
Read-Optimized Databases, In Depth
Allison L. Holloway and David J. DeWitt

University of Wisconsin – Madison
Computer Sciences Department

{ahollowa, dewitt}@cs.wisc.edu

ABSTRACT
Recently, a number of papers have been published showing the
benefits of column stores over row stores. However, the research
comparing the two in an “apples-to-apples” way has left a number
of unresolved questions. In this paper, we first discuss the factors
that can affect the relative performance of each paradigm. Then,
we choose points within each of the factors to study further. Our
study examines five tables with various characteristics and
different query workloads in order to obtain a greater
understanding and quantification of the relative performance of
column stores and row stores. We then add materialized views to
the analysis and see how much they can help the performance of
row stores. Finally, we examine the performance of hash join
operations in column stores and row stores.

1. INTRODUCTION
Recently there has been renewed interest in storing relational
tables “vertically” on disk, in columns, instead of “horizontally”,
in rows. This interest stems from the changing hardware
landscape, where processors have increased in speed at a much
faster rate than disks, making disk bandwidth a more valuable
resource.

The main advantage to vertical storage of tables is the decreased
I/O demand, since I/O is an increasingly scarce resource and most
queries do not reference all the columns of a table. Vertical data
storage has other advantages, such as better cache behavior [8, 18]
and reduced storage overhead. Some argue that column stores
also compress better than row stores, enabling the columns to be
stored in multiple sort orders and projections on disk for the same
amount of space as a row store, which can further improve
performance [18].

A vertical storage scheme for relational tables does come with
some disadvantages, the main one being that the cost of stitching
columns back together can offset the I/O benefits, potentially
causing a longer response time than the same query on a row
store. Inserting new rows or deleting rows when a table is stored
vertically can also take longer. First, all the column files must be
opened. Second, unless consecutive rows are deleted, each delete

will incur a disk seek. Updates have similar problems: each
attribute value that is modified will require a seek.

Traditional row stores store the tuples on slotted pages [15],
where each page has a slot array that specifies the offset of the
tuple on the page. The advantages to this paradigm are that
updates are easy, and queries that use most or all of the columns
are fast. The disadvantage is that, since most queries do not use
all columns, there can be a substantial amount of “wasted” I/O
bandwidth. Slotted pages also result in poor cache behavior [6]
and are less compressible, since each tuple is stored individually
and has its own header.

However, several recent studies [16, 13] have demonstrated that
row stores can be very tightly compressed if the tuples are stored
dense-packed on the page without using slot arrays. While this
format causes row stores to lose their advantage of easy
updatability, the change can save substantial amounts of I/O
bandwidth, which is where they often lose compared to column
stores. [16, 13] also examine skewed datasets in row stores and
use advanced compression techniques, such as canonical Huffman
encoding [14], to achieve a degree of row store compression very
close to that of the entropy for the table.

The confluence of these two ideas, column stores and advanced
compression in row stores, brings us to the central question of this
paper: How do the scan times for row and column stores compare
when both tables are as tightly compressed as possible? In other
words, can row stores compete with column stores for decision-
support workloads that are dominated by read-only queries?

“Performance Tradeoffs in Read-Optimized Databases,” was a
first step toward answering this question [12]. This paper
provides an initial performance comparison of row stores and
column stores, using an optimized, low-overhead shared code
base. Additionally, the tuples for both storage paradigms are
stored dense-packed on disk, a necessity for truly obtaining an
apples-to-apples performance comparison.

[12] studies both wide and narrow tables using the uniformly
distributed TPC-H [19] Lineitems and Orders tables. The two
formats are compared without compression for Lineitems, and
both compressed and uncompressed for Orders. The Orders table
is compressed using bit-packing, dictionary encoding and delta
coding, where appropriate. All queries are of the form: “Select
column_1, column_2, column_3, … from TABLE where
predicate(column_1)” with a selectivity of 0.1% or 10%.

The results from [12] that are most relevant to this paper are that:

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’08, August 24-30, 2008, Auckland, New Zealand.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

502

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

• At 10% selectivity, when half of the columns are returned, a
row store will be faster than a column store only if the tuples
are less than 20 bytes wide and the system is CPU-constrained.

• The CPU time required for a column store to execute a scan
query is very sensitive to the number of columns returned and
the selectivity factor of the query.

• The time required for a row store to process a scan query is
relatively insensitive to the number of columns being returned
or the selectivity of the predicate.

• Column stores can be sensitive to the amount of processing
needed to decompress a column.

However, these results left a number of questions unresolved.
First, the attribute values in each column of the TPC-H tables are
uniformly distributed. The results presented in [16, 13]
demonstrate that, if the distribution of values in a column is
skewed, even higher degrees of compression can be obtained.
Thus, in this paper we explore non-uniform value distributions
and the impact of advanced compression techniques.

Additionally, [12] considered only a very limited set of queries.
First, no queries with selectivity factors greater than 10% were
studied. Also, all of the queries considered in [12] consisted of a
single predicate that was always applied to the first column of the
table and only the left-most columns of a table were returned. We
believe that the relative performance of column and row stores is
affected by (a) how many predicates the query has, (b) what
columns the predicates are applied to, and (c) which columns are
returned. A key focus of this paper is to explore each of these
issues.

Finally, we noticed that the row store performed very poorly
compared to the column store for the Lineitem table, which has a
long string attribute. While the string does not impair the
performance of a column store if it is not used in the query, it
disproportionately hurts the row store since that one attribute is
the same size as the sum of the others. We hypothesized that if
the string had been stored in a separate table, the performance of
the two paradigms would have been more comparable. Hence,
our study will also include materialized views of the row store.

While [12] was a first step at an “apples-to-apples” comparison of
row stores and column stores in a common software framework,
we want to achieve a greater understanding of the issues raised
above. The aim of this work is to systematically study scans for
compressed row and column stores. Specifically, we explore a
large space of possible tables, compression methods, and queries,
in which the results of [12] would fall as points in this space. This
paper’s contributions are to:
• Provide a more in-depth discussion of the factors that affect the

scan times for read-optimized row stores and column stores,
and to choose points within those factors to study further.

• Quantify the effect of (a) more qualifying tuples, (b) additional
predicates, and (c) tables that do not have uniform data
distributions.

• Compare the performance of materialized views with the
performance of column stores and row stores in this
framework.

• Examine the effect a hybrid hash join has on column stores and
row stores, when using early materialization of tuples in the
join.

Section 2 discusses other related work. Sections 3 and 4 discuss
the overall search space and how points within it were selected for
evaluation. The remaining sections provide implementation
details and results. We conclude in Section 7 with a short
discussion of our work and how the results might be applied.

2. RELATED WORK
2.1 Vertical Storage
While this paper builds on [12], two of the authors of [12] have
also recently published a follow-up [4] that compares C-Store, a
column store, with a commercial row store running the Star
Schema Benchmark. The authors implement a column store using
a commercial relational database system by making each column
its own table; the performance of this design is quite bad since
every column must have its own row id. They also implement a
row store within C-Store by storing the entire row as if it were a
single column and evaluate three optimizations said to provide
column stores superior performance: compression, late
materialization and block-iteration. The workload is first run with
all the optimizations. Then, each optimization is removed to
detemine how much performance it contributes. They find that
compression improves performance by a factor of two and late
materialization improves performance by a factor of three. We
believe these results are largely orthogonal to ours, since we
heavily compress both the row store and column store and our
workload does not lend itself to late materialization of tuples.

“Comparison of Row Stores and Column Stores in a Common
Framework” also directly compares row stores and column stores
[10]. Two contributions of this paper are the idea of a super-tuple
and column abstraction. The authors note that one reason row
stores do not traditionally compress as well as column stores is the
use of the slotted-page format. The paper introduces the idea of
super-tuples, which store all rows on a page with just one header,
instead of one header per tuple and no slot-array. Column-
abstraction avoids storing repeated attributes multiple times by
adding information to the header. The paper compares results for
4-, 8-, 16-, and 32- column tables, however, it focuses on
uniformly distributed data and examines trends within column
stores, row stores and super-tuples when returning all columns
and all rows. While those results are interesting, we are more
interested in looking at the general case where a query can return
any number of columns.

One of the first vertical storage models was the decomposition
storage model (DSM) [9], which stored each column of a table as
pairs of (tuple id, attribute values). Newer vertical storage
systems include the MonetDB/X100 [8] and C-Store [18] systems.
MonetDB operates on the columns as vectors in memory. C-Store
differs from DSM in that it does not explicitly store the tuple id
with the column. Another novel storage paradigm is PAX [7],
which stores tuples column-wise on each disk page. This results
in better L2 data cache behavior, but it does not reduce the I/O
bandwidth required to process a query. Data Morphing further
improves on PAX to give even better cache performance by
dynamically adapting attribute groupings on the page [11].

2.2 Database Compression Techniques
Most research on compression in databases has assumed slotted-
page row stores. Two papers that have not made this assumption,
[13, 16], were mentioned above. Both papers also used more

503

processing-intensive techniques to achieve compression factors of
up to 8-12 on row stores. “Superscalar RAM-CPU Cache
Compression” [21] and “Integrating Compression and Execution
in Column-Oriented Database Systems” [3] examine compression
in column stores. Zukowski finds that compression can benefit
both row stores and column stores in I/O-restricted systems and
presents algorithms to optimize the effective use of modern
processors. [3] considers various forms of compression and the
effects of run lengths on the degree of compression achieved. The
main conclusion related to this study is that RLE and dictionary
encoding tend to be best for column stores.

3. FACTORS AFFECTING
PERFORMANCE
In this paper, we consider four factors that can have a significant
effect on the relative performance of row stores and columns
stores for a given system:
1) The width of a table (i.e. number of columns), the cardinality of

each column (i.e. the number of unique attribute values in the
column), and the distribution of these values (uniform or
skewed).

2) The compression techniques employed.
3) The query being executed, including the number of predicates

and which columns the query returns.
4) The storage format (i.e. slotted pages or super-tuples).

These four factors combine to produce a very large search space.
In the following sections, we describe each factor in additional
detail. In Section 4, we explain how the search space was pruned
in order to make our evaluation feasible while still obtaining a
representative set of results.

3.1 Data Characteristics
Each relational table can have a range of characteristics. First,
and foremost, the number of columns and rows in a table directly
affects the time required to scan a table. Second, the type of each
attribute column (i.e. VAR CHAR or INT) determines how the
data would be stored when uncompressed, and the distribution of
values within the column (such as uniform or skewed) affects how
well the column’s values can be compressed. The number of
unique values stored within the column, or column cardinality,
also affects the column’s compressibility.

To illustrate, imagine a table with a single column of type INT
which can only assume one of the four values: 1, 2, 3, or 4. The
column cardinality for this column is 4. If the values are
distributed equally within the column (i.e., each value has the
same probability of occurring), then the column’s distribution is
termed uniform, otherwise, the distribution is termed skewed. For
a row-store with a slotted page format, this column would most
likely be stored as a 32-bit integer. However, only two bits are
actually needed to represent the four possible values. The
distribution of the values and whether or not the table is sorted on
this column will determine if the column can be stored in, on
average, less than two bits per row by using compression.

3.2 Compression
Many different types of compression exist in the literature, from
light-weight dictionary coding, to heavy-weight Huffman coding.
Since a full evaluation of compression techniques is outside the

scope of this paper, based on the results in [13], we focus on those
techniques that seem to generally be most cost-effective. These
techniques are bit-packing, dictionary coding, delta coding, and
run-length encoding (RLE).

As demonstrated in the example above, bit packing uses the
minimum number of bits to store all the values in a column; for
example, two bits per attribute value are used instead of the 32
normally needed for an INT. This space savings means that bit-
packed attributes (whether in a column or row) will not generally
be aligned on a word boundary. With the current generation of
CPUs, that cost has been found to be negligible [3, 13].

Dictionary coding is another intuitive compression technique in
which each attribute value is replaced with an index into a
separate dictionary. For example, the months of the year
(“January” to “December”) could be replaced with the values 1 to
12, respectively, along with a 12-entry dictionary to translate the
month number back to a name. Although dictionaries are often
useful, they can sometimes hurt performance, for instance, if they
do not fit into the processor’s L2 data cache. Dictionaries should
also not be used if the index into the dictionary would be bigger
than the value it is replacing, or if the size of the un-encoded
column is smaller than the size of the encoded column plus the
size of the dictionary.

Delta coding stores the difference between the current value and
the previous value. To delta encode a sequence, first the sequence
is sorted and the lowest value is stored. Then, each difference
should be stored in two parts: the difference itself starting at the
first ‘1’ in the bit representation of the difference, and the number
of leading zeroes. For instance, consider the sequence 24, 25, 27,
32. The bit representation for each is 011000, 011001, 011011,
100000, respectively. The differences between subsequent values
in the sequence are 000001, 000010, and 000101. Thus, the
sequence to encode would be 24, (5, “1”), (4,”10”), (3,”101”),
which would be 011000 101 1 100 10 011 101. The number of
leading zeroes should be encoded as a fixed-width field, but the
difference will generally be variable length. To simplify
decoding, the number of leading zeroes should be stored before
the difference. Delta coding can be performed both at a column
level, and at a tuple level, provided that each column of the tuple
has been bit packed. Delta coding should not be used on unsorted
sequences or when the encoding for the number of leading zeroes
plus the average size of the differences in bits is bigger than the
non-delta-coded value.

Run-length encoding (RLE) transforms a sequence into a vector
of <value, number of consecutive occurrences (runs)> pairs. For
instance, the sequence 1, 1, 1, 1, 2, 2, 4, 4, 4 would become
<1,4>, <2,2>, <4,3>. RLE compresses best if the sequence has
first been sorted, and if there are many long runs.

Bit packing, dictionary coding and run-length encoding are all
light-weight compression schemes. They can lead to substantial
space and I/O savings while incurring very little extra processing.
Delta coding can provide extremely good compression for the
right type of data, but requires much more processing to decode
[13].

Generally, the row store and column store versions of the same
table should be compressed using different techniques. For

504

instance, RLE is often a good scheme for column stores but not
for row stores, since it is rare to have multiple consecutive rows
that are identical.

3.3 Query Characteristics
The third factor we considered was the characteristics of the
queries to be used for evaluating the relative performance of the
column store and row store configuration, including the number
of predicates and the columns to which the predicates are applied,
the number of output columns and which ones, and the selectivity
of the selection predicate(s). To simplify the search space
somewhat, we primarily considered scan queries. Row stores can
benefit from indexes, but clustered indexes should have very
similar behavior to sequentially scanning a subset of the table.
Additionally, column stores will benefit from queries with
aggregation, but this issue has been studied extensively by others
[5], and we wanted to keep our queries similar to those in [12].

Each query materializes its output as un-encoded row-store tuples,
but these tuples are not written back to disk. The number of
predicates and the number of output columns affect the number of
CPU cycles needed for the query. In this paper, a predicate is a
Boolean expression of the form “Coli >= Value.” For queries with
more than one predicate, predicates are “anded” together.

The type of each column can also have a significant effect on scan
time, since different types can consume varying amounts of CPU
and I/O time. A column of CHARs will take four times less I/O
than a column of INTs, and a well-compressed RLE column of
CHARs will take even less, while scanning a delta-coded column
may consume a substantial amount of CPU time.

The output selectivity (i.e. number of tuples returned), also
impacts the scan time since materializing result tuples requires, at
the very least a copy.

3.4 Storage
The two main paradigms used by the current generation of
commercial database system products for table storage are row
stores with slotted pages and dense-packed column stores.
However, there are other possibilities, such as PAX [7], DMG
[11], and column abstraction [10]. Column abstraction tries to
avoid storing duplicate leading attribute values multiple times.
For instance, if four tuples in a row have ‘1’ in their first attribute,
that knowledge is encoded in the first header, and the subsequent
tuples do not store the ‘1.’ We will refer to dense-packed row
stores as “super-tuples” [10].

4. NARROWING THE SEARCH SPACE
AND GENERATING THE TABLES
Once the overall parameters were identified, they had to be
narrowed down to a representative and insightful set. The
parameter space can be viewed as two sets: the set of tables
(affected by the data characteristics, storage format, and
compression) and the set of queries.

4.1 Table Parameters
We elected not to use TPC-H tables since we wanted more control
over all aspects of the tables. Instead, we devised five tables:

• Narrow-E: This table has ten integer columns and 60 million
rows. The values in column i are drawn uniformly and at
random from the range of values [1 to 2(2.7 * i)]: column 1 from
the values [1 to 6]; column two from [1 to 42]; column three
from [1 to 274]; column four from [1 to 1,782]; column five
from [1 to 11,585]; column six from [1 to 75,281]; column
seven from [1 to 489,178]; column eight from [1 to 3,178,688];
column nine from [1 to 20,655,176]; and column ten from [1 to
134,217,728].

• Narrow-S: This table is similar to the table in Narrow-E (ten
integer columns and 60 million rows) but the values in each
column are drawn from a Zipfian distribution with an exponent
of 2 instead of uniformly at random from the given ranges.

• Wide-E: This table is similar to Narrow-E, except it has 50
columns instead of 10 and 12 million rows instead of 60
million. Thus, the uncompressed sizes of the two tables are the
same. The values for column i are drawn uniformly and at
random from the range [1 to 24+(23/50*i)].

• Narrow-U: This table has ten integer columns and 60 million
rows. The values in each column are drawn uniformly and at
random from the range [1-100 million].

• Strings: This table has ten 20-byte string columns and 12
million rows. No compression is used on this table.

We initially studied a wider range of tables, but we found that
these tables provide the most interesting and, in our opinion,
representative results.

We limited our study to predominantly integer columns, since
they are common and generalize nicely. However, we did decide
to study one table comprised solely of strings. Strings tend not to
compress as well as integers and at the same time are wider than
integers, so they are an important point to study.

The tables are stored on disk in either row store or column store
format, with both using super-tuples and no slot array. This
storage method results in read-optimized tuples.

Since there are so many different compression techniques, it
would be impossible to implement and test all of them in a timely
manner. Thus, this study compresses each table once for each
storage format (row and column) using the compression technique
that optimizes the I/O and processor trade-offs. While Huffman
encoding could provide better compression for the Narrow-S
table, it often results in worse overall performance due to the extra
CPU cycles it consumes decoding attribute values. How the
tables are generated and compressed is presented in the next
section.

4.2 Table Generation and Compression
First, an uncompressed row-store version of each of the five tables
was generated. Then, each table was sorted on all columns
starting with the left-most column in order to maximize the run
lengths of each column. From this table, projections of each
column were taken to form the column-store version of the table.
The value of each attribute of each column is a function of a
randomly generated value, the column cardinality, and the
column’s distribution. For the table Narrow-S, a traditional
bucketed implementation of Zipfian took prohibitively long with
column cardinalities greater than 1000 so a faster algorithm that
produces an approximation of Zipfian results was used [1].

505

The compression technique(s) used for each configuration of each
table is shown in Table 1. Dictionaries are “per page”. That is,
the dictionary for the attribute values (whether organized as rows
or columns) on a page is stored on the same page.

Traditionally, RLE uses two integers: one for the value, and one
for the run length. However, this can easily result in sub-optimal
compression, particularly when the value range for the column
does not need all 32 bits to represent it. As a further optimization,
we store each RLE pair as a single 32-bit integer, with n bits used
for the value and 32-n bits for the run length. For example,
consider the last column of Narrow-E, whose values range from 1
to 134 million. In this case, 27 bits are needed for the value,
leaving 5 bits to encode the run length. If the length of a run is
longer than 31, the entire run cannot be encoded into one entry
(32 bits), so multiple entries are used. This optimization allows us
to store the RLE columns in half the space.

For the table Narrow-S, columns 7-10 are dictionary encoded for
the row store. Each column is individually dictionary-encoded,
but, in total, there can be no more than 2,048 (211) dictionary
entries shared amongst the four columns. This requirement means
that each of the attribute values is encoded to 11 bits, but allows
the number of entries for each individual column’s dictionary to
vary from page to page.

To find a reasonable dictionary size, we estimated how many
compressed tuples, t, would fit on a page, then we scanned the
table to calculate the dictionary size needed to fit t tuples per
page. The reasoning behind this approach is that the page size
must be greater than or equal to the size of the dictionary and all
of the tuples on that page. A 2,048 entry dictionary is 8KB, so for
a 32KB page, there is room for 24KB of data. So, if the data are
expected to compress to 8 bytes per tuple. (assuming each
dictionary encoded column is 11 bits), 3K tuples will fit on the
page. If, after scanning the data, it is found that a 2,048 entry
dictionary would be too small, the dictionary size should be
doubled and the analysis redone. For the best dictionary
compression possible, analysis would be performed for every
page, but we were satisfied with the compression we obtained
using this simpler method.

For the column store version of Narrow-S, columns 7-10 are also
dictionary encoded. Since each column is stored in its own file,
the dictionary does not need to be shared. However, a larger
dictionary is needed – in this case, we allow a maximum of 4,096
dictionary entries per page, which encodes to 12 bits per value.

4.3 Query Parameters
In order to understand the base effects of the different tables and
queries, most of the queries we tested have one predicate.
However, a few have three predicates in order to study the effect
of queries with multiple predicates on response time. Each query
is evaluated as a function of the number of columns included in
the output table: 1, 25% of the columns, 50% of the columns, and
all columns. The selectivity factor is varied from 0.1% to 50%.
Runtimes for different selectivity factors and number of columns
returned can be interpolated between these points.

Table 1. Type of compression used for each table.
Table Row Store

Compression
Column Store
Compression

Narrow-E All columns bit-packed
Columns 1-5 delta
encoded

Columns 1-3 RLE,
Columns 4-10 bit-
packed

Narrow-S Columns 1-6 bit packed
Columns 7-10
dictionary encoded

Columns 1-6 RLE,
Columns 7-10
dictionary encoded

Wide-E All columns bit-packed
Columns 1-8 delta
encoded

Columns 1-4 RLE,
Columns 5-50 bit-
packed

Narrow-U All columns bit-packed All columns bit-packed

4.4 Query Generation
The query generator takes four inputs: the schema definition for
the input table (Narrow-E, Narrow-S, Narrow-U, Wide-E,
Strings), the desired selectivity factor, the total number of
columns referenced, c, and the number of predicates, p. Since
each column has different processing and I/O requirements, which
columns are used, and the order in which they are processed,
affects the execution time of logically equivalent queries. Thus,
for each configuration of input parameters, the query generator
randomly selects the columns used to produce a set of
“equivalent” queries. This differs from [12], where every query
returned the columns in the same order, and the single predicate
was always applied to the first column.

The query generator first randomly picks c columns to include in
the output table. The first p of those columns have predicates
generated for them. The column store’s query is generated first.
There is a different column scanner for each kind of compression
used: an RLE scanner, a dictionary scanner, and a bit-packed
scanner. The generator knows which scanner to choose based on
the table’s schema and column number (see Table 1). The inputs
to the scanner are then picked, including any predicate values.
The primary scanner inputs are the data file, that column’s offsets
within the output tuple, and the number of bits needed to represent
the encoded input column value. After all the columns have been
processed, the generator outputs C++ code for the column store
variant of the query.

Then, using the same set of columns, the code for the row store’s
query is generated. Each of the five table types (see Section 4.1)
must be scanned differently because of compression, and the
generator outputs the minimum code necessary to decode the
columns used in the query in order to save processing cycles.

Some desired output selectivities are difficult to obtain when
queries are randomly generated. For example, assume that the
input table is Narrow-E and that the query has a single predicate
on the first column. In this case, it is only possible to obtain
selectivity factors that are multiples of 0.1666 since the first
column only has six values that are uniformly distributed. Since
the selectivity factor affects performance, we needed a way to
obtain finer control over the selectivity factor of the query’s
predicates. To do this, we modified how predicates are evaluated
by also incorporating how many times the function itself has been
called. For instance, if the desired selectivity is 10%, every tenth
call to the predicate function will pass, regardless of whether the
attribute value satisfies the predicate. Since selectivities are

506

multiplicative, when there are multiple predicates, each predicate
has a selectivity of desired_selectivity(1/p), where p is the number
of predicates.

5. IMPLEMENTATION DETAILS
The results presented in this paper are based on the same code-
base as [12], which is provided online [2]. The scanners and page
creation procedures were modified to allow for the different forms
of compression. We first discuss why we chose this code-base,
then the next two subsections discuss and summarize the salient
features of the software. The last subsection gives the
experimental methods.

5.1 Choice of Code-Base
We chose this code-base for a variety of reasons. First, our work
follows on to that in [12]; thus, we use the same code so that a
direct comparison can be made between our results and theirs.
The code is also easy to understand and modify, and, most
importantly, is minimal, so we can have more confidence that
performance differences between the row store and the column
store are fundamental, and not related to code overheads or quirks
in the file system. Additionally, this experimental setup has
passed the vetting process of reviewers.

The two main research column-store databases are C-Store and
MonetDB [18, 8]. Both systems are available online, but they are
heavier-weight, and we are trying to understand performance
fundamentals. MonetDB uses a different processing model,
where columns (or parts of columns) are stored in vectors in
memory, whereas we assume the columns are disk resident.
MonetDB proponents argue this main memory-based kernel can
provide better performance than C-Store, but, to our knowledge,
no direct comparison of the systems has been published.

5.2 Read-Optimized Pages
Both the row store and column store dense pack the table on the
pages. The row store keeps tuples together, placed one after
another, while the column store stores each column in a different
file. The page size is 32 KB. In general, the different entries on
the page are not aligned to byte or word boundaries in order to
achieve better compression.

Each page begins with the number of entries on the page. The
row or column entries themselves come next, followed by the
compression dictionary (if one is required). The size of the
compression dictionary is stored at the very end of the page, with
the dictionary growing backwards from the end of the page
towards the front. For the row store, the dictionaries for the
dictionary-compressed columns are stored sequentially at the end
of the page.

5.3 Query Engine, Scanners and I/O
The query engine and table scanners provide only a minimal set of
functions. All queries are precompiled, and the query executor
operates on the table an output block at a time. The scanners
decode values, apply predicates and either project or combine the
columns into a materialized tuple buffer.

The query scanner and I/O architecture are depicted in Figure 1.
Since the row scanner is simpler to understand, it is explained
first. The relational operator calls “next” on the row scanner to

receive a block of tuples. The row scanner first reads data pages
from disk into an I/O buffer, then iterates through each page in the
buffer. The scanner always decodes the columns of the tuple that
might be used, then applies the predicate(s). If the tuple passes
the predicate(s), the uncompressed projection is written to the
materialized tuple buffer. When the buffer is full, it is returned to
the relational operator parent, which can print the tuples, write
them to disk, or do nothing (for our experiments the parent
operator simply tosses the output tuples). The relational operator
then empties the buffer and returns it to the scanner.

The column scanner is similar to the row scanner, but must read
multiple files – one for each column referenced by the query.
Each column is read until the materialized output tuple buffer is
full (this buffer is discussed shortly); at that point, the read
requests for the next column are submitted. Since predicates are
applied on a per-column basis, columns are processed by order of
their selectivity, most selective (with the fewest qualifying tuples)
to least selective (the most qualifying tuples). Placing the most
selective predicate first allows the scanner to read more of the
current file before having to switch to another file, since the
output buffer fills up more slowly.

For each attribute value that satisfies its predicate, the value and
its position in the input file are written into the output buffer. The
passing positions (pos list in Figure 1) are then input into the next
column’s scanner, and that column is only examined at those
positions.

The materialized tuple buffer holds 100 tuples. At this size, it can
fit in the 32KB L1 data cache, even if there are dictionaries, for
each of the five different tables. This buffer is used to reduce
overhead. Instead of performing aggregate computation,
outputting qualifying tuples, or switching from column to column
for every individual tuple, these operations are batched. For our
experiments, the qualifying tuples are simply materialized – they
are not output to the screen or to disk. A buffer size that is too
small can lead to unnecessary overhead and poor performance by,
for instance, writing to disk as soon as one tuple has been found to
qualify. On the other hand, if the buffer is too big, it will fall out
of the data cache and increase processing time. We ran scans with
multiple buffer sizes and found 100 gave the best performance.

All I/O is performed through Linux’s Asynchronous I/O (AIO)
library. The code’s AIO interface reads I/O units of 128KB (a
user-set parameter), and it allows non-blocking disk prefetching
of up to depth units. Data is transferred from the disk to memory
using DMA and does not use Linux’s file cache. The code does
not use a buffer pool, instead it writes the transferred data to a
buffer pointed to by a program variable.

5.4 System and Experimental Setup
All results were run on a machine running RHEL 5 on a 2.4 GHz
Intel Core 2 Duo processor and 2GB of RAM. The disk is a 320
GB 7200 RPM SATA Western Digital WD3200AAKS hard disk.
We measured its bandwidth to be 70 MB/s. Column stores and
row stores are affected by the amount of I/O and processing
bandwidth available in the system; our experiments have less I/O
bandwidth than those in [12], but the general shape of the graphs
are similar. Runs are timed using the built-in Linux “time”
function. For each combination of output selectivity and number

507

Figure 1. Query Engine Architecture [12].

of columns accessed, 50 equivalent queries were generated. The
run times presented in Section 6 are the averages of those queries.

Sometimes we observed transient AIO errors, which caused a
query to abort. When this happened, the run was terminated and
restarted. We verified that runs that completed without errors
returned the correct results. We also verified that running the
same query multiple times in a row had negligible timing
differences between runs.

The program has four user-defined variables: I/O depth, page size,
I/O unit (scan buffer) size, and block (materialized tuple buffer)
size. We use an I/O depth of 48; thus, each scan buffer can be
prefetched up to 47 I/O units in advance. We use a larger page
size than [12], but otherwise the program parameters are the same.
We decided to use 32KB pages instead of 4KB pages since we
think the larger size is more common in practice. However, [12]
found that, as long as the page was not too small, the size did not
significantly impact performance.

6. RESULTS
The results of our experiments are presented in this section,
beginning with the amount of compression we were able to
obtain.

6.1 Amount of compression
The compression methods used to encode each table are listed in
Table 1. Table 2 presents their compressed sizes. The
compression factors achieved range from 1 to 3 if just variable
length, bit aligned attributes are used (column 3) and from 2 to
almost 6 when compressed (column 4). While techniques that
compress the tables even more could have been used (e.g.
Huffman encoding), we think the techniques presented are a good
tradeoff.

This final compressed size is almost exactly the same for both the
row store and the column store, i.e. the size of the compressed
row store file is the same as the sum of the column file sizes for
the column store. This result is very important since column store
proponents argue column stores compress better than row stores,
so the columns can be saved in multiple sort orders and
projections for the same space as one row store [18]. Thus, for

Table 2. Total tuple sizes with and without compression.
Table Uncompressed Bit-aligned Compressed

Narrow-E 40 Bytes 153 bits (20
Bytes)

17 Bytes

Narrow-S 40 Bytes 153 bits (20
Bytes)

7 Bytes

Wide-E 200 Bytes 811 bits (102
Bytes)

100 Bytes

Narrow-U 40 Bytes 270 bits (34
Bytes)

34 Bytes

read-optimized row stores, this assertion is not true, even with
aggressive column store compression.

6.2 Effect of selectivity
In Figure 2 we explore the impact of selectivity factor as a
function of the number of columns returned (presented in bytes)
for table Narrow-E. The x-axis is the number of bytes returned,
and the y-axis is the elapsed time. For both the column store (C-
%) and row store (R-%), each line corresponds to a different
output selectivity, with one, three, five or ten columns returned,
and one predicate. Each data point is the average of 50 randomly
generated queries, as described in Sections 4.4 and 5.4. The time
to scan the uncompressed row store with 50% selectivity is also
included (R-Uncomp) to illustrate how much time compression
can save. Additionally, this graph presents error bars of plus and
minus a standard deviation; however, the standard deviations are
often quite small, so the error bars are difficult to see. For most of
the graphs in this paper, all but the selectivity of 50% line for the
row store tests (only) have been omitted to improve the clarity of
graphs, since the response time was not significantly affected by
the selectivity factor of the query. The C-0.1% and C-1%
response times are also almost exactly the same.

The column store is faster than the row store when eight of the
columns are returned with selectivity factors of 0.1% and 1%;
when five of the columns are returned with a selectivity factor of
10%; when two of the columns are returned with a selectivity of
25%; and basically never at a selectivity of 50%. Further, for this
table configuration, the best speedup of the column store over the
compressed row store is about 2, while the best speedup for the
compressed row store over the column store is about 5.

Next, we turn to investigating the factors underlying the
performance of the two systems at a selectivity factor of 10%.
Figure 3 presents the total CPU and elapsed times for both the
row and column store. Both the CPU and elapsed times are
constant for the row store as the number of columns returned is
increased, since the run is primarily disk-bound. The results for
the column store are substantially different, as the CPU time
consumed increases as more columns are returned. This increase
comes from two main sources: more values must be decoded, and
more tuples must be stitched back together (materialized) using
some form of a memory copy instruction. At a selectivity factor
of 0.1%, the CPU cost of the column store is constant, since very
few tuples must be materialized, and, at 50% selectivity, both the
column store and the row store become CPU-bound. While the
number of columns returned definitely has a large effect on
column store scan times, the selectivity of the predicate is also an
extremely important factor.

508

Figure 2. Elapsed time for Narrow-E with various selectivity
factors.

Figure 3. Elapsed time and CPU time for Narrow-E with
10% selectivity.

6.3 Effect of Skewed Data Distribution
To study the effect of a skewed data distribution, we repeated the
experiments on table Narrow-S that we had performed on
Narrow-E. Narrow-S allows more columns to be run-length (or
delta) encoded, and made dictionary compression worthwhile for
the columns with larger column cardinalities (number of different
values in the column). Using these techniques, the row store went
from averaging 17 bytes per tuple to 7 bytes per tuple (recall that
the uncompressed tuple width is 40 bytes). The total size of the
compressed column store tuple is the same as that for the row
store tuple; each column compressed to less than two bytes per
attribute, with the first attributes averaging just a few bits. The
selectivity graph is presented in Figure 4. Error bars are also
present on this graph, but the standard deviation is again small
enough that they cannot be seen. Again, each data point represents
the average of 50 different randomly generated queries in which
both the columns returned and the column to which the predicate
is applied are selected at random. The difference between the
elapsed times for the column store runs with 0.1% and 1%
selectivity factors are negligible. At 0.1% and 1% selectivity, the
column store (C-0.1%,1%) is faster than the row store (R-
0.1%,1%) when seven columns are returned, and at 10%
selectivity, the column store is faster than the row store when
three columns are returned. At a selectivity factor of 50%, the row

Figure 4. Elapsed time for Narrow-S at various selectivity
factors.

store is always faster. For this table, the elapsed time for the row
stores is affected by the selectivity factor since very little
bandwidth is needed. Thus, the CPU time consumed dominates
the overall execution time for the query for both column stores
and row stores. Those queries with higher selectivity factors
require more computation, so they have longer run times. For this
table, the performance of the row store is very competitive with
the column store largely due to the significant decrease in the
amount of I/O it performs.

6.4 Wide Tables
Our next experiment was conducted using table Wide-E. Wide-E
has fifty integer (4 byte) columns whose column cardinalities
increase from left to right (see Table 1 for details). After bit
compression, each tuple averages 100 bytes. To keep the total
uncompressed table size the same as for Narrow-E, Wide-E has
only 12 million rows (instead of 60 million). The time to scan the
uncompressed table is shown in the R-Uncomp line. For the
column store, the response times with either a 0.1% or 1%
selectivity factor are essentially the same. The row store is faster
than the column store when 85% of the columns are returned with
0.1% or 1% selectivity factors; when returning 66% of the
columns at 10% selectivity, and with 25% of the columns at 50%
selectivity. For the row store, the number of columns returned
does not have an observable effect on the response time. As with
Narrow-E, the elapsed time for the row store is dominated by its
disk I/O component and the selectivity factor of the query; the
CPU graph (not shown) is similar to Figure 3.

Overall, the graphs of Figure 5 and Figure 2 are very similar,
however, the row store does not compress as well (and hence
takes longer to scan), so there is a shift in the crossover points
between the two systems. Because the slopes of the column store
lines are not very steep, how well the row store compresses is a
critical component in determining its performance relative to that
of the column store. It should also be noted that many more
columns are being returned than with the narrow table Narrow-E.
If fewer than twelve columns are needed, the row store is always
slower than the column store for this configuration.

509

Figure 5. Elapsed time for Wide-E at various selectivity
factors.

Figure 6. Elapsed time for Narrow-U with various selectivity
factors.

6.5 Effect of Column Cardinality
Figure 6 presents the elapsed times for the experiments with
Narrow-U. Like Narrow-E, this table has ten columns, but the
values in each column are drawn uniformly and at random from a
range of 1 to 100,000,000. The average compressed size of each
tuple is 34 bytes, double that of the tuples in Narrow-E. The
larger table and column sizes result in a significant increase in the
response times that we measured for the two systems due to the
additional I/O operations performed. The crossover points of the
two systems are very similar to those for the wider and shorter
table discussed in the previous section (see Figure 5).

6.6 Additional Predicates
The previous results have shown that the selectivity of the
predicate can have a substantial effect on the relative performance
of the row store and column store. We next consider how adding
additional predicates affects the relative performance of the two
systems by considering queries with three predicates (instead of
one) and with selectivity factors of 0.1% and 10%. Table
Narrow-E was used for these tests and the results are presented in
Figure 7.

For each selectivity, we ran two sets of experiments. In the first
set of experiments, the first, second, and third columns (x% left 3
preds) are used as the predicate columns (Figure 7 (top)). In the
second, the columns for the three predicates were selected at
random (x% random 3 preds) (Figure 7 (bottom)). The “C-x% 1
pred” results are taken from the experiments presented in Figure
2. Since the “1 predicate” point only uses one column, there is a
predicate only on that column. For graph clarity, the row results
are only shown for the 10% selectivity factor with one predicate,
since it is representative of the other results.

We elected to draw predicates both from randomly selected
columns and from the left three columns because we expected that
the response time when the left hand columns were used would be
better than when randomly selected columns were used. Since the
table is sorted1 on these columns, the runs in the left-most
columns are longer. Hence, they compress better than the other
columns. Our results verify that hypothesis. Our results also
indicate that additional predicates can significantly affect the
relative performance of the two systems. For instance, the 10%
selectivity crossover is at five columns for the one-predicate case,
but shifts to two columns when there are three predicates. The
results are less stark for the 0.1% selectivity case since it requires
so much less computation to begin with, but it still shifts the
crossover from eight columns to seven.

These three-predicates results represent a worst-case scenario, as
the selectivity is evenly divided between the columns. The results
would be closer to the one predicate case if the first predicate had
been highly selective. Thus, “real” workload results would
probably fall somewhere in between the two points. However, the
fact remains that increasing the number of predicates can have a
significant impact on the performance of a column store.

6.7 Effect of “Wider” Attributes
We examine the impact of wider attributes by studying a table
with ten 20-byte attributes. No compression was used for either
the column store or the row store as we wanted to simulate the
worst-case scenario for both systems. For this configuration, I/O
is the dominant factor in the response times of both systems.
Thus, the elapsed time of the column store is only slightly
affected by the different selectivity factors, as can be seen in
Figure 8.

To put this table’s size in perspective, each width of column of
this table is about the same as the compressed tuples in the
Narrow-E table, and is about three times the size of the tuples in
the Narrow-S table. Each tuple is twice as big as the compressed
tuples in the Wide-E table.

6.8 Materialized Views
There is, of course, an intermediate form between row stores and
column stores: materialized views. We implemented two sets of
materialized views for the Narrow-E table. One set groups the ten
attributes into five pairs: columns 1&2, 3&4, 5&6, 7&8, 9&10;
the other groups the attributes into two groups of five: columns 1-
5 and 6-10. We modified the column scanner to return an array of
values instead of one value. Only columns used in the query are

1 A major to minor sort is performed on the entire table from the
left most column to the right most column.

510

Figure 7. Three predicates on left-most columns (top) or
random columns (bottom).

decoded. If more than one materialized view is needed, they are
stitched together using the same mechanisms used to stitch
columns together.

The benefit of materialized views depends greatly on the amount
of correlation between columns exhibited by the query workload.
Commercial products often provide guidance in forming views for
row stores, and for column stores, Vertica has a Database
Designer to aid in selecting which projections and sort orders
would provide the best overall performance for a query workload
[20]. However, since we are using a random query generator, we
cannot rely on these automatic designers. Instead, we created the
views, and then varied the correlation between the columns in
randomly-generated workloads to find the benefit.

We looked at four different amounts of column correlation for
each set of materialized views: 100%, 75%, 50% and none
(independent). For the set of views where there are two views of
five columns each, the query generator was set up so that one
column was picked at random. Then, when there are five or fewer
columns used, there is a Correlation% chance that there is only
one view needed. For the set of five views of two columns each,
first one column is drawn at random. Then, there is a
Correlation% chance that the other column from that view is
used. If the correlation test fails, the second column from that
view is not used for that query, unless all five of the views are
used and more columns are needed, and another column is
randomly drawn. All columns are drawn without replacement. In

Figure 8. Elapsed time for String with various selectivity
factors.

the “none” correlation case, all columns are drawn independently
and at random, as in the earlier experiments.

Figure 9 provides the results for having two groups of five (left)
or five groups of two (right) materialized views on the Narrow-E
table. The queries have 1% selectivity, which is a selectivity
where the column store’s performance dominates. The row and
column store results are those from earlier sections. We gathered
materialized view results for returning up to six, then ten columns.
We took more data points since the results are not smooth lines –
they have stair-step performance due to the correlations between
the columns. Error bars of plus one standard deviation are
included for the random and 50% correlation cases, while minus
error bars are included for correlations of 75% and 100%. Only
one side is included for clarity. When the correlation between
columns is high, the performance is similar to that of joining
multiple small row stores. When there is no correlation between
columns, the materialized views do not provide a large benefit for
row stores compared to column stores, since multiple views must
be joined, and reconstructing those tuples can be costly. In fact,
the materialized views with five columns only outperform the row
stores when three or fewer columns are returned, assuming no
correlation. If more than five columns are used, the row store
should be used due to the cost of stitching the two views together.
Without correlation, the two column views outperform the row
store when five or fewer columns are returned. However, with
more correlation, the materialized views provide comparable
performance to, and can occasionally beat, the column stores.

With the cost of storage essentially free, materialized views can
easily be included with a row store, which can help the relative
performance of the row store. The materialized views will also be
affected by the selectivity of the query, in proportion to the
number of columns in the view.

6.9 Joins
Finally, we also examined joins with different selectivities to see
to what extent constructing result tuples interacts with executing
the join (e.g., there may be more instruction cache misses due to
switching between scanning and reconstructing tuples and
performing the join). These experiments used a hybrid hash join

511

Figure 9. Materialized views for the Narrow-E table. The left figure presents the results for two materialized views with five
columns in each view. The right figure presents the results for five materialized views with two columns each.

Figure 10. The left graph presents results for joining two two-column tables in a column store and row store. The x-axis labels
give the storage paradigm and the scan selectivities. The right graph presents the results for joining two four-column tables.

[17] with enough pages allocated to ensure the inner table fits in
memory. The two tables used in the join have either two columns
or four columns accessed. The two-column case’s SQL would be:

SELECT temp1.column2, temp2.column5
FROM temp1, temp2
WHERE temp1.column9 = temp2.column9 AND
temp1.column2>=x AND temp2.column5>=y;

Temp1 and Temp2 are both table Narrow-E for the row store. For
the column store, Temp1 is column 2 and column 9 from Narrow-
E; Temp2 is column 5 and column 9. For the four-column case,
table Temp1 also includes columns 1 and 3, and table Temp2 also
includes columns 7 and 10. Column 9 was chosen as the join
attribute since each value occurs a small number of times within
the table, and the number of tuples passing a join increases as a
square of the number of duplicate matching join attribute values.
The other columns were chosen at random so there would be no
overlap in Temp1 and Temp2, besides column 9.

The variables x and y in the query are varied to return either 10%
or 100% of the rows for the table, and the query is performed four
times to get times for scan selectivity factors of 100/100, 100/10,
10/100 and 10/10. The number of resulting tuples is 234M, 22M,
28M and 2.6M, respectively.

We chose to use either two or four columns from the table for a
variety of reasons. At five or more columns, the likelihood of
running out of memory increases. Additionally, row stores
outperform column stores as more columns are accessed. On the

other hand, consistently using just the join attribute for both tables
was unlikely in real workloads. Hence, we chose two and four
columns to get two sets of results without severely impacting the
column store’s performance.

The inner table is the one with the fewest rows that pass the
predicate. This table is scanned first, and its query is generated in
the same way as the queries used for the results in the previous
sections. However, once the tuple has been materialized, instead
of being discarded, the join attribute is hashed, partitioned and
inserted into the appropriate bucket page. After the first scan
completes, the second scan begins, and probes for joins after the
tuple has been materialized. If the bucket is wholly in memory,
the resulting join tuple(s) is (are) materialized. If the bucket is not
in memory, the tuple is written to a page and is processed after the
scan is complete. This plan uses an early materialization strategy,
as per the results of [5].

Figure 10-left presents the elapsed time for the join for both row
stores and column stores for the two column tables, with the given
scan selectivities. Figure 10-right presents the results for the four
column tables, but does not include the 100/100 case in the results
because the inner table does not fit in memory. Each bar presents
the elapsed time for the join, and the part of that time it takes to
just perform the two scans. The scan results are as expected, and
the join component of the time is always roughly equivalent
between the column store and row store. Thus, the paradigm with
the smaller scan time will also have the smaller join time, and the
join time is greatly affected by the number of joined tuples that
must be materialized.

512

7. DISCUSSION
To begin the discussion, let us summarize the findings:
• Read-optimized row stores and column stores compress to

within a few bits of each other.
• Regardless of the table size or table type, the selectivity of the

predicate can substantially change the relative performance of
row stores and column stores.

• Row stores perform better compared to column stores when the
tuple is narrow.

• Adding predicates increases column store runtimes.
• Having more qualifying tuples increases column store runtime.
• Materialized views, which are essentially a hybrid of row stores

and column stores, can out-perform both row stores and column
stores, depending on the circumstances, but normally have
performance somewhere between the two paradigms.

• Hybrid hash joins with early materialization do not change the
relative performance of row stores and column stores.

While [12] reached some of the same conclusions, our results
further quantify these findings and the extent to which they hold,
and add some new results.

A rule of thumb is that a column store outperforms a row store
when I/O is the dominating factor in the response time of a query,
but a row store can outperform a column store when processing
time is the dominating constraint. Our results show that I/O
becomes less of a factor for row stores with compression, and
CPU time is more of a factor for column stores in queries with
more predicates, lower selectivities and more columns referenced.

Row stores on slotted pages will most likely never beat column
stores for read-optimized workloads since their bandwidth
requirements are much higher than for even the uncompressed bit-
aligned tables. However, a read-optimized row store can clearly
outperform a column store under some conditions.

Row store designers must seriously reconsider two points:
compression and schema design. Using aggressive compression
techniques is critical to reducing the overall scan time for a row
store. In addition, our results along with those in [12] clearly
demonstrate that, for the current generation of CPUs and disk
drives, 20 bytes is a good average tuple size to aim for.

Additionally, some column store proponents have argued that,
since column stores compress so much better than row stores,
storing the data with multiple projections and sort orders is
feasible and can provide even better speedups [18]. However, we
have found that columns do not actually compress any better than
read-optimized rows that employ bit compression and delta
encoding. Since it is now feasible to store row stores in multiple
projections and sort orders without a substantial storage overhead,
developing techniques for selecting the best materialized views
(keeping in mind the 20 bytes per view per row target) might
prove to be beneficial, as our results from Section 6.8 show.

We have shown multiple ways to decrease the I/O requirements of
a query workload. If the workload has many low-selectivity
queries, or multiple predicates per query, the tuples could be even
larger and still provide roughly the same performance as column
stores. However, for workloads comprised of high selectivity
queries that randomly select just one or two columns from a wide
table that cannot be vertically partitioned in a non-column-store
way, row stores cannot compete.

8. ACKNOWLEDGMENTS
The authors would like to thank David Lomet, Daniel Abadi, Sam
Madden and the anonymous reviewers.

9. REFERENCES
[1] https://www.cs.hut.fi/Opinnot/T-

106.290/K2005/Ohjeet/Zipf.html. Accessed November 8,
2007.

[2] http://db.lcs.mit.edu/projects/cstore/. Accessed November 8,
2007.

[3] Abadi, D. J., Madden, S. R., Ferreira, M. C. “Integrating
Compression and Execution in Column-Oriented Database
Systems.” In SIGMOD, 2006.

[4] Abadi, D.J., Madeen, S. R., Hachem, N. “Column-Stores vs.
Row-Stores: How Different Are They Really?” In SIGMOD,
2008.

[5] Abadi, D. J., Myers, D.S., DeWitt, D.J., Madden, S.R.
“Materialization Strategies in a Column-Oriented DBMS.”
In ICDE, 2007.

[6] Ailamaki, A. Architecture-Conscious Database Systems.
Ph.D. Thesis, University of Wisconsin, Madison, WI, 2000.

[7] Ailamaki, A., DeWitt, D. J., Hill, M. D., and Skounakis, M.
“Weaving Relations for Cache Performance.” In VLDB,
2001.

[8] Boncz, P., Zukowski, M., and Nes, N. “MonetDB/X100:
Hyper-Pipelining Query Execution.” In CIDR, 2005.

[9] Copeland, A. and Khoshafian, S. “A Decomposition Storage
Model.” In SIGMOD, 1985.

[10] Halverson, A. J., Beckmann, J. L., Naughton, J. F., DeWitt,
D. J. “A Comparison of C-Store and Row-Store in a
Common Framework.” Technical Report, University of
Wisconsin-Madison, Department of Computer Sciences,
T1666, 2006.

[11] Hankins, R. A., Patel, J. M. “Data Morphing: An Adaptive,
Cache-Conscious Storage Technique.” In VLDB, 2003.

[12] Harizopoulos, S., Liang, V., Abadi, D., and Madden, S.
“Performance Tradeoffs in Read-Optimized Databases.” In
VLDB, 2006.

[13] Holloway, A. L., Raman, V., Swart, G. and DeWitt, D. J.
“How to Barter Bits for Chronons: Compression and
Bandwidth Trade Offs for Database Scans.” In SIGMOD,
2007.

[14] Huffman, D. “A Method for the Construction of Minimum-
Redundancy Codes.” In Proceedings of the I. R. E., pages
1098-1102, 1952.

[15] Ramakrishnan, R. and Gehrke, J. Database Management
Systems. McGraw-Hill, 3rd edition, 2003.

[16] Raman, V., Swart, G. “Entropy Compression of Relations
and Querying of Compressed Relations.” In VLDB, 2006.

[17] Shapiro, L. D. “Join processing in database systems with
large main memories.” ACM Trans. Database Syst. 11(3):
239-264 (1986).

[18] Stonebraker, M., et al. “C-Store: A Column-Oriented
DBMS.” In VLDB, 2005.

[19] T. P. P. Council. “TPC Benchmark H (Decision Support),”
http://www.tpc.org/tpch/default.asp, August 2003.

[20] “The Vertica Database Technical Overview White Paper.”
Vertica, 2007.

[21] Zukowski, M., Heman, S., Nes, N., and Boncz, P. “Super-
Scalar RAM-CPU Cache Compression.” In ICDE, 2006.

513

