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ABSTRACT
Table scans have become more interesting recently due to
greater use of ad-hoc queries and greater availability of multi-
core, vector-enabled hardware. Table scan performance is
limited by value representation, table layout, and process-
ing techniques. In this paper we propose a new layout and
processing technique for efficient one-pass predicate evalua-
tion. Starting with a set of rows with a fixed number of bits
per column, we append columns to form a set of banks and
then pad each bank to a supported machine word length,
typically 16, 32, or 64 bits. We then evaluate partial predi-
cates on the columns of each bank, using a novel evaluation
strategy that evaluates column level equality, range tests,
IN-list predicates, and conjuncts of these predicates, simul-
taneously on multiple columns within a bank, and on mul-
tiple rows within a machine register. This approach outper-
forms pure column stores, which must evaluate the partial
predicates one column at a time. We evaluate and compare
the performance and representation overhead of this new
approach and several proposed alternatives.

1. INTRODUCTION
Complex predicates are a common feature of queries in

data warehouses. The typical decision support query is gen-
erated by a tool, and involves an aggregation over a subset
of the database, where the subset is defined by a conjunction
of dozens of predicates, some of which may in turn involve
complex expressions and nested disjunctions.

E.g, the following is a WHERE clause from one of the sim-
pler queries in a customer workload CUSTW1 that we use
in this paper (the column names are anonymized and the
query is varied slightly but the basic structure is unaltered):
A = a AND B = b AND C IN (c,d) AND D = 0 AND E = 0 AND

F <= 11 AND G >= 2 AND H IN (e,f) AND (I IN (g,h) OR

I > j) AND 9 other clauses (Q1)
Traditionally, DBMSs have considered the principal bot-

tlenecks in query speed to be I/O and joins, and so have not
optimized much for predicate evaluation, other than apply-
ing them as early as possible in the query plan.
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However, more and more data warehouses store tables de-
normalized, in main memory, often in compressed form. For
such warehouses, joins and I/O are no longer the issue. Ac-
cessing the denormalized table is the main cost, and in many
cases this cost is mainly that of predicate evaluation.

1.1 Predicate Evaluation in Blink
In this paper we present a way to efficiently evaluate com-

plex predicates in the context of Blink, a query processor
that operates over a compressed main memory data for-
mat [9].

In Blink, every column is compressed by encoding its val-
ues with a fixed length, order preserving, dictionary code.
For each column X, there is an array DX (the dictionary)
containing all the distinct values of that column. In each
tuple, the entry for column X is a code of size ⌈log2 |DX |⌉
bits: a reference to a value in DX . The values in DX are
stored in sorted order, so a range predicate (e.g., column <

literal) can be evaluated directly over the coded column.
In this paper we present two new techniques to speed up

queries over such a format, in which tabular data is repre-
sented in fixed width columns. Our techniques are imple-
mented in the Blink query processor, and we present exper-
imental results using variations within Blink, and of Blink
in comparison with MonetDB [13].

ALU Parallelism, exploiting Long Registers

Complex SQL where clauses, as in Q1, are usually evalu-
ated sequentially: an evaluator walks an operator tree, ap-
plying one predicate after another, repeating the process on
each row. With order-preserving dictionary coding, all the
standard predicates (=,<, >,≤,≥) map to integer compar-
isons between codes, irrespective of data type. As a result,
each predicate can be evaluated using mask and compare
instructions provided by the processor.

The drawback with this standard method is that it under-
utilizes the processor. Since code size grows only logarithmi-
cally with the domain size, the columns on which predicates
are applied tend to compress very well. In Blink, the av-
erage code length for the columns in Q1 is under 6 bits.
In contrast, most modern ALUs support operations on 128-
bit registers. Applying predicates one at a time uses only
6/128th of the ALU.

We present a new method that avoids this drawback by
applying predicates on multiple columns in parallel. Our
layout packs the codes for multiple columns into a single
128-bit unit, and our method converts arbitrary numbers
of comparisons on columns within this unit into a fixed se-
quence of operations over the 128-bit unit. This allows us
to often evaluate the column comparisons on N column val-
ues that have been compressed to B bits each using only

622

Permission to make digital or hard copies of portions of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and 
that copies bear this notice and the full citation on the first page. 
Copyright for components of this work owned by others than VLDB 
Endowment must be honored. 
Abstracting with credit is permitted. To copy otherwise, to republish, 
to post on servers or to redistribute to lists requires prior specific 
permission and/or a fee. Request permission to republish from: 
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or 
permissions@acm.org. 
 
PVLDB '08, August 23-28, 2008, Auckland, New Zealand 
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08 



NB/128 operations, as compared to N operations using the
standard method.

We use this method as a primitive in evaluating a general
where clause containing arbitrary conjunctions of atomic
predicates. We also present similar methods for disjunc-
tions, as well as other more complex predicates such as in-
lists (e.g, color in “violet”, “blue”, “ purple”).

Later we show how these vector primitives can be incor-
porated into a query planner through the use of a packed
vector data type and additional rewrite rules. While our
experiments were conducted using a simple rule based opti-
mization, the technique is easy to model so it can be incor-
porated into a cost-based optimizer.

Packing columns into word-sized banks

Besides CPU efficiency, another major factor driving query
performance is (memory) bandwidth efficiency. While DBMSs
since System R have laid out tables in row-major order,
many recent systems use a column-major order, so that
each query needs to only scan the columns it references
(e.g., Sybase IQ [6], MonetDB [3], C-Store [1]). In this pa-
per we argue that both row-major and column-major lay-
outs are suboptimal: the former because queries have to
scan columns that they don’t need, and the latter because
columns must be padded to word boundaries for efficient
access to the columns.

Instead, we propose a family of Banked Layouts that pack
arbitrary width columns into fixed size banks, where the
bank widths are chosen to allow efficient ALU operations:
8, 16, 32, or 64 bits. We then lay out the table in bank-major

order.
Banked layouts present a size trade-off. Wide banks are

more compact because we can pack columns together with
little wasted space. When a query references many of the
columns in the bank, this compactness results in efficient
utilization of bandwidth, much like in a row-major layout.

On the other hand, narrow banks are beneficial for queries
that reference only a few columns within each bank. In
the extreme case, when each column is placed in a separate
bank, we get a column-major layout, padded to the nearest
machine word size. Banked layouts also make use of SIMD
instruction sets on modern processors to allow a single ALU
operation to operate on as many banks as can be packed into
a 128 bit register. Narrow banks rely on SIMD processing
for greater efficiency.

We explore this tradeoff between compactness and column-
targeting and present multiple strategies for packing columns
into banks. We experimentally compare the performance of
these strategies, as well as the column-major layout, using
an off-the-shelf column store (MonetDB). Our experiments
show that banked layouts beat both row-major and column-
major layouts.

2. BACKGROUND AND RELATED WORK
Blink is a query processing system that uses a compres-

sion method called frequency partitioning [9]. It partitions
each table horizontally to allow for more efficient dictio-
nary compression by allowing each partition to have its own
set of dictionaries. Since each dictionary need only repre-
sent the values present in the partition the dictionaries can
be shorter and shorter dictionaries means smaller column
codes. In particular, if in partition P column C is coded us-
ing dictionary DC,P then the column width is ⌈log2 |DC,P |⌉

bits. Since each column has fixed width within a parti-
tion, each row has a fixed format in that partition. In [9]
we show that frequency partitioning approaches the same
efficiency as Huffman coding as we let the number of parti-
tions grow, but has the advantage of generating fixed length
codes within each partition. The partition level dictionaries
are kept sorted, so that range and equality comparisons can
be done without any decoding.

Queries in Blink are executed by compiling the query from
value space to code space and then running the query di-
rectly on the compressed data without having to access the
dictionary. This compilation from value space to code space
has to be done separately for each partition, because the
dictionaries are different for each partition. To limit this
overhead we set a upper limit on the number of partitions.

Blink queries consist of a table scan with selection, fol-
lowed by hash-based group by and aggregation. That is, for
each tuple t, Blink evaluates the selection predicate, and if it
passes, it computes the tuple’s group index and updates the
aggregate values for that index with values extracted from
the tuple. This process runs in parallel on as many cores
as are available, each core running the query on a separate
partition, and the resulting aggregates are finally combined
to produce the final answer.

In this paper we focus on the efficiency of predicate eval-
uation in such a table scan. Predicate evaluation often
dominates the query run time, because warehouse queries
typically have low selectivity. This work is not specific
to Blink, it is applicable to any system with fixed width
columns. However it is especially interesting for use with
Blink because the average column width is much smaller
due to frequency partitioning. This means that the num-
ber of columns that can be packed into a machine word is
higher, and thus opportunities to perform multiple column
operations in each word operation are greater.

2.1 Related Work
We can categorize a physical data layout by three criteria:

value coding, data placement, and data padding.
• Value Coding: Many systems have used variants of dic-

tionary coding to encode column values. The scope of the
dictionaries varies widely, and includes per column dic-
tionaries[10], per table dictionaries[12], or per disk block
dictionaries[8].
• Data Placement specifies how the coded data is arranged

in memory or on the file system. There is a wide variation
of techniques used. Some important ones are:
• Row-wise Slotted Page. A portion of the page is used

as an index into the rest of the page, mapping the slot
number to a byte offset in the page. This allows for
records to be rearranged inside the page without chang-
ing the Row IDs. This update-optimized format is used
by all the major database vendors.
• Column-wise File Packed. Each column is stored as

a separate contiguous chunk, using the same ordering.
An insert appends to each chunk. This format is used
by C-Store[1] and Sybase IQ [6], and MonetDB [4].
• Row-wise Paged, Column: Each page stores complete

rows, but within a page each column is stored sepa-
rately. Rows are joined positionally. This approach
was pioneered in PAX [2].
• Row-Partitioned and Column Banked: In Blink, rows

are frequency partitioned, and within each partition the
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columns are partitioned into vertical banks. Rows can
be joined positionally.

• Data Padding is done to match the storage format of data
with the word lengths and data formats of a particular
machine. For example, Oracle RDBMS aligns and pads
certain data structures stored on a page so that a pointer
into a page can be cast to a pointer to a C struct, avoiding
the need to copy data into an ancillary structure. Many
databases optimized for fast execution align data on word
boundaries (e.g., C-Store). However padded formats can
take up more space in storage. MonetDB/X100[3] keeps
data in memory without padding, but pads inside the pro-
cessor cache.

A final dimension in physical design is the option of keeping
multiple materializations of the same data. Placing data in
multiple formats increases the odds that one will be more
efficient for a particular query. Materialized views and C-
Store projections fall in this category. Our bank design al-
lows banks to contain redundant copies of columns, so as to
decrease the number of banks that need to be accessed for
an average query. All of these approaches suffer from the
problem that the space of possible materializations is expo-
nential in the schema size, and it is hard to choose the right
materializations for a particular workload.

A general issue for query processing on SIMD hardware
is that the natural bit width of a column often does not
match any of the word widths of the processor. C-Store [1]
and MonetDB/X100 [3] pad the columns to word width, C-
Store as the data is being laid out, and X100 as the data
is being read in. Blink does neither, packing columns into
words to try and fill every bit. This approach not only obvi-
ates the unpacking pass of X100, but also packs each register
full of interesting bits rather than zeros, making each ALU
operation potentially more valuable. Zhou [11] uses SIMD
processing for more than just scanning, but the scan pro-
cessing is done at word level, as in C-Store.

3. REWRITING COLUMN EXPRESSIONS
TO WORD EXPRESSIONS

The main challenge in efficient predicate evaluation is that
the data types and operators used in an expression tree are
not the operations and data types supported directly by the
ALU. An expression tree for a WHERE clause uses operators
such as <, =, BETWEEN, IN-list, Boolean AND, etc., on column
values from domains like VARCHAR, DATE, etc. In contrast,
the ALU performs compare, XOR, etc., on 128-bit units,
which can be treated (using SIMD instructions) as vectors
of machine words with width 8, 16, 32, or 64 bits.

Order-preserving dictionaries help to an extent, because
they replace complex, variable width column domains with
fixed width dictionary codes. However, these codes can have
arbitrary widths that are not word sized, leaving open the
question of how to map these column codes onto words.

The usual way of storing fixed width values in machine
words is to pad each value on the left with 0s up to the next
word boundary, so a 9 bit value would be stored in a 16 bit
word, while a 2 bit value would be stored in an 8 bit word.
The amount of this padding depends on the distribution of
column widths. For example, in a table of 10 columns with
widths 1, 2, . . . 10 bits, column-level word padding expands
the data from 55 to 96 (8× 8 + 2× 16) bits per row.

The difficulty with this padding is three fold:

• it increases the amount of space needed to store the data,
• it increases the amount of bandwidth needed to move the
data into the CPU, and
• it increases the number of ALU ops needed to process the
data (e.g., a comparison involving a 2 bit column has to use
an 8-bit comparator).

Column store DBMSs like MonetDB/X100 [3] address the
first two issues by packing the data tightly in memory and
only padding after loading into cache, but this does not ad-
dress the third issue. In fact, it further increases the number
of ALU operations, because the processor has to do an ex-
tra pass to extract the column and pad the values to word
width.

In this section, we present an alternative that packs columns
tightly into words and processes them in parallel, by oper-
ating directly on the packed words. We start by specifying
operator algebras over columns and over words, and describe
how to map expressions on columns into equivalent expres-
sions on words (Section 3.1). We then introduce rewrite
rules for optimizing these word-expressions, by mapping pat-
terns that operate sequentially on individual columns into
more efficient expressions that operate simultaneously on
many columns, making use of the full width of the ALU
(Section 3.2). Finally, we present a policy for building an
operation tree out of a general expression (Section 3.3) and
invoking these rewrite rules on it (Section 3.4).

For ease of presentation, we assume initially that we can
always operate on the the encoded value of each column.
For expressions involving arithmetic, LIKE, or comparisons
of multiple column values, we need to look at the decoded
values. We present this generalization in Section 3.4.

3.1 Column and Word Algebra
SQL predicates apply operators on columns: binary com-

parisons, Boolean operators (and, or, not), IN-lists, etc.
Because we use order-preserving dictionary codes, we can
perform these operators directly on the encoded columns.
We call these operators a column algebra (CA). The ALU
implements a word algebra (WA): bit-wise & , |, ∼
(not),⊕ (xor), modular addition, subtraction, and compar-
ison operators that produce saturated results – all 1s across
the word width for true, and all 0s for false. Using SIMD
instructions available on many processors, the word sizes for
these operators can be 8, 16, 32, or 64 bits, while achiev-
ing the full parallelism of the 128-bit ALU. For example, we
can do 16 compares of 8-bit words, or 4 compares of 32-bit
words, in a single instruction.

To make this concrete, we use the following query written
in CA as a running example:
A = 7 AND B=3 AND C ≥ 4 AND D=0 AND (F≤ 11 OR G≥2)
AND H IN {7,99} (Q2)

To write (Q2) in word algebra, we need to map the un-
derlying columns into words. But this depends on how the
columns and rows are formatted in memory, so we briefly
digress to introduce this format.

Banks and Tuplets

This paper introduces a new bank-major layout of relations.
A bank represents a vertical partition containing a subset of
the columns of the relation, with the fixed width dictionary
codes for each column concatenated together and padded to
the nearest word length. For example, a bank made up of
10 columns, with widths 1, 2, . . . 10 would be padded from
55 bits to 64. The assignment of columns to banks affects
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the bank width, the amount of padding, and the number of
banks “touched” by a typical query. This is the subject of
Section 4.

Figure 1: Banked Layout

Banking splits a tuple into multiple words, where each
word is a concatenation of column codes. Figure 1 illustrates
this with an example involving 3 banks and 3 tuples. We
call an individual word-sized unit a tuplet, as it represents
a subset of column values from the full relational tuple. A
bank is a vector of these tuplets forming a vertical partition
of the table. Note that the split into banks is lossless: the full
tuples can be reconstituted by positionally joining tuplets
from each bank.

Now, we are ready to write our query in word algebra (WA).

From column expressions to word expressions

Within a bank, every tuplet has the same word format, with
each column occurring at the same bit offset in each tuplet.
We denote the set of columns associated with a tuplet T as
C(T ). Given a tuplet T , for each column c ∈ C(T ), we can
extract just the code for c, and place it right-justified in a
word. We call that word operation extract(T, c), and give it
a short-form T.c. Extract works by doing a shift and mask
on the tuplet:

T.c ≡ extract(T, c) ≡ (T >> shiftc) & maskc.

where shiftc is the (little-endian) column offset in the bank,
and maskc is a word with 1s in the bits where c occurs.

Having mapped each column into a word expression in
this way, we next convert operations on columns into equiv-
alent operations on words. Atomic operators (=, <, . . .) on a
column c can be done on the word T.c, and the comparisons
produce saturated results: e.g., T.A = 7 produces a word
length bit-vector of 1s if true and a similar length vector of
0s if false. Boolean operators such as AND and OR map to
their bitwise counterparts ( & , |).

Now let us apply this to Q2, with columns assigned to
banks as in Figure 1. Let T1, T2, T3 be the tuplet vari-
ables ranging (in lock-step) over banks β1, β2, β3. Ignoring
differences in tuplet width, Q2 can be written in WA as:

T1.A=7 & T1.B≥3 & T1.C≥4 & T2.D=0

& (T2.F ≤ 11|T3.G ≥ 2) & (T3.H=7|T3.H=99)

Strictly speaking, the logical OR between T2.F ≤ 11 and
T3.G ≥ 2 does not correspond directly to bitwise opera-
tions, because T2 and T3 are saturated to different widths.
We have to interpose explicit “saturation-conversion” oper-
ations; we discuss this issue further in Section 3.2.3.

3.2 Optimizing Tuplet Algebra
So far, our mapping from CA expressions to WA expres-

sions has been straightforward. In this section, we show

how to run WA efficiently by optimizing commonly occur-
ring patterns in WA expressions. We rewrite patterns that
separately extract and operate on several columns from the
same tuplet into equivalent expressions that avoid extrac-
tion, and instead do word operations over the entire tuplet.

3.2.1 Rules for conjunctions
Conjunctions of column-scalar comparisons (=, <,>,≤,≥),

are the most common pattern in SQL WHERE clauses, so we
address these first. The examples in the following rules refer
to the banks in Figure 1. For ease of explanation, we assume
that each column is encoded in exactly 3 bits.

Rule CCE (Complete-Conjunct-Equality) A conjunct
of equality tests over all columns in a bank can be rewrit-
ten as a comparison of the bank tuplet against a constant,
yielding a saturated Boolean result. E.g.,
T1.A = 3 & T1.B = 7 & T1.C = 5 is equivalent to
T1 = 011111 101. Formally, for tuplet T with n columns,

(T.c1=a1 & · · · & T.cn=an) ≡ T=A

where A is a word containing the constants a1 · · · an.

Rule CE (Conjunct-Equality) Typically, a query will con-
dition on only some of the columns in a bank. So we need
to apply a mask of the missing columns to the tuplet be-
fore comparing against a constant. As above, this yields
a saturated Boolean result. E.g. T1.A = 3 AND T1.C =

5 is equivalent to T1 & 111000 111 = 111000101. For-
mally, for tuplet T and columns C′ ⊆ C(T ),

T.c′1=a′
1 & · · · & T.c′m=a′

m ≡ (T & M)=A′

where M is a word that masks out all columns ci 6∈ C′

and A′ is a word with ai in the offsets of ci ∈ C′ and zeros
elsewhere.

Rule CR (Conjunct-Range) The most general of the con-
junct patterns is a conjunct of closed range predicates, e.g.
T1.A >= 2 and T1.B <= 6 and T1.C between 3 and 5

By applying Rule CR, we will transform this into:
((T1 - 010000011) ⊕(111110101 - T1)) & 1001001000

= 0101110000

For tuplet T , let mi be the most significant bit position
of column ci ∈ C(T ). Also let si = mi + 1 be a sentinel

bit position immediately to the left1 of ci ∈ C(T ). Then

(a1 ≤ T.c1 & T.c1 ≤ b1) & · · ·

· · · & (ai ≤ T.ci & T.ci ≤ bi) & · · ·

· · · & (an ≤ T.cn & T.cn ≤ bn)

≡ ((T − A)⊕ (B − T )) & S = (A⊕B) & S

where A, B are words containing the values of a1 . . . an

and b1 . . . bn, respectively, and S is a mask with bits s1 . . . sn

set to 1, and all other bits to 0. Figure 2 illustrates how
si is related to the other bits in a tuplet. In the example,
the ranges on A, B were one-sided. To apply Rule CR,
we synthesized the missing side by testing against zero or
the maximum field value as appropriate.

Rules CCE and CE are straightforward, and allow us to deal
with all equality predicates on a bank using only one or two
ALU operations, respectively.

Rule CR is more general, but it is less obvious why it
works. We give the formal proof in Appendix A, but here is

1We use a little-endian numbering scheme for bits, where
bit zero of the machine word is the the least significant bit.
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Figure 2: Depiction of a 32-bit tuplet containing six

columns, as well as the mi (most significant) and si

(sentinel) bit positions for column c1.

an intuitive argument. Suppose we have a bank containing
only one column, x, and wish to test if a ≤ x ≤ b. Assuming
that x, a, and b are non-negative (sign bit = 0), observe that

(x− a)⊕ (b− x) ≥ 0 iff a ≤ x ≤ b

If x < a the first term will become negative (i.e., a non-
zero sign-bit), while the second term becomes negative if
x > b. Both cannot happen at the same time (because
a ≤ b), so XORing them together produces a negative result
if either input was negative.

In a general tuplet, multiple fields are packed together,
with no space reserved for a sign bit. Instead, we interpret
the sentinel bit as a sign bit for x, even though that bit
belongs to a neighboring column. Rule CR compensates for
this via the A⊕B term. The mask with S is to ensure that
the final comparison ignores non-sentinel bits.

Applicability of Rule CR

Rule CR as stated only deals with two-sided, closed range
tests, on all the columns in a bank. But by appropriately
setting the range bounds, it can handle all conjuncts of the
form column op scalar, where op can be =, <, >, ≤, or ≥:
• equality tests: covered by setting ai = bi for the appro-

priate columns (ai, bi are the range bounds).
• one-sided range tests: covered by setting ai = 0 or bi =

2col width − 1.
• range tests on a subset of the columns in a bank: covered

by setting ai = 0 and bi = 2col width − 1 for the columns
not being tested.
• open ranges (</>): A dictionary coded column always

has a discrete domain, in which every value has a well
defined successor and predecessor. So we convert open
ranges into closed ranges by changing the literal.

Performance benefit of Rule CR

In the output of Rule CR, the (A ⊕ B) & S part
is a constant that we precompute. So to apply Rule CR
we only need five ALU operations on the tuplet: two sub-
tractions, two bitwise operations, and an equality compari-
son. Through microbenchmarks, we have measured that this
method outperforms the extract()-based equivalent when-
ever the conjunction affects two or more columns within a
bank.

While efficient, Rule CR suffers one limitation: the most
significant bit of the tuplet must be padding, or the left-most
column will not participate in any comparisons. However,
this limitation is minor because most bank layouts contain at
least one padding bit anyway. Even if not, range tests on the
left-most column can be handled using the machine’s native
word comparison instructions, without a column extraction.

3.2.2 Rules for column-wise results
A significant number of SQL WHERE clauses contain dis-

junctions and arbitrary Boolean combinations of basic com-
parisons. Disjunctions in particular bring two new chal-
lenges compared with conjunctions. First, they often com-
pare the same column against multiple constants (e.g, 3 ≤
x or x = 5 or x > 7), which requires multiple operations
on each tuplet. Second, they tend to break up conjunctions
within a bank. In the worst case, every column in a bank is
involved in a predicate, but each column belongs to a differ-
ent conjunct than the others. This again requires a separate
operation for each conjunctive test. Another consequence
of disjunctive break-up is that many conjuncts will combine
columns from two or more banks, which imposes extra pro-
cessing to make the results compatible with each other.

One way to improve the efficiency of arbitrary Boolean
combinations is to develop rewrite rules that keep the re-
sults of each column comparison isolated from its neighbors
and easily accessible in a single bit inside the tuplet. Some of
the conjunction rules (CE and CCE) do compute the inde-
pendent results, but these results are spread unpredictably
throughout the tuplet. CR actually couples results such that
failed comparisons can change the outcomes of other com-
parisons, making it impossible to use for other than com-
puting conjunctions.

Independent and accessible comparisons greatly increase
our flexibility in evaluating arbitrary Boolean combinations
of comparisons. We can combine the results of many column
comparison operations over the same bank before compar-
ing the results (thanks to the results residing in a single bit),
which significantly reduces the number of column extracts
and comparisons that must be made. Because modern ma-
chines often have multiple ALU functional units but only
one comparator, this approach also improves processor uti-
lization. Using Rules SC and SD we can also choose subsets
of columns for use in conjuncts or disjuncts. This allows a
query optimizer to pack multiple unrelated tests on distinct
columns into the same bank operation and then split the
results afterward.

We start by giving an intuitive view of the rewrites we do,
before going into detail.

Rule ME (Multiple-Equality) If there are multiple equal-
ity tests involving different columns from the same bank,
we can compute these column-wise partial results in par-
allel by applying a variant of Rule CE above, then post-
processing the output to place an indicator in the most
significant bit of each column. These individual partial
results can then be used in an arbitrary Boolean combi-
nation, often using rules SC and SD below. E.g. (T1.A

= 3) ... (T1.B = 7) is equivalent to
D = T ⊕ 011111000

R = D | ((D &∼100100000) + ∼100100000)
Formally, let A be a constant tuplet constructed as in
Rule CE and let mi be the most significant bit position
of column ci in tuplet T

D = T ⊕ A

R = D|((D & ∼M) + ∼M)
where M is a mask having 1s only at the mi bits. Then
R[mi]=0 iff T.ci=A.ci

Rule MR (Multiple-Range) If there are multiple con-
stant range tests involving columns from the same bank,
we can compute these partial results in parallel by con-
structing two constant tuplets, one representing the low
end of each range, the other the high end, as in Rule CR
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above. These two are then subtracted from the bank tu-
plet in a careful way to determine which columns are in the
range, placing the result in the high order bit of each col-
umn. These individual partial results can then be used in
an arbitrary Boolean combination, often using rules MD,
SC and SD below. E.g. if a predicate contains (T1.A

BETWEEN 3 AND 5) as well as (T1.B BETWEEN 1 AND 6),
we can compute both by doing:

L = (T |100100000) - 011001000

U = 010001000 - (L & ∼100100000)
R = L ⊕ U ⊕ 001100000

Formally, let mi be the most significant bit position of
column ci in tuplet T . Let

C = B − A

L = (T |M)− (A & ∼M)

U = (C & ∼M)− (L & ∼M)

R = L⊕ U ⊕ (A⊕C)

where M is a bitmask selecting only the mi bits, and A

and B are tuplets containing the lower and upper ranges
to compare against T . Then

R[mi]=0 iff A.ci ≤ T.ci ≤ B.ci.

Performance benefit of Rule ME

An equality test on one column requires two operations:
a mask to isolate the column and a saturating comparison
against a constant value. In contrast, Rule ME requires
six operations: XOR, AND, add, OR, mask, and saturating
comparison. Therefore, it is only useful when a conjunction
or disjunction touches three or more columns in the same
bank. But, if the same tuple is to be compared against
multiple constants (see Rule MIL, below), the banked layout
wins when even two columns are used together. Finally,
many machines feature multiple ALU units and only one
comparator, further favoring the banked approach (which
potentially requires fewer saturating comparisons)
Performance benefit of Rule MR

A two-sided range test on one column requires four oper-
ations: a mask to isolate the column, two saturating com-
parisons against constant values, plus an AND to combine
the results. By comparison, Rule MR requires eight oper-
ations: OR, subtract, AND, subtract, two XORS, a mask
to select the desired columns, and a saturating compare.
Rule MR is therefore useful whenever at least two columns
will be accessed together. Further, it uses far fewer (expen-
sive) saturating comparisons.

Comparing Rule ME with Rule MR we conclude that
Rule MR dominates in practice – many of the columns in
a bank are likely to have range tests applied to them, at
which point Rule MR is better. The one exception is IN-list
evaluation, which involves many equality tests and no range
tests (see Rule MIL).

Correctness of Rule ME

We present an intuitive argument for correctness here.
The full proof is similar to that of Rule CR. First, we ob-
serve that D contains a set bit at every position where T

and A differ, and that T = A iff D = 0. Suppose that we
treat T1 as containing three columns, each two bits wide
and separated by one bit of padding. Then D + 011011011

would set bit si (see Figure 2) whenever T.ci 6= A.ci. This
trick would not work without the padding, however, because
a failed test on one column would produce a carry that prop-

agates into – and corrupts – the neighbor to its left.
In order to prevent carries from propagating between columns,

we make mi the sentinel rather than si. A comparison can
then fail for one of two reasons: either D[mi] is set, or one
of the other bits in ci is set. Rule ME computes a partial
result for all bits other than mi, placing the output in po-
sition mi, then ORs that result with D to obtain the final
answer. In order to do this, it must mask out the mi bits
(the D & ∼M term) and generate a carry for non-zero
columns (the +∼M term).

Correctness of Rule MR

This rule uses the same split computation trick as Rule ME
in order to stop carries at bit mi of each column. It also ex-
ploits overflow in unsigned integer subtraction: if x < a then
x−a will overflow and become a number larger than b−a, for
any b > a. At the same time, if x > b, x− a > b− a as well,
allowing us to test both sides of the range simultaneously.2

The rest of the rule splits each of the three subtractions
into two pieces, just like Rule ME does (the three & ∼M

terms). This time, however, we use subtraction instead of
addition, so we must start with bit mi set to stop borrows
from propagating to neighboring fields (the T |M term).

3.2.3 Rules to combine column-wise results

Rule MD (Multiple-Disjunct) When computing the dis-
junct of two or more comparisons of the same column,
we can rewrite the computation to use multiple applica-
tions of Rule ME or MR above and then combine the
results by taking the OR of the resulting multiple result
tuplets. This gives us a separate disjunct value for each
column. This may be applied to more than one column
at a time. E.g. (T1.A ≤ 3 OR T1.A = 5) ... (T1.B

between 2 and 4 OR T1.B >= 6) might become
MR(T1, 000010000, 011100111)

| MR(T1, 101110000, 101111111)

Rule SC (Saturated-Conjunct) If there are some high
order bit results (as produced by Rules ME and MR above)
for which we want the conjunction, then we may rewrite
this to mask and test the result bits, yielding a saturated
Boolean result. E.g. (T1.A ≤ 3) and (T1.B between 2

and 5) becomes
MR(T1, 000010000, 011101000) & 100100000 = 0

Formally, let R be the output produced by applying Rule
ME, MR, or MD to tuplet T . Let M be a mask with
bit mi set for each column ci included in the conjunction.
Then

R & M = 0 iff all predicates passed

Rule SD (Saturated-Disjunct) If there are some high
order bit results (as produced by Rules ME, MR, and
MD above) for which we want the disjunction, then we
may rewrite this to mask and test the result bits, yielding
a saturated Boolean result. E.g. (T1.A ≤ 3) or (T1.B

between 2 and 5) becomes
MR(T1, 000010000, 011101000) & 100100000

6= 100100000

Formally, let R be the output produced by applying Rule
ME, MR, or MD to tuplet T . Let M be a mask with
bit mi set for each column ci included in the conjunction.

2the same trick reduces the number of comparisons used in
the scalar test by trading one comparison for a subtraction
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Then:

R & M = M iff no predicates passed

Rule MIL (Multiple-IN-list) If we are computing mul-
tiple in-list expressions on different columns inside the
same bank, we can rewrite the expression using multiple
applications of Rule ME above, constructing a sequence
of constant tuplets, each containing a list value from each
of the columns being tested. These high order bit results
may then be combined using Rule MD to see if any of the
values for this column match. This rule is often followed
by an application of Rule SC to compute the conjunct of
the in-list results. E.g.

T1.A IN (1,3,5) ... T2.B IN (2,4,6)

becomes
(R1 | R2 | R3 | R4) & 100100000 = 0

where
R1 = ME(T1, 001010000)

R2 = ME(T1, 011100000)

. . .

Formally, let aij be the jth entry from in-list Ii, of length
|Ii|, on ci of T . Further, let aik = ai1 for k > |Ii|, and Aj

be a tuplet containing the constants aij for each column
with an in-list. Finally, let n = maxi |Ii|. Then SC(ME(T,

A1) | ME(T, A2) | ... ME(T, An)) evaluates the in-
list for all columns in T.

Rule BM (Bitmap) So far, all the rules for combining
saturated results have assumed that the tuplets involved
are the same size. However, tuplets may be anywhere
from 8 to 64 bits wide. In order to combine saturated
results from different-sized tuplets, we make use of a spe-
cial vector instruction that extracts the sign bit from each
word in a vector register and packs it into 2-8 bits. Once
enough tuplets have been processed to fill a 32- or 64-
bit bitmap, the bitmaps may be combined using normal
bitwise operations. Blink also uses these bitmaps to gen-
erate the RID list it passes between predicate evaluation
and aggregate computation.

Performance benefit of Rule MIL

Short in-lists are quite common in Blink for two rea-
sons. First, many BI queries are produced by GUI front
ends in which users select predicate values from drop-down
lists. Second, Blink’s query optimizer converts some com-
plex predicates into in-lists by evaluating the predicate on
the entire dictionary of column values and testing for inclu-
sion in the list of passing dictionary indexes.3

Rule MIL excels at evaluating these short in-lists because
its cost depends only on the length of the longest in-list,
rather than how many in-lists a bank is involved in.

3.3 Assembling a predicate tree
Once we have evaluated partial predicates on the columns

within each bank, we must combine these partial results
into a single Boolean that represents the result of the WHERE

clause. There are three ways to combine tuplet results.
If the results come from independent tests on the same

tuplet, the results can be combined directly, if desired. in-
list evaluation exploits this form of compatibility in order to
compute the disjunction on each column before computing
the conjunction across columns.

3E.g., given a 3-bit column, it is cheaper to evaluate an in-
list containing the (at most 8) values that pass a complex
predicate than to apply the predicate on every tuple.

 

Rule SC x2
Rule MD

Rule SC Bitwise OR

Rule BM

Pass?

Rule ME x4
Rule MR

… where 
((A = 1 and C between 3 and 6) or (B < 15 and D > 30 and E = 5))
and F in (100,103,105, 107) and G in (3,6,9) 
and H in (1, 5, 11) and (J = 3 or J = 6) and K = 56

AF B C D EG H J K

Rule 
MIL

Rule BM

Figure 3: Sample where clause that shows how to

combine results of predicate evaluation on tuplets.

If the results come from tests on the same size of tuplet, a
saturating comparison will make them all compatible. The
results can then be combined using bitwise AND, OR and
NOT operations according to the query plan. This method
is especially useful for combining “mix and match” evalu-
ations where subsets of a tuplet’s columns were used sepa-
rately, or where tuplets happen to be the same size.4

Finally, if saturated results from differently-sized tuplets
must be combined, we use special vector instructions which
coalesce the most significant bits of several machine words
into a denser bitmap. Once enough tuplets have been pro-
cessed to fill a 32- or 64-bit bitmap, the bitmaps can be com-
bined. These bitmaps are also used to generate the RID-lists
of qualifying tuples, which Blink passes between predicate
evaluation and aggregation phases.

Figure 3 illustrates how the different methods combine to
evaluate a full query tree. At the top left, results of in-list
tests on a 16-bit tuplet are combined directly using bitwise
operations before performing a saturating comparison and
converting the result to a bitmap. Meanwhile, at the top
right, two subsets of columns from a 32-bit tuplet are used
as inputs to two saturating comparisons. These interme-
diate results are then combined using bitwise operations,
converted to a bitmap, and combined with the in-list result
to deliver a final verdict of pass or fail.

3.4 Policy for invoking rewrites
Blink processes queries in three stages, with the set of

RIDS of qualifying tuples passed from one to the next:
• Fastpath Predicate Evaluation: Currently applies con-

junctive range and short in-list predicates
• Residual Predicate Evaluation: Applies remaining predi-

cates with a general purpose expression interpreter
• Grouping and Aggregation

An expression tree in conjunctive normal form is used to
represent predicates during (per partition) compilation. The
rules are applied to the expression tree to determine which
portions will be executed in each predicate evaluation stage.
To date we have focused on the most commonly occurring

4There are only a few bank sizes to choose from, after all!
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predicate patterns and Blink currently processes top-level
conjunctive single-column range and short in-list predicates
(10 entries or less) in the Fastpath. Rules CR and MIL (and
Rule ME, on which it depends) are used, respectively. We
choose the more general CR rule over CCE and CE because
it subsumes those rules, and in our experience, is almost as
fast. We plan to push more patterns into the Fastpath by
matching other rules to the expression tree. Rules MR and
MD are high priority Fastpath candidates.

Rules CR and MIL are applied in the Fastpath stage
to evaluate the range and short in-list conjunct predicates.
Compilation clusters predicates of these types according to
bank, computes the constants required by these rules per
bank, and constructs register-sized (128 bit) vectors of the
constants (e.g. there will be 4 copies of the constants in the
vector for a 32 bit bank). Execution in the Fastpath stage
operates on batches of contiguous tuples from a cell. The
predicates are applied bank by bank to batches of vectors
of tuplets (again, for a 32 bit bank, 4 tuplets are processed
in each operation). The bitmap of predicate results for the
batch is converted to a RID-list of the qualifying tuples, and
the RID-list is passed to the next stage.

Batched, interpreted execution is used in the Residual
stage. The remainder of the expression tree is compiled into
an array of operators, each of which takes a vector of inputs
and produces an output vector of equal size. For example,
LoadBank is the leaf-level operator that takes the input RID
list from Fastpath and loads the qualifying tuplets into a re-
sult vector. (Each bank is loaded at most once.) The Rules
presented in the prior sections apply to the Residual inter-
preter, but currently column operators such as the primi-
tives for range predicates (e.g. disjunctive ones) and in-lists
(short or long) use the standard mask and shift method to
extract column values from tuplets.

We have implemented multiple operators for expression
tree node types where appropriate to provide efficient meth-
ods for a wide range of possible arguments. For example, we
have bit map, hash (both perfect and standard), and sim-
ple array-based implementations for in-list predicates. The
compiler chooses between them depending on the in-list en-
tries (their number, value, and density).

Predicate expression trees frequently contain many nodes
of the same type. When linearlizing the tree into an op-
erator array, we cluster together nodes of the same type
when possible, because this allows us to amortize the func-
tion invocation overhead. A sort of the nodes by tree level
(leaf nodes are at level 0), operator, and tree dependency
accomplishes this clustering, and rather than generating the
base operators for a cluster, a meta-operator is created. The
meta-operator invokes the base operator function directly, in
a loop, avoiding the usual interpretation overhead of deref-
erencing the function pointer. Sizeable savings are achieved
through this simple optimization when applied to complex
predicates.

Wherever possible operators process in compressed code
space. Because we have constructed a dictionary of values,
we can convert complex predicates on column values, such
as LIKE predicates or even subqueries, into in-lists in code
space by evaluating the predicate on each element of the dic-
tionary. A Decode operator decompresses when necessary.

The interpreter produces a bit vector of predicate results,
with one bit for each input RID. The final step of the Resid-
ual stage uses this bit vector to produce the final RID list

of qualifying tuples, that is then passed to Grouping and
Aggregation.

Blink uses batched, multi-row execution at each stage of
query processing as in [7, 3], to exploit ILP and SIMD.
Short-circuiting for non-qualifying tuples only occurs be-
tween stages. Generally, batched execution on vectors re-
duces the benefits of short-circuiting and short-circuiting
implies branches, which require careful (and suitably amor-
tized) use, due to the high cost of misprediction.

4. BANKED LAYOUT SCHEMES
In Section 3 we briefly introduced the idea of banked lay-

outs to understand row-wise parallel predicate evaluation.
Now we return to this topic: how to choose the right

bank sizes and how to assign columns to banks. Recall that
a bank is a vertical partition of a table that is sized to be a
machine word in width. Fields within the bank are stored
right justified, with 0-padding to make up the wasted space.

Wide Banks:

From a standpoint of compression, using wide banks (e.g.,
64 bits)5 and bin-packing fields tightly into the banks yields
the most compact layout. We use the standard first-fit de-
creasing heuristic for bin-packing that considers the column
in order of decreasing width, and repeatedly packs the cur-
rent column into the first bank with available space, starting
a new one if none is found. This is known to pack within a
factor of 11/9 of optimal [5].

This scheme, called B64, is very similar to a pure row
store, except for the padding bits that wouldn’t occur in a
row-major layout. Also, the methods of Section 3 allow us
to apply predicates on a set of columns in time proportional
only to the cumulative size of the banks containing those
columns. So if a query applies predicates on most of the
columns in the table, the query’s CPU time is proportional
to the total row size, which is minimized with the B64 layout.

Padded-Column Banks:

At the other extreme is a scheme that assigns each column
to a separate bank: the smallest bank that will hold it. E.g,
a 3 bit column is padded to a 8-bit bank and a 30-bit col-
umn to a 32-bit bank. We call this scheme BCOL. We be-
lieve that many column store systems use such padded rep-
resentations: for example, MonetDB/x100 converts tightly
packed columns into a (decompressed) word-sized represen-
tation [3], and Sybase IQ seems to pad to 16 and 32 bit sizes,
according to their manuals.

This layout is ideal for a query that references very few
columns, because each bank is at small as it can be for the
particular column that it holds. But placing only one col-
umn in a bank leads to more padding than with B64, and
is inefficient for queries that reference many columns, as we
see experimentally in Section 5.

Variable-Width Banks:

As a compromise between these extremes, we propose banked
layouts that use heterogeneous banks, i.e., have different
widths. Having banks of different widths allows us to ap-
ply a variation of first-fit decreasing heuristic (as in B64)
that limits the “expansion” of a column: (width of the bank
holding a column) / (width of the column).

5We do not use 128 bit banks because ALUs do not sup-
port subtraction on 128-bit banks, preventing the parallel
predicate evaluation methods of Section 3.
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The disadvantage of B64 (as compared to BCOL) is that
a narrow column may be placed in a wide bank: e.g, a 4 bit
column in a 64-bit bank. With banks of different widths, we
can restrict that narrow columns be placed only in narrow
banks while allowing wide banks to be used for the wide
columns. Specifically, our assignment occurs as follows:

1. Banks ← φ // Banks is a list
2. Sort the columns by decreasing width.
3. For each column c of width cw do:
4. Let b be the width of the smallest bank that will hold

c (8 for widths 0-7, then 16, 32, and 64)
5. if Banks has bank of width ∈ {b, 2b} with space for c

6. Place c in the left-most such bank in Banks.
7. Else, create a new bank of size b, place c in it.

In addition to B64 and BCOL, Blink implements two
variable-width banks: one with a maximum width of 32
bits: VB32, and one with a maximum width of 64 bits:
VB64 (VB32 is usable only if there are no columns wider
than 31 bits). Figure 4 illustrates these layout schemes on
a table with 8 columns.

On top of these basic layout schemes, there are two addi-
tional enhancements.

Keeping measure fields separate

Queries do not access columns just for predicate evaluation:
they also access them for grouping and aggregation. But
there is an important distinction in the frequency of access
to these columns.

Columns accessed for predicate evaluation are accessed
once for each tuple (modulo short-circuiting, which we gen-
erally avoid, as discussed in Section 3.4). But columns that
are used in aggregation and group-by are only accessed for
each tuple that qualifies the query predicates. Data ware-
house queries tend to select 10% or less of the rows in the
database, so this difference in usage is significant.

It is hard to take advantage of this difference for group-by
columns, because the same column is often used in pred-
icates and in group-bys, for different queries in the same
workload. But aggregation is done on the measure columns,
which are usually distinct from the dimension columns used
for applying predicates. We take advantage of this for the
banked layouts by forming a separate bank of the measure
columns, and only packing the non-measure columns as de-
scribed above (we do not apply this optimization to BCOL
because we want to retain it as a pure column major layout
for experimental purposes). To be workload-insensitive, we
identify measure columns purely based on the schema: deci-
mal typed columns in the fact table are deemed as measures.

Keeping redundant copies of columns

A second optimization that is enabled by banked layouts is
to keep redundant copies of columns in the padding space.
For example, the padding space in bank β2 of Figure 4 is
wide enough that it can hold a redundant copy of column
G. This redundant copy comes for free: no bank is made any
wider and no query has to scan any extra bit because of this
redundant copy. But for a query that needs this column,
the redundant copy could save accessing other banks. For
example, a query with predicates on G and D can access
bank β2 alone, instead of both β2 and β3. We currently have
not implemented this feature in Blink, but believe it is very
promising. In particular, it is easy to see that this approach
applied to BCOL always dominates or equals BCOL in the

cumulative width of banks accessed for a query, irrespective

of the number of columns referenced in the query.

5. EXPERIMENTAL RESULTS
We now present a detailed experimental evaluation of the

two main topics covered in this paper: the row-wise parallel
predicate evaluation methods (Section 5.1), and the banked
layout schemes (Section 5.2).

The main dataset we use for these experiments is an ac-
tual customer dataset CUST1, with about 120 columns and
28.6 million rows. The table occupies about 17GB (4910
bits/tuple) as a .csv and 25GB when stored uncompressed
in a traditional commercial DBMS.

We denormalized and loaded this dataset into Blink, and
ran experiments on an x86 server (4 Quad-core Opteron
x2350 processor, 2.0GHz, 32GB RAM). We also ran the
same queries against MonetDB (Feb 2008 release, from http://monetdb.cwi.nl

a column-store, on an identical machine. The entire dataset
fit into memory for both DBMSs. All measurements were
done by running each query 9 times, and taking the average
of all but the worst and best number. All experiments were
run single-threaded, to focus attention on CPU costs.

Some recent papers have compared column stores against
commercial DBMSs and found differences of orders of mag-
nitude in speed, and have generally attributed these to the
layout: column-store vs row-store. But today’s commer-
cial DBMSs were not designed for modern memory-intensive
hardware configurations or for read-mostly environments.
Some of the banked layouts of Blink are quite similar to row-
stores, especially B64, which uses wide banks. By comparing
Blink against MonetDB, we study how row-store-like layouts
compare against column-store layouts on two DBMSs that
are both designed for modern hardware.

We wish to point out that MonetDB performance is known
to suffer due to full materialization of intermediate results.
This is one of the main motivations for MonetDB/X100,
which avoids such materialization [3]. The MonetDB/X100
is not publicly available at the moment, we would like to re-
run our experiments when it becomes available. MonetDB
is designed to require no tuning and has automatic and self-
tuning indexing. Other than following the standard installa-
tion and configuration instructions, we did no further tuning
of MonetDB. We did denormalize the inputs and wrote the
queries against this denormalized schema, so that neither
Blink nor MonetDB had to do joins.

5.1 Value of Parallel Predicate Evaluation
We start with an investigation of the benefit of apply-

ing our rewrite rules for simultaneous predicate evaluation
within a bank. We run a suite of queries of the form:
SELECT SUM(col), COUNT(*) FROM table
WHERE conjunction of single column predicates
GROUP BY cols

Since our focus is on predicate evaluation, we choose the
group-by columns so that there are always less than 10 dis-
tinct groups: this makes sure that the group-by and aggre-
gation operations are cheap and do not factor in the results.

For our first experiment, the query WHERE clauses are a
conjunction of range predicates, with ranges chosen to have
a selectivity of 10% each. We choose one such predicate
on each column, and form queries by gradually AND-ing
together predicates from more and more columns. We use
the B64 layout, and add predicates on columns in the same
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Figure 4: Banked Layout
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Figure 6: Synthetic queries with increasing number of

predicates (full results for MonetDB is in Figure 13)

order that columns are laid out in banks. Our motivation is
to evaluate the benefit of simultaneous predicate evaluation
within a bank, and validate our claim that simultaneous
predicate evaluation allows us to apply arbitrary numbers
of conjunctive predicates within a bank, for one fixed cost.

We run these queries on MonetDB and two versions of
Blink: the mainline version that uses the rewrite rules of
Section 3 (BlinkParallel), and one which uses the traditional
sequential evaluation strategy of testing one predicate after
another (BlinkSerial). The sequential evaluation strategy is
also a carefully tuned one: in particular, it uses batched exe-
cution as described in Section 3.4 to amortize the overheads
of function call invocations and branches, and uses SIMD
instructions to apply predicates over banks from multiple
tuples in parallel.

Figure 5 plots the running time as we add more predi-
cates on more columns, for BlinkSerial and BlinkParallel.
Notice that the numbers from BlinkParallel show a pro-
nounced staircase behavior. The plateaus in the staircase
correspond to the addition of predicates on the same bank,
and the jump-points in the staircase correspond to the ad-
dition of the first predicate on a new bank. This staircase
behavior shows the value of the rewrite rules of Section 3:
the running time is determined by the number of banks ac-
cessed, irrespective of the number of predicates within that
bank. In contrast, the times for BlinkSerial increase almost

linearly with the number of predicates. This is to be ex-
pected because BlinkSerial does no short-circuiting and in-
stead prefers the advantages from batched execution.

Figure 6 plots the same running times, but comparing
BlinkParallel and MonetDB. MonetDB does short-circuiting
by materializing results after each column has been pro-
cessed; so selectivity is an important factor. We plot curves
for per-predicate selectivities ranging from 2% to 90% (Mon-
etDB timings for 50%, 90% are plotted in the appendix). At
all selectivities above 2%, BlinkParallel outperforms Mon-
etDB. At 2% selectivity, MonetDB outperforms Blink by a
factor of two after multiple predicates are added. This is due
to short-circuiting (at 2% selectivity, even after 5 predicates
are added no tuples qualify). Notice also that the running
times for MonetDB are linear in the number of predicates,
as long as the selectivity is not too low, whereas the running
times for Blink show up as flat lines – they are in fact step
functions similar to that of Figure 5.

5.2 Speed & Compression of different Layouts
Next, we turn to an experimental study of the various

layout schemes. Our primary goal is to see how the different
banked layout schemes compare on compression and query
speed, for different kinds of queries (those that touch few
columns, those that touch many columns, etc.).

Experiment 1: Compression Ratios
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Figure 10: Query speeds vs layout,
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Figure 12: Query speeds for real queries (Blink)

We start with the compression achieved using each layout
scheme. Figure 7 plots the compressed sizes and compres-
sion ratios for CUST1, a customer dataset. Notice that
compression is maximum for the row stores, and least for
the padded column store. The banked layouts fill out the
spectrum between these, with wide banks behaving like row
stores and narrow banks behaving like column stores.

Experiment 2: Speed

We now move to query speeds. The main way in which the
column layout affects query speed is in terms of how much
data is processed during the query. If each column goes into
its own bank, each query processes the minimum number of
columns needed, whereas if multiple columns are packed into
a bank, the query can process more columns than it needs.
But, as discussed, the number of columns processed is not
well correlated with the number of bits processed: the thin-
bank, one-column-per-bank layout has to do more padding
than the wide-bank, many-columns-per-bank layouts.

To quantify this tradeoff, we run two kinds of experiments.

2a. Real Queries: First we run a suite of 9 real queries
from a customer workload CUSTW1. These queries are all
of the form: selection with group-by over key-foreign key
joins on a star schema. The joins are removed because of
our denormalization, so the query is a table scan with aggre-
gation. The predicates are similar to query Q1 of Section 1.
These are more complex than typical benchmark queries in
that they contain many disjunctions and in-lists. Further-
more, each query computes 10-20 aggregations (all SUMs).

Figure 12 plots the run times on each layout. These tim-
ings show the banked layouts beat the padded column layout
by up to 50%. Among the banked layouts, the variable-sized
bank layout (VB32) wins on most queries. One disadvan-
tage of the padded column layout BCOL for these queries is
the large number of aggregations: the banked layouts place
them in a single bank while the column layout has to access
each aggregation column individually. This suggests that
even a pure column store should keep measure attributes
separately in a row-major bank.

Figure 11 plots the run times of the same query running
on MonetDB. Notice that the MonetDB numbers are in sec-

onds: about 3 orders of magnitude slower. This huge dif-
ference (as opposed to the small differences between BCOL
and the other banked layouts within Blink) suggests that
the reason goes beyond column vs bank major layout. Mon-
etDB was comparatively slow in the previous experiments,
but the difference was not so dramatic so we think that the
materialization of intermediate results and the complexity
of in-lists might be a possible cause. For Query 3 and up,
we noticed via vmstat that MonetDB was doing I/O, even
though the database fit comfortably in memory. For Query
1 and 2 we did not notice such I/O, but the MonetDB tim-
ings are still an order of magnitude slower than Blink. The
rest of our experiments do not involve MonetDB.

Next, we run synthetic workloads to understand the trade-
offs between the layouts in greater depth.

2b. Random Queries:
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Figure 7: Compression ratios obtained by various

layout schemes on a real dataset CUST1, of origi-

nal (csv) size 17GB (4910 bits/tuple). BCol is the

padded column layout, B32 (B64) uses 32-bit (64-

bit) banks, VB32 (VB64) uses (64), 32, 16, and 8

bit banks, and Row is a pure rowstore that does no

padding.

We start with a suite of queries that touch a random sub-
set of columns in the table. Each query is of the form SELECT

SUM(a) GROUP BY b WHERE ..., with an increasing number
of conjunctive range predicates. To ensure that aggregation
does not become the bottleneck, the predicates are chosen
to be highly selective (< 0.1%). Figure 8 plots the run times
of these queries on Blink with two data layouts: BCOL and
VB32. VB32 was chosen to represent the banked layouts
because it is a good compromise that generally worked well.
Notice that with VB32, run time increases until about 10
predicates (when there is a predicate against a column on
every bank), and then stays constant. This is due to the
simultaneous predicate evaluation within each bank. For
the padded-column layout, run time continues to increase
as more predicates are added.
2c. Predictable Queries: Next, we consider a situation
in which the query workload is known up front and can be
used to cluster columns into banks. Figure 9 reruns the same
experiments, but with query predicates that are completely
clustered by bank. That is, we add predicates on columns in
the same order in which they are laid out in banks. Notice
that the banked layout exhibits a staircase-like curve be-
cause additional predicates on the same bank do not affect
run time. As the number of predicates increases, the banked
layout beats the padded column layout by about 25%.
2d. Partially Predictable Queries: Lastly, we consider
a situation between 2b and 2c in which with a 50% chance
a predicate is over a random column and with a 50% chance
a predicate is over a column that is adjacent (in the bank
layout) to another column in the where clause. Figure 10
plots the run times on each layout. The result is not as clear
but it is evident that VB32 generally outperforms BCOL,
especially at higher predicate counts.

6. CONCLUSION
This paper has focused on two aspects of query process-

ing: data layout, and the way predicates are evaluated. We
have introduced a family of bank-major data layouts that
vertically partition a table into machine-word sized banks.
By packing multiple columns into each bank, bank-major

layouts achieve almost as tight a compression as a tightly
packed, row-major layout, whereas a column-major layout
achieves poorer compression due to padding. Column-major
and narrow-bank layouts scan less data when queries touch
only a small number of columns, but a bank-major layout
with redundant columns dominates a column-major layout
in this regard, irrespective of the query.

On predicate evaluation, our main finding is that tradi-
tional query processors utilize only a small portion of the
ALU, because they place only one field at a time in a regis-
ter. We have shown that a query processor can pack many
fields into a single register and operate on all of them in
parallel, by mapping SQL expressions on columns into ma-
chine operations on words. In future we hope to develop
this word-algebra further, with more powerful rewrites to
take advantage of the vector capabilities of modern ALUs.

Query processing in Blink looks much like a matrix-style
computation. Predicate evaluation in a table scan is like
computing dot-products on a sequence of field-vectors, where
the dot product operator is a comparison. Such operations
exploit the parallelism of the ALU well, because of their
predictable data access and instruction flow. This points
to two directions for work. Can we apply techniques from
numerical computing to query processing? Can we do other
operations, like grouping and aggregation, as matrix com-
putations?
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APPENDIX

A. PROOF OF RULE CR
Consider tuplets A and X with n fields each. A and X

are represented as unsigned N-bit integers with the n fields
packed together in an aligned fashion i.e., if a field occupies
bits [p,q] in A then it occupies bits [p,q] in X too.

Say the big-endian field start offsets in the tuplets are
s1, s2, . . . sn, with 1 = s1 < s2 < · · · < sn = N − 1. The
MSB bit is denoted as offset 0, so 1 bit is left vacant before
the leftmost field.
Let bi = si − 1, ∀1 ≤ i ≤ n.
Define sn+1 = N .
Let Ai denote the ith bit of A, and
A[i, j] denotes the integer AiAi+1 . . . Aj , and
A[i, j) denotes the integer AiAi+1 . . . Aj−1

Rule CR involves conjunctions of both ≤ and ≥ predi-
cates. We consider first the ≥ predicates. We use ⊕ to
denote xor in the following.

Claim 1: Every field of A is ≥ the corresponding field of X
if and only if (A−X mod 2N ) and (A ⊕ X) are identical
on bits b1, b2, . . . bn

Proof of “only if” side:

We are given that A[si, si + 1) ≥ X[si, si + 1), ∀1 ≤
i ≤ n. This implies that A[si, N) ≥ X[si, N) ∀1 ≤ i ≤
n. Therefore6, (A − X mod 2N )[0, si) = (A[0, si) −
X[0, si) mod 2si).

This means, LSB of (A−X mod 2N )[0, si) is the same as
LSB of (A[0, si)−X[0, si) mod 2si).
But, from the definition of subtraction, LSB of (P−Q mod 2x) =
LSB of (P ⊕Q) for all x > 0.
So, LSB of (A[0, si)−X[0, si) mod 2si) = LSB of (A[0, si)⊕
X[0, si)).
So, (A−X mod 2N )si−1 = (A⊕X)si−1.

Proof of “if” side:

Suppose A[si, si+1) < X[si, si+1) for some i. Then, A[si, N) <

X[si, N), for 1 ≤ i ≤ n. So7, (A − X mod 2N )[0, si) =
(A[0, si)−X[0, si)− 1 mod 2si). Continuing as in the proof
of the “only if” side, we can show that
(A−X mod 2N )si−1 = (A⊕X ⊕ 1)si−1.

A symmetric argument shows that:

6A = A[0, si)2
N−si + A[si, N), and X = X[0, si)2

N−si +
X[si, N).
So, A − X = (A[0, si) − X[0, si))2

N−si + (A[si, N) −
X[si, N)) mod 2N (1)
Now, say that A[0, si)−X[0, si) = β mod 2si .
Thus, A[0, si) = X[0, si)+α2si +β, with α ≥ 0 and β >= 0.
Substituting in (1) and expanding, we get,
A−X = β2N−si + α2N + (A[si, N) −X[si, N)) mod 2N

= β2N−si + (A[si, N)−X[si, N)) mod 2N

Since (A[si, N) −X[si, N)) ∈ [0, 2N−si), the first si bits of
A−X mod 2N are β.
7Reason: A = A[0, si)2

N−si + A[si, N), and X =
X[0, si)2

N−si + X[si, N).
But A − X ≡ (A[0, si) − X[0, si) − 1)2N−si + (2N−si +
A[si, N) −X[si, N)) mod 2N .
Now, say that A[0, si)−X[0, si)− 1 ≡ β mod 2si .
Continuing as in the previous footnote:
A−X = β2N−si + (2N−si + A[si, N) −X[si, N)) mod 2N .
But (2N−si + A[si, N)−X[si, N)) lies in [0, 2N−si ) because
A[si, N) < X[si, N). So, the first si bits of A−X are β.

Claim 2: Every field of B is ≤ the corresponding field of X
if and only if (X −B mod 2N ) and (B ⊕ X) are identical
on bits b1, b2, . . . bn

Rule CR tests for every field of B ≤ corresponding field of
X ≤ corresponding field of A. The rule follows from Claim
1 and Claim 2 by straightforward Boolean algebra, treating
the situation where a field of A < a field of B as a don’t care
in the truth table (if this situation happens, we declare the
conjunction as false without even looking at the data).

B. MORE DETAILS ON EXPERIMENTAL
RESULTS
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Figure 13: Query speeds for synthetic queries with

increasing number of predicates
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