2|/‖γ1‖
”o (Dom-10)

aα ∈ dom (q1) bβ ∈ dom (q2) α v β

dom (q1 1
a=b

q2) ⊇ dom (q1) ∪ {bα} ∪
(

cγ2 | cγ1 ∈ dom (q2) ∧ γ2 v! γ1 ∧ ‖γ2‖ =! ‖γ1‖ ·
 

1−
„

1−
‖α‖
‖β‖

«|q2|/‖γ1‖
!) (Dom-11)

aα ∈ dom (q1) bβ ∈ dom (q2) α v γ β v γ 6 ∃γ′ :
`
α v γ′ ∧ β v γ′∧ v γ ∧ γ 6= γ′

´
dom (q1 1

a=b
q2) ⊇

(
cγ2 | cγ1 ∈ dom (q1) ∧ γ2 v! γ1 ∧ ‖γ2‖ =! ‖γ1‖ ·

 
1−

„
1−
‖β‖
‖γ‖

«|q1|/‖γ1‖
!)

∪
(

cγ2 | cγ1 ∈ dom (q2) ∧ γ2 v! γ1 ∧ ‖γ2‖ =! ‖γ1‖ ·
 

1−
„

1−
‖α‖
‖γ‖

«|q2|/‖γ1‖
!)

(Dom-12)

dom (q1 \ q2) ⊇
n

cβ | cα ∈ dom (q1) ∧ β v! α ∧ ‖β‖ =! ‖α‖ ·
“
1− (1− 1/10)

|q2|/‖γ1‖
”o (Dom-13)

cols(q1) = cols(q2) = {a} aα ∈ dom (q1)

aβ ∈ dom (q2) β v α

dom (q1 \ q2) ⊇
n

aγ ∧ γ v! α ∧ ‖γ‖ =! ‖α‖ − ‖β‖
o (Dom-14)

cols(q1) = cols(q2) = {a} aα ∈ dom (q1)

aβ ∈ dom (q2) α v β

dom (q1 \ q2) ⊇
n

aγ ∧ γ v! α ∧ ‖γ‖ =! 0
o (Dom-15)

Figure 4: Domain inference. Abstract domain identifiers α, . . . , γ represent static approximations of runtime
value domains. Inference rules also infer estimated domain sizes ‖·‖ and subdomain relationships · v ·.

all cases thus benefit from more specific domain inference
rules such as the ones shown in Rule Dom-14 and Dom-15.
The former covers the situation that we also see in Figure 3:
The value domain of the single-column relation loop 3© is a
subset of the values in loop 2©. Hence, subtraction of the two
input domain sizes ‖α‖ and ‖β‖ yields the domain size of
the output domain γ, ‖γ‖ =! ‖α‖ − ‖β‖ (see Rule Dom-
14). Rule Dom-15 is the complimentary rule that decides
‖γ‖ =! 0 based on α v β.

3.2 Table Cardinalities
The collected domain information can now be used to

compute meaningful cardinalities for subexpressions in the
relational plan. Figure 5 lists the missing inference rules
that correspond to the plan situations discussed earlier.

Rules Card-8 and Card-9 correspond to Rules Dom-11
and Dom-12 in Figure 4, respectively. Domain sizes are
used here to estimate the selectivity of the join predicate
a = b. In Rule Card-8, the result contains ‖α‖ distinct
values in the join attribute. Each of these finds |q1|/‖α‖ and
|q2|/‖β‖ rows from the left- and right-hand-side of the join,
respectively, such that the cardinality can be estimated to
|q1|·|q2|
‖β‖ . The domain size of the join attribute in the result

becomes ‖α‖·‖β‖‖γ‖ in the generalized rule Card-9.

The latter two rules, Card-10 and Card-11, implement
cardinality estimation for the general case of the relational
difference (Rule Card-10) and for the special case we dis-
cussed in the previous section (Rule Card-11).

Still, our rules do not yet cover the estimation of sub-plans
that depend on XPath navigation or improve the estimation
accuracy for the selection operator σa. Both tasks require ac-
cess to statistical information about the underlying (XML)
data.

4. INTERFACING WITH XPATH
Access to XML documents is made explicit in our rela-

tional algebra (Table 2) in terms of the , doc, and oper-
ators. These operators may be backed by system-dependent
implementations for the respective XQuery functionality. In
a purely relational XQuery setup, all three operators are
typically expanded into relational “micro-plans” that oper-
ate over a relational XML encoding.

Given node identifiers γi stored in a column b, the step
operator a:ax::nt(b) evaluates the location step ax::nt for
each node in b and populates a new column a with the node
identifiers of the result nodes. Figure 6 illustrates this for
the step child::* and a five-node XML instance.

The XML document access operator doca:b uses the URIs
in column b to look up the document nodes of XML in-
stances. Their node identifiers are populated into the new
column a.

Operator a:b implements XQuery atomization [4], i.e.,
the extraction of simple-typed data from XML node content.
The new column a holds the values obtained from atomizing
the XML nodes referenced by the identifiers in column b. In
Figure 3, we used to extract the simple-typed (chance of
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aα ∈ dom (q1) bβ ∈ dom (q2) α v β

|q1 1
a=b

q2| =
|q1| · |q2|
‖β‖

(Card-8)

aα ∈ dom (q1) bβ ∈ dom (q2) α v γ β v γ
6 ∃γ′ :

`
α v γ′ ∧ β v γ′∧ v γ ∧ γ 6= γ′

´
|q1 1

a=b
q2| =

|q1| · |q2|
‖γ‖

(Card-9)

|q1 \ q2| = |q1| · 1/10
(Card-10)

aα ∈ dom (q1) aβ ∈ dom (q2)
β v α cols(q1) = cols(q2) = {a}

|q1 \ q2| = |q1| − |q2|
(Card-11)

aα ∈ dom (q1) aβ ∈ dom (q2)
α v β cols(q1) = cols(q2) = {a}

|q1 \ q2| = 0
(Card-12)

Figure 5: Cardinality estimation rules that correspond to the domain inference shown in Figure 4.

a

b c d

e

(a) XML tree.

b c
γa 1
γb 2
γd 3

a b c
γb γa 1
γc γa 1
γd γa 1
γe γd 3

a:child::*(b)

(b) Operator a:child::*(b).

Figure 6: Semantics of step operator a:ax::nt(b).

precipitation) data from the ppcp elements returned by the
XPath navigation item:descendant::ppcp(item).

4.1 XPath Navigation
With all operations on XML data made explicit using dis-

tinguished algebra operators, our cardinality estimation pro-
cedure remains mostly independent of its XPath estimation
subsystem and can play well together with existing XPath
estimation techniques proposed in the literature. We have
successfully built implementations based on straight line tree
grammars [8] and data guides [9].

To facilitate the interaction with the XPath estimation
subsystem, we adapt the idea of projection paths [15]. Our
query analyzer infers a trace of all XPath navigation steps
that have been followed to compute the result of a plan
subexpression. Traces (projection paths) are then used to
guide the interaction with the XPath estimation subsystem.
In [15], similar information was used to pre-filter XML in-
stances at document loading time (and, consequently, re-
duce the main-memory requirements of the Galax XQuery
processor).

4.1.1 Projection Paths
Projection paths are inferred as the path (q) property of

a plan operator q. An entry a⇒p in path (q) indicates that
all node identifiers in column a in the output of q have been
reached by an XPath navigation along the path p, possibly
constrained by additional predicates. The node references
in a, therefore, are a subset of those returned by the XPath
expression p.

Unlike [15], we allow projection paths composed of arbi-
trary XPath axes and node tests. Our current plan analyzer
does not generate predicated projection paths (i.e., paths
of the form p1[p2]), since those are normalized into explicit
for iterations prior to query compilation [7]. Our setup
could easily be modified to generate such paths if an XPath
estimation subsystem provides specialized support for pred-
icates, however. Further, we do not label projection paths
with any additional flags (such as the # in [15]).

Informally, a new projection path is instantiated for ev-
ery call to the XQuery built-in function fn:doc (·) (opera-

tor doca:b in the algebraic plan). As the analyzer processes
the plan bottom-up, each occurrence of an XPath naviga-
tion step ax::nt (operator a:ax::nt(b)) is recorded as an
appendix to the existing projection path information. The
remaining plan operators only propagate projection paths
bottom-up.

The process is covered by Inference Rules Path-1 to Path-
7 in Figure 7. Rule Path-1 establishes a new projection path
for the result column of a of operator doca:b. On occurrence
of a step operator a:ax::nt(b), this path is extended by the
step ax::nt and annotated to the output column b of the
operator (Rule Path-2).

Otherwise, projection path information is propagated bot-
tom-up. Rules Path-3 to Path-7 thereby ensure proper
treatment of attribute renaming and projection (Rule Path-
3) and of the semantics of the set operators \ and ·∪ (Rules
Path-5 and Path-7, respectively).

In Figure 3, the output column item of operator docitem

(bottom of the plan) is annotated with the projection path
fn:doc("forecast.xml"). Operators item:ax::nt(item) in the
upstream DAG then update the projection path information
recorded for column item to read fn:doc("forecast.xml")/

attribute::t and fn:doc("forecast.xml")/descendant::

ppcp in the left and right branches of the query plan, respec-
tively.

4.1.2 Cardinality Estimation for XPath Steps
XPath navigation also affects table cardinalities, as can be

seen in Figure 6. Three rows are contributed to the operator
output by the first input row (since a has three children in
Figure 6(a)). The second row disappears during step eval-
uation (b/child::* is empty), while the last row produces
one output row.

The effect of operator a:ax::nt(b) on the table cardinality
is determined by the fanout of the node identifiers in column
b with respect to the location step ax::nt . In Figure 6, the
average fanout of the input nodes (nodes a, b, and d) is

favg =
3 + 0 + 1

3
= 4/3 .

Multiplication with the input cardinality yields the row count
of the result:˛̨

a:child::*(b)(q)
˛̨

= |q| · favg = 3 · 4/3 = 4 .

We can estimate the factor favg involved in determining
the cardinality of a:ax::nt(q) based on the projection path
p that has been inferred for the context column b in q (i.e.,
b⇒p ∈ path (q)). We base the estimate for favg on statistical
information about the XML document:

favg ≈ Prax::nt (p) :=
fn:count (p/ax::nt)

fn:count (p)
.
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b=v ∈ const (q)

path (doca:b(q)) ⊇ a⇒fn:doc(v) ∪ path (q)
(Path-1)

b⇒p ∈ path (q)

path
`

a:ax::nt(b)(q)
´
⊇ a⇒p/ax::nt ∪ path (q)

(Path-2)

b⇒p ∈ path (q)

path
`
π...,a:b,...(q)

´
⊇ {a⇒p}

(Path-3)
� ∈

˘
σa, δ, %a:〈b1,...,bn〉‖c,~a:(b1,b2), a:b, counta‖b

¯
path (�(q)) ⊇ path (q)

(Path-4)
path (q1 \ q2) ⊇ path (q1)

(Path-5)

� ∈ {× ,1a=b}
path (q1 � q2) ⊇ path (q1) ∪ path (q2)

(Path-6)
path (q1 ·∪ q2) ⊇

n
a⇒p1|p2 | a⇒p1 ∈ path (q1) ∧ a⇒p2 ∈ path (q2)

o (Path-7)

|doca:b(q)| = |q|
(Card-13)

b⇒p ∈ path (q)˛̨
a:ax::nt(b)(q)

˛̨
= |q| · Prax::nt (p)

(Card-14)

bβ ∈ dom (q) b⇒p ∈ path (q)

dom
`

a:ax::nt(b)(q)
´
⊇
n

aα ∧ ‖α‖ =! ‖β‖ · Prax::nt (p)
o

∪
n

cγ2 | cγ1 ∈ dom (q) ∧ γ2 v! γ1 ∧ ‖γ2‖ =! ‖γ1‖ ·
“
1− (1− Pr[ax::nt] (p))

|q|/‖γ1‖
”o (Dom-16)

Figure 7: XPath-related property inference. The inference of path (·) resembles the tracking of projection
paths in [15]. Access to XML document statistics is encapsulated into functions Pr...(p).

The cardinality of a:ax::nt(b)(q) can then be approximated
as shown in Rule Card-14 (Figure 7).

The approximation assumes that the nodes referenced in
input column b are a random sample of those reachable by
p. In particular, they are assumed to be picked from p in-
dependently of their fanout with respect to ax::nt . This
assumption is met by most real-world queries that we could
get hold of in experimental studies.

The fanout function Prax::nt (p) is part of our interface to
the XPath estimation subsystem. Every XPath estimator
that provides Prax::nt (p) and the two functions that we de-
fine in a moment can seamlessly be plugged into the XQuery
estimator described here. In Section 4.3, we illustrate a
näıve implementation based on Goldman and Widom’s data
guides [9].

4.1.3 Domains and XPath Location Steps
With regards to value domains, operator a:ax::nt(b)(q)

acts like a filter on all column values coming from the in-
put relation q. Only rows for which at least one node can
be found along the step ax::nt will appear in the operator
result. Since, e.g., in Figure 6, node b has no children reach-
able by child::*, the row [γb, 2] does not contribute to the
operator output.

a

b

c

d

e

The selectivity of the filter is independent of
the average fanout Prax::nt (p) that we used before.
Evaluated over the XML instance shown on the left,
e.g., the operation shown in Figure 6(b) would still
yield four result rows (favg = 4/3), but all input
rows would now “survive” operation a:child::*(b).

To judge the impact of on domain sizes, we
thus introduce the selectivity function Pr[ax::nt] (p) as a
second interface to request statistical information from the
XPath estimation subsystem:

Pr[ax::nt] (p) :=
fn:count (p[ax::nt])

fn:count (p)
,

where the location step ax::nt is now used inside a predicate
to the location path p. The selectivity function satisfies
0 ≤ Pr[ax::nt] (p) ≤ 1 by definition.

Only two of the three input nodes in Figure 6 have chil-
dren reachable via child::*, such that the selectivity of the
step is 2/3. Using the Domain Inference Rule Dom-16 in Fig-

ure 7 (right-hand input to ∪), we thus determine the domain
size of columns b and c in the expression result as 3 · 2/3 = 2.
Evaluated over the modified XML instance above instead,
the selectivity function would now yield 1 (and, hence, a
domain size of 3 for result columns b and c).

4.1.4 Node Construction
Apart from its navigation sub-language XPath, XQuery

has been equipped with functionality also to construct new
tree fragments at query runtime. Operators ε and τ in Ta-
ble 2 make this functionality explicit in our algebra and
mimic XQuery element and text node construction, respec-
tively. Both operators expand into “micro plans” which es-
sentially compute an aggregate over an input relation that
holds the content node sequence (see [12] for details).

From the perspective of cardinality estimation, such func-
tionality is straightforward to handle. We have already seen
in Rules Dom-8 and Card-6 how domain information and
cardinalities can be inferred for aggregation functions, re-
spectively. The forecasted cardinality, typically the size
of the domain associated with column iter, is consistent
with the semantics of node construction in XQuery. Con-
sider Query Q2 again: each evaluation of element gust { e }
yielded exactly one new element node, regardless of the car-
dinality of e.

More valuable than the projected size of the node con-
struction result may be information about the cardinality
of the constructor’s input. Since we infer |e| for any sub-
expression e, such information is readily available to, e.g.,
allocate enough memory to hold the content of the new tree
fragment below element gust.

4.2 Value-Based Predicates
The reliance on functions Pr...(·) to access statistical infor-

mation about XPath navigation enables data-dependent car-
dinality estimation only for the structural aspects of XML
document access. To judge the selectivity of the predicate
$ppcp > 50 in Query Q1, we also need to have information
about the distribution of values in forecast.xml.

4.2.1 Typed Value Histograms
Our estimator assumes the availability of such information

in terms of typed value histograms, which can be set up by
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b⇒p ∈ path (q) H = Hist (p)

hist ( a:b(q)) ⊇
n

a H
o (Hist-1)

n
b H1
1 , . . . , b Hn

n

o
∈ hist (q)

hist
`
~a:(b1,...,bn)(q)

´
⊇
n

a �(H1,...,Hn)
o (Hist-2)

a H ∈ hist (q)

|σa(q)| = |q| ·H[true]
(Card-15)

a H ∈ hist (q)

dom (σa(q)) ⊇
n

aα ∧ ‖α‖ =! 1
o
∪
n

cγ2 | cγ1 ∈ dom (q) ∧ γ2 v! γ1 ∧ ‖γ2‖ =! ‖γ1‖ ·
“
1− (1−H[true])

|q|/‖γ1‖
”o (Dom-17)

Figure 8: Inference and use of typed value histograms (annotation hist (·)).

the database administrator for frequently queried values in
the XML document catalog. A histogram created with, for
example,

create typed value histogram H1

on ’/descendant::day/descendant::ppcp’

validate as xs:integer ,

can be used to judge the selectivity of the predicate in
Query Q1. Typed value histograms of this kind are read-
ily provided by, e.g., the XML data indices in IBM DB2 9
[13].

We leave histogram maintenance up to the XPath sub-
system and remain fully agnostic with respect to its con-
crete implementation here. The only assumption we make is
that the histogram for path p, if available, is accessible from
the XPath estimation subsystem via the interface function
Hist (p).

4.2.2 Trading Paths for Histograms
In XQuery, access to typed value information requires at-

omization of the respective XML tree nodes. Calls to the
XQuery built-in function fn:data (·) make this process ex-
plicit in the query after normalization to XQuery Core [7].
In relational XQuery evaluation plans, the atomization oper-
ator a:b marks this situation where the query engine trades
nodes for values.

It is the same spot where our plan analyzer trades pro-
jection path annotations for typed value histograms. In
Rule Hist-1 (Figure 8), it uses the projection path inferred
for the input column b to request the typed value histogram
H from the XPath subsystem. The histogram is then recor-

ded as a H in the hist (·) annotation of the result expression.
Operations on values (arithmetic computations and value

comparisons) are represented explicitly using the ~ opera-
tors in our algebra (e.g., ⊕a:(b1,b2), 	a:(b1,b2), =a:(b1,b2), . . . ).4

To reflect these operations in algebraic histogram annota-
tions, a new histogram is computed for the result column a
based on histograms available for the input columns bi. In
Rule Hist-2, we used �(H1, . . . , Hn) to express arithmetics
on histograms. A possible implementation for � is the his-
togram discretization technique by Berleant [3]. Histogram
information is propagated bottom-up for the remaining al-
gebra operators (not shown formally).

With histogram information available, the cardinality in-
ference for the selection operator σa now becomes an edu-
cated guess. As shown in Rule Card-15, the two-bucket
(true/false) histogram annotated to column a readily de-
scribes the selectivity of σa. In Rule Dom-17, we also use it
to infer domain sizes associated with the output of σa.

In Figure 3, a typed value histogram is fetched from the
XPath estimator to annotate column item of the atomization

4Selection σa and 1a=b can be implemented as first-order
operators this way.
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•
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•
[1, 1]

•
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•
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[1, 1]

•
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•
[1, 1]

•
[1, 1]

•

[1, 1]
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[10, 1]

[1, 1]

[99, 1]

· · ·

· · ·

doc ("forecast.xml")

forecast

weather

@ver head loc dayf

day

@d suns part

@p ppcp hmid

H1

Figure 9: Data guide for weather.com data. Edge
annotations [f, s] indicate fanout f and selectivity s.

operator item. After propagation through the join 1iter=iter1

and histogram arithmetics in =res:(item,item1) this histogram is
then used to judge the output cardinality of σres.

4.3 An Implementation for Pr: Data Guides
The two interface functions to access fanout, Prax::nt (p),

and selectivity, Pr[ax::nt] (p), in Section 4.1 suggest the use
of data guides [9] to maintain statistical information about
the underlying document structure. In a nutshell, a data
guide is built by reducing element nodes with identical root-
to-leaf paths to a single instance in the guide. The outcome
is a “skeleton tree” holding all distinct paths (we assume a
strong data guide in the sense of [9]) that may be annotated
with, e.g., statistical information.

4.3.1 Fanouts and Selectivities
Figure 9 shows the data guide that corresponds to a small

collection of weather data for cities in New Zealand that we
retrieved from weather.com at the time of this writing.5 To
implement the two XPath interface functions, each edge in
the data guide is labeled with a pair of values [f, s] (f > 0
and 0 < s ≤ 1), which correspond to the average fanout
and selectivity (respectively) along the corresponding axis
in the full document. The document contains, e.g., ten day

elements below each dayf, each day contains two parts (day
and night). The structure of weather data is more determin-
istic than the forecast it describes: each edge is guaranteed
to be present for corresponding parent nodes in the docu-
ment, hence s ≡ 1 in our example.

Based on these annotations, Prax::nt (p) and Pr[ax::nt] (p)

5See http://www.weather.com/services/xmloap.html for
instructions on how to use the weather.com web service.
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πiter:inner,item

item:descendant::ppcp(item)

πiter

πiter1:iter,pos1:1,item1:50

%pos:〈item〉‖iter

item

1iter=iter1

=res:(item,item1)

σres

πiter

δ

\

dom (�) = {iterα1 , itemα2} ;

path (�) =
˘
item⇒fn:doc(···ant::day¯ ;

‖α1‖ = 990, ‖α2‖ = 990;
|�| = 990

dom (�) = {iterα5 , itemα6} ;

path (�) =
˘
item⇒fn:doc(···ndant::ppcp¯ ;

‖α5‖ = 990, α5 v α1, ‖α6‖ = 1980;
|�| = 1980

dom (�) = {iterα5 , itemα6 , posα7} ;

path (�) =
˘
item⇒fn:doc(···ndant::ppcp¯ ;

‖α5‖ = 990, α5 v α1, ‖α6‖ = 1980, ‖α7‖ = 2;
|�| = 1980

dom (�) = {iterα5 , posα7 , itemα8} ; hist (�) =
n

item H1
o

;

‖α5‖ = 990, α5 v α1, ‖α7‖ = 2, ‖α8‖ = 1980;
|�| = 1980

dom (�) = {iterα1} , ‖α1‖ = 990; |�| = 990

dom (�) = {iter1α1 , pos1α3 , item1α4} ;
const (�) =

˘
pos1=1, item1=50

¯
;

‖α1‖ = 990, ‖α3‖ = 1, ‖α4‖ = 1; |�| = 990

dom (�) = {iterα5 , posα7 , itemα8 , iter1α5 , . . . } ;

hist (�) =
n

item H1
o

; const (�) =
˘
pos1=1, item1=50

¯
;

‖α5‖ = 990, α5 v α1, ‖α7‖ = 2, ‖α8‖ = 1980, . . . ;
|�| = 1980

dom (�) = {iterα5 , posα7 , itemα8 , iter1α5 , resα11 , . . . } ;

hist (�) =
n

item H1 , res H2
o

; const (�) =
˘
pos1=1, item1=50

¯
;

‖α5‖ = 990, α5 v α1, ‖α7‖ = 2, ‖α8‖ = 1980, ‖α11‖ = 2, . . . ;
|�| = 1980

dom (�) = {iterα12 , posα14 , itemα15 , iter1α12 , resα18 , . . . } ;

hist (�) =
n

item H1
o

; const (�) =
˘
pos1=1, . . . , res=true

¯
;

‖α12‖ = 107, α12 v α5, ‖α14‖ = 2.0, α14 v α7, ‖α18‖ = 1, . . . ;
|�| = 111

dom (�) = {iterα12} ; ‖α12‖ = 107, α12 v α5, |�| = 111

dom (�) = {iterα12} ; ‖α12‖ = 107, α12 v α5; |�| = 107

dom (�) = {iterα19} ;
‖α19‖ = 883, α19 v α1; |�| = 883

A
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I
J
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Figure 10: Full annotations for a sub-plan of Figure 3 (annotations explained in Section 5.1).

are straightforward to implement. For named child steps,
both pieces of information can directly be read from the an-
notations. Otherwise, fanout information can be computed
by adding horizontally and multiplying vertically along guide
edges that qualify for the given step and node test. The ag-
gregation of selectivity values is beyond the scope of this
paper and uses similar observations as those that we sketch
in Appendix B. Note that data guides do not capture the
order between siblings and hence cannot be used to imple-
ment Prax::nt (p) for order-sensitive axes ax such as, e.g.,
the following or preceding-sibling axes. To support es-
timation of order-sensitive axes, other synopses can be used,
such as [14] or the straight line tree grammars of [8].

4.3.2 Typed Value Histograms
Figure 9 also illustrates how our prototype implements

typed value histograms as annotations to nodes in the data
guide. Histogram H1, created in Section 4.2.1, is annotated
to the ppcp data guide node. (If, in Hist (p), more than
one histogram can be found for path p, our implementation
uses discretization [3] to compute the effective typed value
histogram.)

5. FORECASTING IN PRACTICE
With all bits and pieces together, we are now ready to

infer plan annotations and cardinalities for the query plan
in Figure 3. For space reasons, we only report inferred plan
properties for its most interesting sub-plan, illustrated in
Figure 10. Towards the end of this section, we also report
on empirical results for a realistic set of XQuery expressions,
taken from the W3C XQuery Use Cases Note [6].

5.1 Zooming in on the Running Example
The input to the sub-plan in Figure 10 (operator A ) is

essentially determined by the XPath subexpression result
doc("forecast.xml")/descendant::day, whose cardinality

we estimated to 99 · 1 · 10 = 990, following the fanout an-
notations in the data guide. This information is propagated
bottom-up along operators B and C .

Annotations in the right branch of the plan depend on
the projection path information available for column item.
Using Prdescendant::ppcp (fn:doc(· · · )/descendant::day) = 2
(fanout annotation in Figure 9), we can infer the cardinal-

ity of operator D to 1980 (Rule Card-14), as well as the
domain size of α6, ‖α6‖ = 1980 (left part of Rule Dom-16).
By contrast, since the selectivity Pr[descendant::ppcp] (· · · ) of
the step descendant::ppcp is 1, the domain size annotated
to column iter remains ‖α5‖ = 990 (right part of Rule Dom-
16). The factor |�|/‖α5‖ = 2 stems from the two ppcp el-
ements encountered in each iteration over doc(· · · )/des-
cendant::day. This factor also leads to the domain size
‖α7‖ = 2 inferred for operator E (using Rule Dom-7).

To annotate operator F , we fetch the histogram H1 from
the data guide using the projection path fn:doc(· · · )/· · · /
descendant::ppcp (Rule Hist-1). The histogram will be
accessed later in the plan to judge the selectivity of the pred-
icate $ppcp > 50.

Operator G is an instance of the situation in Rules Dom-
11 and Card-8. Since each row in the right branch is guar-
anteed to find a (single) join partner in the left branch, we
expect 1980 rows to flow upwards the execution plan.

To judge the effect of operators H and I , we access the
histogram information for input column item. Together with
the const (·) information available for column item1 (which
we interpret as the second input histogram in Rule Hist-
2), we compute a two-bucket histogram for column res that

reflects the Boolean outcome of the comparison operator H .
Operator I finally performs the selection and we determine
its output cardinality based on Rule Card-15.

After propagation of plan annotations through operator
J , the cardinality estimate for K depends on the domain
size annotated to column iter. Using Rule Card-7, we in-
fer 107 as its predicted row count. The cardinality of oper-
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ator L then is 883, according to Inference Rule Card-11.

Recall that operators K and L correspond to the loop 3©
and loop 4© relations, i.e., the number of evaluations of the
then and else branches of the original query, respectively.
A query run over the real data reveals 158 and 832 eval-
uations of the two branches—the weather in New Zealand
is slightly worse than expected. While this may look like a
ominous forecast for VLDB, the deviation is actually caused
by a skewed data distribution around a rain probability of
50 % (which meteorologists seem to avoid whenever possi-
ble). Substituted back into Q1, we obtain the final forecast:

for $d in doc ("forecast.xml")/descendant::day
990

let $day := $d/@t

let $ppcp := data ($d/descendant::ppcp)

return

if ($ppcp > 50)

then ("rain likely on", $day,

"chance of precipitation:", $ppcp)

535

else ("no rain on", $day)

1766

2301

Our overall cardinality forecast for Query Q1 is 2301, which
is ≈ 6 % off the actual result cardinality of 2454.

5.2 Forecasting the Real World
To judge the quality of computed estimates for realistic

XQuery workloads, we analyzed a number of queries from
the W3C XQuery Working Group Use Cases Note [6] using
a prototype implementation of the full cardinality inference
rule set. In addition to pure estimation accuracy, we also
demonstrate how our prototype is able to gracefully recover
from intermediate estimation errors, a behavior crucial to
the construction of a robust XQuery optimizer.

We ran our experiments on extended sample data, as given
in [6] and abstract from actual synopses by using histograms
with one bucket per value for numeric node content (thus es-
sentially keeping all of the data). We used a data guide-style
XPath estimation subsystem equivalent to the one described
in Section 4.3.

Figure 11 visualizes the deviation of our forecast from
the tuple count observed over actual data. The deviation
of each query subexpression is depicted by a circle . A
placement at coordinate 1 indicates that we predicted the
subexpression cardinality correctly. If our estimate was 1/10

the actual value, the circle is placed at position 0.1. Respec-
tively, the circle is printed at position 10 in case of a ten-fold
over-estimate. If multiple subexpressions fall onto the same
coordinate, we scale the circle proportionally to the number
of such subexpressions. Finally, the estimate of the overall
query is indicated by a filled circle .

We report on a subset of the use case queries here and refer
to the appendix for a more detailed experimental study.

As the figure shows, our system produces under-estimates
for roughly 40 % of the subexpressions and over-estimates
for only about 10 % of all subexpressions. Approximately
50 % of all estimates are exact. As detailed in Appendix A,
the predominant cause for mis-estimations are string-based
predicates (for which we did not set up any data synopses),
value-based joins, and positional predicates.

Most valuable for the use of our inference system in prac-
tice is its ability to recover from intermediate mis-estimates
gracefully. With the exception of query XMP Q8, our proto-
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Figure 11: Estimation accuracy for selected W3C
Use Cases (see appendix for further data).

type implementation predicted the cardinality of the overall
expression correctly, even though some of the subexpressions
were forecast with lower accuracy. Our estimator takes ad-
vantage of the XQuery language semantics here. Language
constructs with a grouping semantics (e.g., node construc-
tion, the computation of effective Boolean values, or the ex-
istential semantics of comparisons) are pervasive in XQuery
and allow the cardinality analysis to reasonably proceed
even if the forecast went astray for a specific subplan.

For a deeper experimental assessment refer to Appendix A.

6. MORE RELATED WORK
Work on cardinality estimation for semi-structured data

has emerged even long before the advent of XML as a syntac-
tical format and XPath/XQuery as a means to query XML
data. Goldman and Widom have proposed data guides as
a tool to hold statistical information in the Lore database
manager [9]. We build on their work to demonstrate a sim-
ple implementation for the XPath aspect of our relational
approach to XQuery estimation. Later work on XPath es-
timation (e.g., [1, 8, 14, 16]) was mainly concerned with
improved accuracy and the reduction of space. Since we
strictly kept the estimation of XPath subexpressions sepa-
rate in our work, all of them could serve as a drop-in re-
placement for the data guides in Section 4.3.

The separation of path estimation into fanout and selec-
tivity has also been observed by Balmin et al. [2]. The
pureXML query optimizer built into DB2 9 maintains statis-
tics about XML data by means of the same two parameters.
Their work also considers “lowest common ancestor” situ-
ations in a fashion similar to our domain analysis for tree-
shaped domain relationships (Section 3.1.2), remains tied to
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certain syntactic patterns in the surface language, however.
Other estimation techniques that target XQuery (as op-

posed to just XPath) are surprisingly rare. Sartiani [18]
looked at a restricted form of XQuery for clauses and their
cardinalities. It remains unclear, however, whether his ap-
proach could be pushed to full XQuery support at all.

In Section 4.1.1, we picked up an idea of Marian and
Siméon [15]. In the same way that the Galax XQuery proces-
sor analyzes navigation into XML documents, we use traces
of XPath step navigation—projection paths—to associate
statistical information about value distributions in simple-
typed XML nodes to relational plans.

7. WRAP-UP
We have described a framework that fills the gap between

the feature richness of the XQuery language and existing
work on cardinality estimation for the XPath sub-language.
Based on a relational representation of the input queries, we
can re-use existing machinery from the relational domain to
derive cardinality estimates for XQuery subexpressions in
arbitrary compositions. Our strategy plays well together
with estimation techniques for XPath proposed in earlier
work (e.g., [1, 8, 14, 16]), which can be plugged into our
setup seamlessly.

To account for the characteristics of relational query plans
that originate from XQuery, our work lays a focus on a
peephole-style implementation of data flow analysis based on
abstract domain identifiers. Abstract domain identifiers ap-
proximate the value space taken by individual table columns
at runtime. Reasoning over inclusion relationship between
domains and their sizes provides just the information that
we need to derive cardinality estimates in a dependable man-
ner.

Our setup remains agnostic with respect to the details
of XPath location path estimation. A simple data guide-
style implementation of this component proved sufficient to
compute meaningful XQuery estimates in an experimental
assessment.

The estimation procedure is defined in terms of a set of
inference rules. As such, it provides a flexible basis for the
addition of refined or domain-specific estimation rules. Cur-
rently we are looking into first-class support for positional
predicates. With appropriate support in the statistics col-
lection (e.g., histograms as a replacement for the average
fanout annotation in our data guide), an inference rule that
matches the pattern

%pos:〈b〉‖c
`

a:ax::nt(b) (q)
´

could annotate the output column pos with child distribu-
tion information. A % operator of this kind is generated by
the compiler for XPath location steps to set up a positional
numbering according to the XML document order. A selec-
tion on pos later implements a positional predicate, whose
effect we could judge with the annotated histogram.

Our experiments indicate that a closer look into value-
based joins might be valuable for further accuracy and/or
performance improvements. A possible approach could be
the inspection of XML Schema information, or ID/IDREF(S)
constraints in DTDs.
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APPENDIX
A. MORE REAL-WORLD FORECASTING

We have presented an estimation mechanism that provides
dependable, subexpression-level cardinality forecasts for a
significant and useful subset of the XQuery language. To
support this claim, we conducted a series of experiments
that compare the estimated cardinalities with actual results
gathered over real data.

A prototype implementation of the inference rule set de-
scribed in this work reads algebraic plan output generated
by the Pathfinder XQuery compiler6. The prototype pre-
dicts the cardinality of each algebraic subexpression, then
relates the projected table sizes to the actual cardinality as
observed during a query evaluation over real data.

We used queries and data from two sources that provide
realistic queries and data:
(1) From the W3C Working Group Use Cases Note [6],

Use Case “XMP” exemplifies an application over bibli-
ographic data. Use Case “R” assumes an XQuery front-
end to a relational data of an online auction site. Use
Case “SGML” is a traditional use case for markup lan-
guages.

(2) XMark [19] is a popular benchmark set in the XML
database domain. It simulates an online auction site
where data is held in an XML format.

The W3C Use Cases Note [6] describes the “XMP”, “R”,
and “SGML” use cases over very small XML instances only.
Although we added additional data to these instances to
obtain reasonable data volumes, some of our measurements
still suffered from the small data sizes. Even slight mis-
estimations can lead to high error percentages over small
numbers. For the XMark benchmark set, we generated XML
instances using the xmlgen tool and made sure that their
sizes were statistically sound.

The quality of value-based predicates obviously depends
on the availability of histogram information. We generated
histograms for all referenced elements and attributes whose
content was numeric only. For all string-based comparisons,
we assumed a System R-style 10 % selectivity.

We visualize the output of all our experiments in the same
style as for Figure 11 in the experimental section of the main
paper. To improve readability, we “truncated” all measure-
ments at a 0.01 times under-estimate and a 10 times over-
estimate (0.1 and 100 for the experiments on XMark data).
Data points beyond these limits are collectively printed left
and right of the respective cut-off lines. Typically, such data
points are caused by subexpressions with an extremely low
cardinality (a small but positive estimate becomes an∞-fold
over-estimate for an empty intermediate result).

A.1 W3C Use Case “XMP”
Use Case “XMP” may be seen as the most generic scenario

among the W3C examples. It illustrates requirements from
the database and document communities.

With the exception of Query Q12, our prototype had no
problems processing all XMP example queries. Our cur-
rent code does not support the XQuery built-in function
fn:deep-equal (·), which made it fail on the last use case
query. For Queries Q1–Q11, the accuracy of our estimator
is documented in Figure 12.

6http://www.pathfinder-xquery.org/

XMP Q1

XMP Q2

XMP Q3

XMP Q4

XMP Q5

XMP Q6

XMP Q7

XMP Q8

XMP Q9

XMP Q10

XMP Q11

0.01

0.01

0.1

0.1

1

1

10

10

Figure 12: Estimation accuracy for the W3C Use
Case “XMP” (experiences and exemplars) [6].

The most apparent outliers with significant under-estima-
tions are the two Queries Q4 and Q6. Those two queries
depend on value-based joins and positional predicates, re-
spectively. As we briefly sketched in Section 7, explicit
synopses for the number of children of XML tree nodes
could improve the accuracy of the latter class of expres-
sions. Query Q8 contains two substring matching predi-
cates (fn:contains (·) and fn:ends-with (·)), which cause
our prototype to over-estimate the query by a factor of ≈ 7.

A.2 W3C Use Case “R”
The W3C Use Case “R” mimics an application that queries

XML data as it would typically come from a relational-to-
XML translation scheme. The queries describe selections
based on string (Q1–Q3, Q5, and Q7 ) and number (Q3,
Q6, Q9, Q15 ) comparisons, value-based joins (Q2–Q7, Q9–
Q18 ), and aggregation (Q2, Q5–Q15 ). In absence of any
explicit foreign key information, we believe that particularly
the multi-way joins (Q5, Q10–Q13, Q17 ) in Use Case “R”
pose a challenge to any XQuery estimator.

Figure 13 documents the estimation error we observed for
Use Case “R”. Our query analyzer was able to handle all
but two of the 18 use case queries. Our prototype does not
support the XQuery built-in functions fn:month-from-da-

te (·) and fn:year-from-date (·), which prevented us from
running Query Q9. Query Q5 hit an uncaught exception in
our code.

In Figure 13, the estimation error of a number of queries
hit the x-coordinate limits we set ourselves for display pur-
poses. The extreme deviations are caused by mis-estimated
substring matching predicates (Q1, Q7 ), value-based joins
(Q3, Q10–Q12 ), and date comparisons (for which we did
not set up histograms; Q8 ). Yet, our prototype was able
to “correct” the situation in most cases and showed higher
accuracies as the estimation progressed bottom-up the plan
DAG.

A.3 Use Case “SGML”
With Use Case “SGML”, the W3C Working Group re-

phrased a traditional SGML use case using XQuery. It is
characterized by a typical “document” DTD, where certain
tags (e.g., title) may appear at many different nesting lev-
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Figure 13: Estimation accuracy for the W3C Use
Case “R” (access to relational data) [6].
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Figure 14: Estimation accuracy for the W3C Use
Case “SGML” [6].

els (e.g., within titles, sections, topics, etc.). Our pro-
totype had no problems handling all 10 queries in this use
case.

Some of the queries in Use Case “SGML” hit our esti-
mator at its weakest spot. Without support for positional
predicates, our prototype had problems predicting the re-
sult sizes in Queries Q4, Q7, and Q10 accurately (shown
in Figure 14). Explicit child distribution statistics (see Sec-
tion 7) would help these queries. Otherwise, our prototype
exploited ts data guide to come up with highly accurate
queries in most cases.

A.4 XMark
Soon after its presentation in 2002, the XMark benchmark

set [19], has quickly become the predominant way to judge
the performance of XQuery-based database systems. Rather
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Figure 15: Estimation accuracy for the 20 XMark
benchmark queries (simulating an online auction
site) [19].

than looking at performance, our focus here is on an accurate
estimation for each subexpression in the twenty benchmark
queries. The scenario assumed in the benchmark is an online
auction site.

Our prototype successfully computed cardinality estimates
for all twenty benchmark queries. The accuracy we observed
is documented in Figure 15.

XMark Query Q1 is a simple example of a lookup by a
key value:

let $auction := doc("auction.xml") return

for $b in $auction/· · · /person[@id = "person0"]
return $b/name/text() .

Our implementation does not (yet), however, interpret any
DTD information to distinguish this query from an arbitrary
string comparison. Absence of data statistics for strings in
our estimator and the application of the System R-style 10 %
rule leads to the high error margin in Figure 15. Query Q4
contains similar lookups for two persons, one of which does
not even exist in the generated XML instance. This is an
instance of an “∞-fold over-estimate,” as mentioned earlier.

Query Q3 is dominated by a comparison that depends on
document order—an aspect currently unsupported in our
setup. Queries Q8–Q12 represent value-based joins. They
are known to be challenging to XML database optimizers.
In Figure 15, we see that they also challenge our cardinality
estimator. Again, however, our prototype recovered grace-
fully from the mis-estimation it made on intermediate results
and produced an exact estimate for the join queries Q8, Q9,
Q11, and Q12.
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B. PROBABILITIES AND DOMAIN SIZES

· · · c · · ·
c1...
...

...
c1

...
...

...
ck...
...

...
ck

Algebraic operators that discard rows from their
input (most prominently the σa and 1a=b op-
erators) affect the domain sizes associated with
columns of the input table. Quantifying this effect
requires a brief look into probability theory.

Suppose we apply a filter σa of selectivity s to
table R (see right). Assuming an independence
between σa and a column c, we can estimate the
size of c’s domain in the output, ‖γout‖, based on
s, |R|, and k = ‖γin‖ (the domain size associated
with column c in the input relation R).

On average, each value ai ∈ γin occurs |R|/‖γin‖ times in
relation R. The chance that all of these occurrences are
filtered out during σa(R) (which means that ai /∈ γout) is

P/∈ = (1− s)|R|/‖γin‖ (2)

(since the chance of losing a single occurrence is (1− s)).
The chance that at least one instance of ai is retained

after σa(R) (i.e., ai ∈ γout) is (1− P/∈), hence,

‖γout‖ = ‖γin‖ ·
“

1− (1− s)|R|/‖γin‖
”
. (3)
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