RDF-3X: a RISC-style Engine for RDF

Thomas Neumann
Max-Planck-Institut fir Informatik
Saarbricken, Germany

neumann@mpi-inf.mpg.de

ABSTRACT

RDF is a data representation format for schema-free struc-
tured information that is gaining momentum in the con-
text of Semantic-Web corpora, life sciences, and also Web
2.0 platforms. The “pay-as-you-go” nature of RDF and the
flexible pattern-matching capabilities of its query language
SPARQL entail efficiency and scalability challenges for com-
plex queries including long join paths. This paper presents
the RDF-3X engine, an implementation of SPARQL that
achieves excellent performance by pursuing a RISC-style ar-
chitecture with a streamlined architecture and carefully de-
signed, puristic data structures and operations. The salient
points of RDF-3X are: 1) a generic solution for storing and
indexing RDF triples that completely eliminates the need for
physical-design tuning, 2) a powerful yet simple query pro-
cessor that leverages fast merge joins to the largest possible
extent, and 3) a query optimizer for choosing optimal join
orders using a cost model based on statistical synopses for
entire join paths. The performance of RDF-3X, in compari-
son to the previously best state-of-the-art systems, has been
measured on several large-scale datasets with more than 50
million RDF triples and benchmark queries that include pat-
tern matching and long join paths in the underlying data
graphs.

1. INTRODUCTION

1.1 Motivation and Problem

The RDF (Resource Description Framework) data model
has been around for a decade. It has been designed as a flex-
ible representation of schema-relaxable or even schema-free
information for the Semantic Web [30]. In the commercial IT
world, RDF has not received much attention until recently,
but now it seems that RDF is building up a strong momen-
tum. Semantic-Web-style ontologies and knowledge bases
with millions of facts from Wikipedia and other sources have
been created and are available online [4, 40, 47]. E-science
data repositories support RDF as an import/export format

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

647

Gerhard Weikum
Max-Planck-Institut flir Informatik
Saarbrucken, Germany

weikum@mpi-inf.mpg.de

and also for selective (thus, query-driven) data extractions,
most notably, in the area of life sciences (e.g., [7, 43]). Fi-
nally, Web 2.0 platforms for online communities are consid-
ering RDF as a non-proprietary exchange format and as an
instrument for the construction of information mashups [21,
22, 31].

In RDF, all data items are represented in the
form of (subject,predicate,object) triples, also known as
(subject, property, value) triples. For example, information
about the movie “Sweeney Todd” could include the follow-
ing triples:

(id1, hasTitle, ” Sweeney Todd”),

(id1, producedInY ear, ”2007”),

(id1, directedBy, ” Tim Burton”),

(id1, hasCasting, id2),

(id2, RoleName, ” Sweeney Todd”), (id2, Actor, id11),
(id1, hasCasting, id3),

(id3, RoleName, ” Mrs. Lovett”), (id3, Actor, id12),
(id11, hasName, ” Johnny Depp”),

(id12, hasName, ” Helena Bonham Carter”), and so on.
Note that, although predicate names such as “pro-
ducedInYear” resemble attributes, there is no database
schema; the same database may contain triples about movies
with a predicate “productionYear”. A schema may emerge
in the long run (and can then be described by the RDF Vo-
cabulary Description Language). In this sense, the notion of
RDF triples fits well with the modern notion of data spaces
and its “pay as you go” philosophy [18]. Compared to an
entity-relationship model, both an entity’s attributes and
its relationships to other entities are represented by pred-
icates. All RDF triples together can be viewed as a large
(instance-level) graph.

The SPARQL query language is the official standard for
searching over RDF repositories. It supports conjunctions
(and also disjunctions) of triple patterns, the counterpart
to select-project-join queries in a relational engine. For ex-
ample, we can retrieve the titles of all movies with Johnny
Depp by the SPARQL query:

Select ?7title Where {
?m <hasTitle> 7title. ?7m <hasCasting> 7c.
?c <Actor> 7a. 7a <hasName> "Johnny Depp" }

Here each of the conjunctions, denoted by a dot, corre-
sponds to a join. The whole query can also be seen as graph
pattern that needs to be matched in the RDF data graph.
In SPARQL, predicates can also be variables or wildcards,
thus allowing schema-agnostic queries.

RDF engines for storing, indexing, and querying have
been around for quite a few years; especially, the Jena frame-

work by HP Labs has gained significant popularity [46], and
Oracle also provides RDF support for semantic data integra-
tion in life sciences and enterprises [11, 29]. However, with
the exception of the VLDB 2007 paper by Abadi et al. [1],
none of the prior implementations could demonstrate con-
vincing efficiency, failing to scale up towards large datasets
and high load. [1] achieves good performance by grouping
triples with the same property name into property tables,
mapping these onto a column store, and creating material-
ized views for frequent joins.

Managing large-scale RDF data includes technical chal-
lenges for the storage layout, indexing, and query process-
ing:

1. The absence of a global schema and the diversity of
predicate names pose major problems for the physi-
cal database design. In principle, one could rely on
an auto-tuning “wizard” to materialize frequent join
paths; however, in practice, the evolving structure of
the data and the variance and dynamics of the work-
load turn this problem into a complex sisyphus task.

2. By the fine-grained modeling of RDF data — triples
instead of entire records or entities — queries with a
large number of joins will inherently form a large part
of the workload, but the join attributes are much less
predictable than in a relational setting. This calls for
specific choices of query processing algorithms, and for
careful optimization of complex join queries; but RDF
is meant for on-the-fly applications over data spaces,
so the optimization takes place at query run-time.

3. As join-order and other execution-plan optimizations
require data statistics for selectivity estimation, an
RDF engine faces the problem that a suitable gran-
ularity of statistics gathering is all but obvious in the
absence of a schema. For example, single-dimensional
histograms on all attributes that occur in the work-
load’s where clauses — the state-of-the-art approach in
relational systems — is unsuitable for RDF, as it misses
the effects of long join chains or large join stars over
many-to-many relationships.

4. Although RDF uses XML syntax and SPARQL in-
volves search patterns that resemble XML path expres-
sions, the fact that RDF triples form a graph rather
than a collection of trees is a major difference to the
more intensively researched settings for XML.

1.2 Contribution and Outline

This paper gives a comprehensive, scalable solution to the
above problems. It presents a complete system, coined RDF-
3X (for RDF Triple eXpress), designed and implemented
from scratch specifically for the management and querying
of RDF data. RDF-3X follows the rationale advocated in
[24, 39] that data-management systems that are designed
for and customized to specific application domains can out-
perform generic mainstream systems by two orders of mag-
nitude. The factors in this argument include 1) tailored
choices of data structures and algorithms rather than sup-
porting a wide variety of methods, 2) much lighter software
footprint and overhead, and as a result, 3) simplified opti-
mization of system internals and easier configuration and
self-adaptation to changing environments (e.g., data and
workload characteristics).

RDF-3X follows such a RISC-style design philosophy [10],
with “reduced instruction set” designed to support RDF.
RDF-3X is based on a three key principles:

e Physical design is workload-independent by creating
appropriate indexes over a single “giant triples table”.
RDF-3X does not rely on the success (or limitation) of
an auto-tuning wizard, but has effectively eliminated
the need for physical-design tuning. It does so by
building indexes over all 6 permutations of the three
dimensions that constitute an RDF triple, and addi-
tionally, indexes over count-aggregated variants for all
three two-dimensional and all three one-dimensional
projections. Each of these indexes can be compressed
very well; the total storage space for all indexes to-
gether is less than the size of the primary data.

e The query processoris RISC-style by relying mostly on
merge joins over sorted index lists. This is made possi-
ble by the “exhaustive” indexing of the triples table. In
fact, all processing is index-only, and the triples table
exists merely virtually. Operator trees are constructed
so as to preserve interesting orders [17] for subsequent
joins to the largest possible extent; only when this is no
longer possible, RDF-3X switches to hash-based join
processing. This approach can be highly optimized at
the code level, and has much lower overhead than tra-
ditional query processors. At the same time, it is suffi-
ciently versatile to support also the various duplicate-
elimination options of SPARQL, disjunctive patterns
in queries, and all other features that SPARQL re-
quires.

e The query optimizer mostly focuses on join order in
its generation of execution plans. It employs dynamic
programming for plan enumeration, with a cost model
based on RDF-specific statistical synopses. These statis-
tics include counters of frequent predicate-sequences
in paths of the data graph; such paths are potential
join patterns. Compared to the query optimizer in a
universal database system, the RDF-3X optimizer is
simpler but much more accurate in its selectivity esti-
mations and decisions about execution plans.

The scientific contributions of this work are: i) a novel ar-
chitecture for RDF indexing and querying, eliminating the
need for physical database design, ii) an optimizer for large

join queries over non-schematic RDF triples, driven by a

new kind of selectivity estimation for RDF paths, iii) a com-
prehensive performance evaluation, based on real measure-
ments with three large datasets, demonstrating large gains
over the previously best engine [1] (by a typical factor of 5
and up to 20 for some queries). The source code of RDF-3X
and the experimental data are available for non-commercial
purposes upon request.

2. BACKGROUND AND STATE OF THE ART

2.1 SPARQL

SPARQL queries [36] are pattern matching queries on
triples that constitute an RDF data graph. Syntactic sugar
aside, a basic SPARQL query has the form

select 7variablel 7variable2 ...
where { patternl. pattern2. ... }

where each pattern consists of subject, predicate, object, and
each of these is either a variable or a literal. The query model
is query-by-example style: the query specifies the known lit-
erals and leaves the unknowns as variables. Variables can
occur in multiple patterns and thus imply joins. The query
processor needs to find all possible variable bindings that
satisfy the given patterns and return the bindings from the
projection clause to the application. Note that not all vari-
ables are necessarily bound (e.g., if a variable only occurs in
the projection and not in a pattern), which results in NULL
values.

This pattern matching approach restricts the freedom of
the query engine with regard to possible execution plans, as
shown in the following example:

select 7a 7c
where { 7a labell ?b. 7?b label2 ?7c }

The user is interested in all 7a and 7c that are reachable with
certain edges via 7b. The value of 7b itself is not part of the
projection clause. Unfortunately the pattern matching se-
mantics requires that nevertheless all bindings of 7b need to
be computed. There might be multiple ways from ?a to 7c,
resulting in duplicates in the output. As this is usually not
what the user/application intends, SPARQL introduced two
query modifiers: the distinct keyword specifies that dupli-
cates must be eliminated, and the reduced keyword specifies
that duplicates may but need not be eliminated. The goal
of the reduced keyword was obviously to help RDF query en-
gines by allowing optimizations, but with the reduced option
the query output has a nondeterministic nature.

Nevertheless, even the default mode of creating all dupli-
cates allows some optimizations. The query processor must
not ignore variables that are projected away due to their ef-
fect on duplicates, but it does not have to create the explicit
bindings. As long as we can guarantee that the correct num-
ber of duplicates is produced, the bindings themselves are
not relevant. We will use this observation later by counting
the number of duplicates rather than producing the dupli-
cates themselves.

2.2 Related Work

Most publicly accessible RDF systems have mapped RDF
triples onto relational tables (e.g., RDFSuite [2, 32], Sesame
[8, 28], Jena [23, 46], the C-Store-based RDF engine of
[1], and also Oracle’s RDF_MATCH implementation [11]).
There are two extreme ways of doing this: 1) All triples
are stored in a single, giant triples table with generic at-
tributes subject, predicate, object. 2) Triples are grouped by
their predicate name, and all triples with the same predicate
name are stored in the same property table. The extreme
form of property tables with a separate table for each pred-
icate name can be made more flexible, leading to a hybrid
approach: 3) Triples are clustered by predicate names, based
on predicates for the same entity class or co-occurrence in
the workload; each cluster-property table contains the val-
ues for a small number of correlated predicates, and there
may additionally be a “left-over” table for triples with in-
frequent predicates. A cluster-property table has a class-
specific schema with attributes named after the correspond-
ing RDF predicates, and its width can range from a sin-
gle predicate (attribute) to all predicates of the same entity
type.

Early open-source systems like Jena [23, 46] and Sesame

649

[8, 28] use clustered-property tables, but left the physical
design to an application tuning expert. Neither of these sys-
tems has reported any performance benchmarks with large-
scale data in the Gigabytes range with more than 10 million
triples. Oracle [29] has reported very good performance re-
sults in [11], but seems to heavily rely on good tuning by
making the right choice of materialized join views (coined
subject-property matrix) in addition to its basic triples ta-
ble. The currently fastest RDF engine by [1] uses minimum-
width property tables (i.e., binary relations), but maps them
onto a column-store system. [41] gives a nice taxonomy
of different storage layouts and presents systematic perfor-
mance comparisons for medium-sized synthetic data and
synthetic workload. In contrast to the arguments that [1]
gives against the “giant-triples-table” approach, our RDF-
3X system shows how to successfully employ a triples table
with excellent performance.

The best performing systems, Oracle and the C-Store-
based engine, rely on materialized join paths and indexes on
these views. The indexes themselves are standard indexes
as supported by the underlying RDBMS and column store,
respectively. The native YARS2 system [19] proposes ex-
haustive indexes of triples and all their embedded sub-triples
(pairs and single values) in 6 separate B*-tree or hash in-
dexes. This resembles our approach, but YARS2 misses the
need for indexing triples in collation orders other than the
canonical order by subject, predicate, object (as primary,
secondary, and tertiary sort criterion). A very similar ap-
proach is presented for the HPRD system [6] and available
as an option (coined “triple-indexes”) in the Sesame system
[28]. Both YARS2 and HPRD seem to be primarily geared
for simple lookup operations with limited support for joins;
they lack DBMS-style query optimization (e.g., do not con-
sider any join-order optimizations, although [6] recognizes
the issue). [5] proposes to index entire join paths using suf-
fix arrays, but does not discuss optimizing queries over this
physical design. [42] introduces a new kind of path index-
ing based on judiciously chosen “center nodes”; this index,
coined GRIN, shows good performance on small- to medium-
sized data and for hand-specified execution plans. Physical
design for schema-agnostic “wide and sparse tables” is also
discussed in [12], without specific consideration to RDF. All
these methods for RDF indexing and materialized views in-
cur some form of physical design problem, and none of them
addresses the resulting query optimization issues over these
physical-design features.

As for query optimization, [11, 29] and [1] utilize the state-
of-the-art techniques that come with the SQL engines on
which these solutions are layered. To our knowledge, none of
them employs any RDF-native optimizations. [38] outlines
a framework for algebraic rewriting, but it seems that the
main rule for performance gains is pushing selections below
joins; there is no consideration of join ordering. [20] has
a similar flavor, and likewise disregards the key problem of
finding good join orderings.

Recently, selectivity estimation for SPARQL patterns over
graphs have been addressed by [38] and [25]. The method
by [38] gathers separate frequency statistics for each sub-
ject, each predicate, and each object (label or value); the
frequency of an entire triple pattern is estimated by as-
suming that subject, predicate, and object distributions are
probabilistically independent. The method by [25] is much
more sophisticated by building statistics over a selected set

of arbitrarily shaped graph patterns. It casts the selection
of patterns into an optimization problem and uses greedy
heuristics. The cardinality estimation of a query pattern
identifies maximal subpatterns for which statistics exist, and
combines them with uniformity assumptions about super-
patterns without statistics. While [38] seems to be too sim-
ple for producing accurate estimates, the method by [25]
is based on a complex optimization problem and relies on
simple heuristics to select a good set of patterns for the sum-
mary construction. The method that we employ in RDF-3X
captures path-label frequencies, thus going beyond [38] but
avoiding the computational complexity of [25].

3. STORAGE AND INDEXING

3.1 Triples Store and Dictionary

Although most of the prior, and especially the recent, lit-
erature favors a storage schema with property tables, we
decided to pursue the conceptually simpler approach with
a single, potentially huge triples table, with our own stor-
age implementation underneath (as opposed to using an
RDBMS). This reflects our RISC-style and “no-knobs” de-
sign rationale. We overcome the previous criticism that a
triples table incurs too many expensive self-joins by creat-
ing the “right” set of indexes (see below) and by very fast
processing of merge joins (see Section 4).

We store all triples in a (compressed) clustered Bt-tree.
The triples are sorted lexicographically in the BT -tree, which
allows the conversion of SPARQL patterns into range scans.
In the pattern (literall,literal2,?z) the literals specify the
common prefix and thus effectively a range scan. Each pos-
sible binding of 7z is found during a single scan over a mod-
erate number of leaf pages.

As triples may contain long string literals, we adopt the
natural approach (see, e.g., [11]) of replacing all literals
by ids using a mapping dictionary. This has two benefits:
1) it compresses the triple store, now containing only id
triples, and 2) it is a great simplification for the query pro-
cessor, allowing for fast, simple, RISC-style operators (see
Section 4.5). The small cost for these gains is two additional
dictionary indexes. During query translation, the literals oc-
curring in the query are translated into their dictionary ids,
which can be done with a standard B*-tree from strings to
ids. After processing the query the resulting ids have to
be transformed back into literals as output to the applica-
tion/user. We could have used a BT -tree for this direction,
too, but instead we implemented a direct mapping index
[14]. Direct mapping is tuned for id lookups and results in a
better cache hit ratio. Note that this is only an issue when
the query produces many results. Usually the prior steps
(joins etc.) dominate the costs, but for simple queries with
many results dictionary lookups are non-negligible.

3.2 Compressed Indexes

In the index-range-scan example given above we rely on
the fact that the variables are a suffix (i.e., the object or the
predicate and object). To guarantee that we can answer every
possible pattern with variables in any position of the pattern
triple by merely performing a single index scan, we maintain
all six possible permutations of subject (:S), predicate (P) and
object (0O) in six separate indexes. We can afford this level
of redundancy because we compress the id triples (discussed
below). On all our experimental datasets, the total size for

650

Gap | Payload Delta Delta Delta

1 Bit | 7 Bits 0-4 Bytes 0-4 Bytes 0-4 Bytes

Header valuey values values

Figure 1: Structure of a compressed triple

compress((v1, vz, v3),(previ, preve, prevs))
// writes (vi,v2,v3) relative to (previ, prevs, prevs)
if v1 = previ A va = preve

if v3 — prevs < 128

write vs — prevs

else encode(0,0,u3 — prevs — 128)
else if v1 = prevy

encode(0,v2 — prevs,vs3)
else

encode(vi — previ,va,vs)

encode(d1, 2, 03)

// writes the compressed tuple corresponding to the deltas
write 128+ bytes(d1)*25+bytes(d2)*5+bytes(ds)

write the non-zero tail bytes of 1

write the non-zero tail bytes of 2

write the non-zero tail bytes of 3

Figure 2: Pseudo-Code of triple compression

all indexes together is less than the original data.

As the collation order in each of the six indexes is different
(SPO, SOP, OSP, OPS, PSO, POS), we use the generic ter-
minology values, valuez, values instead of subject, predicate,
object for referring to the different columns. The triples in an
index are sorted lexicographically by (valuer, values, values)
(for each of the six different permutations) and are directly
stored in the leaf pages of the clustered B*-tree.

The collation order causes neighboring triples to be very
similar: most neighboring triples have the same values in
value; and valuez, and the increases in values tend to be
very small. This observation naturally leads to a compres-
sion scheme for triples. Instead of storing full triples we only
store the changes between triples. This compression scheme
is inspired by methods for inverted lists in text retrieval sys-
tems [50], but we generalize it to id triples rather than simple
ids. For reasons discussed below, we apply the compression
only within individual leaf pages and never across pages.

For the compression scheme itself, there is a clear trade-
off between space savings and CPU consumption for decom-
pression or interpretation of compressed items [45]. We no-
ticed that CPU time starts to become an issue when com-
pressing too aggressively, and therefore settled for a byte-
level (rather than bit-level) compression scheme. We com-
pute the delta for each value, and then use the minimum
number of bytes to encode just the delta. A header byte de-
notes the number of bytes used by the following values (Fig-
ure 1). Each value consumes between 0 bytes (unchanged)
and 4 bytes (delta needs the full 4 bytes), which means that
we have 5 possible sizes per value. For three values these
are 5% 5% 5 = 125 different size combinations, which fits
into the payload of the header byte. The remaining gap bit
is used to indicate a small gap: When only values changes,
and the delta is less than 128, it can be directly included in
the payload of the header byte. This kind of small delta is
very common, and can be encoded by a single byte in our
scheme.

The details of the compression are shown in Figure 2. The

byte-wise bit-wise
Barton data RDF-3X Gamma | Delta | Golomb
6 indexes [GBytes] || 1.10 1.21 1.06 2.03
Decompression [s] 3.2 44.7 42.5 82.6

Figure 3: Comparison of byte-wise compression vs.
bit-wise compression for the Barton dataset

algorithm computes the delta to the previous tuple. If it is
small it is directly encoded in the header byte, otherwise
it computes the §; values for each of the tree values and
calls encode. encode writes the header byte with the size
information and then writes the non-zero tail of the §; (i.e.,
it writes J; byte-wise but skips leading zero bytes). This
results in compressed tuples with varying sizes, but during
decompression the sizes can be reconstructed easily from the
header byte. As all operations are byte-wise, decompression
involves only a few cheap operations and is very fast.

We tested the compression rate and the decompression
time (in seconds) of our byte-wise compression against a
number of bit-wise compression schemes proposed in the
literature [33]. The results for the Barton dataset (see
Section 6) are shown in Figure 3. Our byte-wise scheme
compresses nearly as good as the best bit-wise compression
scheme, while providing much better decompression speed.
The Gamma and Golomb compression methods, which are
popular for inverted lists in IR systems, performed worse
because, in our setting, gaps can be large whenever there is
a change in the triple prefix.

We also experimented with the more powerful LZ77 com-
pression on top of our compression scheme. Interestingly
our compression scheme compresses better with LZ77 than
the original data, as the delta encoding exhibits common
patterns in the triples. The additional LZ77 compression
decreases the index size roughly by a factor of two, but in-
creases CPU time significantly, which would become critical
for complex queries. Thus, the RDF-3X engine does not
employ LZ77.

An important consideration for the compressed index is
that each leaf page is compressed individually. Compressing
larger chunks of data leads to better compression (in partic-
ular in combination with the LZ77 compression), but page-
wise compression has several advantages. First, it allows us
to seek (via BT-tree traversal) to any leaf page and directly
start reading triples. If we compressed larger chunks we
would often have to decompress preceding pages. Second,
the compressed index behaves just like a normal BT-tree
(with a special leaf encoding). Thus, updates can be easily
done like in a standard BT -tree. This greatly simplifies the
integration of the compressed index into the rest of the en-
gine and preserves its RISC nature. In particular, we can
adopt advanced concurrency control and recovery methods
for index management without any changes.

3.3 Aggregated Indices

For many SPARQL patterns, indexing partial triples rather
than full triples would be sufficient, as demonstrated by the
following SPARQL query:

select 7a 7c
where { ?7a 7b ?c }

It computes all ?a and ?c¢ that are connected through
any predicate, the actual bindings of 7b are not relevant.

651

compressAggregated((v1, v2),count,(previ, prevs))
// writes (v, v2) * count relative to (prevy, prevs)
if v1 = prevy
if vo — preve < 32 A count < 5
write (count — 1) * 32 + (v2 — preva)
else
encode(0,v2 — prevs,count)
else
encode(vi — previ,va,count)

Figure 4: Aggregated triple compression

We therefore additionally build aggregated indexes, each of
which stores only two out of the three columns of a triple.
More precisely, they store two entries (e.g., subject and 0b-
ject), and an aggregated count, namely, the number of oc-
currences of this pair in the full set of triples. This is done
for each of the three possible pairs out of a triple and in
each collation order (SP, PS, SO, OS, PO, OP), thus adding
another six indexes.

The count is necessary because of the SPARQL seman-
tics. The bindings of ?b do not occur in the output, but the
right number of duplicates needs to be produced. Note that
the aggregated indexes are much smaller than the full-triple
indexes; the increase of the total database size caused by the
six additional indexes is negligible.

Instead of (valuer, values, values), the aggregated indexes
store (valuer,valuesz, count), but otherwise they are orga-
nized in BT -trees just like the full-triple compressed indexes.
The leaf encoding is slightly different, as now most changes
involve a gap in values and a low count value. The pseudo-
code is shown in Figure 4.

Finally, in addition to these indexes for pairs in triples,
we also build all three one-value indexes containing just
(values, count) entries (the encoding is analogous). While
triple patterns using only one variable are probably rare, the
one-value indexes are very small, and having them available
simplifies query translation.

4. QUERY PROCESSING AND OPTIMIZA-
TION

4.1 Translating SPARQL Queries

The first step in compiling a SPARQL query is to trans-
form it into a calculus representation suitable for later opti-
mizations. We construct a query graph representation that
can be interpreted as relational tuple calculus. It would be
simpler to derive domain calculus from SPARQL, but tuple
calculus is easier to optimize later on.

While SPARQL allows many syntax shortcuts to simplify
query formulation, each (conjunctive) query can be parsed
and expanded into a set of triple patterns. Each component
of a triple is either a literal or a variable. The parser already
performs dictionary lookups, i.e., the literals are mapped
into ids. Similar to domain calculus, SPARQL specifies
that variable bindings must be produced for every occur-
rence of the resulting literals-only triple in the data. When
a query consists of a single triple pattern, we can use our
index structures from Section 3 and answer the query with
a single range scan. When a query consist of multiple triple
patterns, we must join the results of the individual patterns.
We thus employ join ordering algorithms on the query graph
representation, as discussed further below.

Each triple pattern corresponds to one node in the query
graph. Conceptually each node entails a scan of the whole
database with appropriate variable bindings and selections
induced by the literals. While each of these scans could
be implemented as a single index range scan, the optimizer
might choose a different strategy (see below). The edges in
the query graph reflect the variable occurrences. Two nodes
are connected if and only if they have a (query) variable in
common.

When the projection clause of a query includes the dis-
tinct option, we add an aggregation operator that eliminates
duplicates in the result. Finally we add a dictionary lookup
operator that converts the resulting ids back into strings.

4.2 Optimizing Join Ordering

The key issue for optimizing SPARQL execution plans is
join ordering. There is a rich body of literature on this
problem, with solutions typically based on various forms of
dynamic programming (DP) or randomization (e.g., [13, 15,
26, 34]). However, the intrinsic characteristics of RDF and
SPARQL create join queries with particularly demanding
properties, which are not directly addressed by prior work:

1. SPARQL queries tend to contain star-shaped subque-
ries, for combining several attribute-like properties of
the same entity. Thus, it is essential to use a strategy
that can create bushy join trees (rather than focusing
on left-deep or right-deep trees).

2. These star joins occur at various nodes of long join
paths, often at the start and end of a path. SPARQL
queries can easily lead to 10 or more joins between
triples (see, for example, our benchmark queries in
Section 6). So exact optimization either requires very
fast plan enumeration and cost estimation or needs to
resort to heuristic approximations.

3. We would like to leverage the particular strengths of
our triple indexes, which encourage extensive use of
merge joins (rather than hash or nested-loop joins),
but this entails being very careful about preserving
interesting orders in the generation of join plans.

The first requirement rules out methods that cannot gen-
erate all possible star-chain combinations. The second re-
quirement strongly suggests a fast bottom-up method rather
than transformation-based top-down enumeration. The third
requirement rules out sampling-based plan enumeration (or
randomized optimization methods), as these are unlikely to
generate all order-preserving plans for queries with more
than 10 joins. In fact, we expect that the most competi-
tive execution plans have a particular form: they would use
order-preserving merge-joins as long as possible and switch
to hash-joins only for the last few operators.

Our solution is based on the bottom-up DP framework of
[26]. It seeds its DP table with scans for the base relations,
in our case the triple patterns. The seeding is a two step
process. First, the optimizer analyzes the query to check
which variable bindings are used in other parts of the query.
If a variable is unused, it can be projected away by using an
aggregated index (see Section 3.3). Note that this projection
conceptually preserves the cardinality through the count in-
formation in the index; we discuss this in Subsection 4.4
below. In the second step the optimizer decides which of
the applicable indexes to use. There are two factors that

652

6-triples 8-triples 10-triples

star patterns | star patterns | star patterns

path length 5 0.7 ms 2.4 ms 6.4 ms
path length 10 2.0 ms 4.6 ms 17.3 ms
path length 20 3.5 ms 13.0 ms 56.6 ms

Figure 5: Optimization times for queries with x pat-
terns in two stars connected by a path of length y

affect the index selection. When the literals in the triple
pattern form the prefix of the index key, they are automati-
cally handled by the range scan. Otherwise too many tuples
are read and additional selections are required. On the other
hand, a different index might produce the triples in an or-
der suitable for a subsequent merge-join later on, which may
have lower overall costs than reading too many tuples. The
optimizer therefore generates plans for all indexes and uses
the plan pruning mechanism to decide if some of them can
be discarded early on.

Pruning is done primarily based upon estimated execu-
tion costs. That is, the optimizer calls the cost model for
each generated plan and prunes equivalent plans that are
dominated by cheaper alternatives. This pruning mecha-
nism relies on order optimization [35] to decide if a plan can
be dominated by another plan. As the optimizer can use
indexes on all triple permutations, it can produce tuples in
an arbitrary order, which makes merge joins very attractive.
Thus plans are kept if they are more expensive but produce
an interesting ordering that can be used later on. Note that
orderings are not only created by index scans but also by
functional dependencies induced by selections, therefore the
order optimization component is non-trivial [35].

Starting with the seeds, larger plans are created by join-
ing optimal solutions of smaller problems. During this pro-
cess all attribute-handling logic is implemented as reason-
ing over the available equivalence classes instead of individ-
ual variable bindings. Each plan will produce at most one
binding for each equivalence class. This both simplifies im-
plicit projections in front of pipeline breakers and allows
for automatic detection of transitive join conditions (i.e.,
a=bAb=c=a=c¢).

Starting with the seeds, larger plans are created by join-
ing optimal solutions of smaller problems that are adjacent
in the query graph [26]. When the query contains addi-
tional selections due to FILTER predicates, they are placed
greedily as soon as possible, as they are usually inexpen-
sive to evaluate. If a selection is really expensive, it could
be better to integrate it into the DP operator placement as
proposed in [9], but we did not investigate this further. The
DP method that we implemented along these lines is very
fast and is able to compute the exact cost-optimal solution
for join queries with up to 20 triple patterns. We measured
optimization times (in milliseconds) for a typical SPARQL
scenario with two entities selected by star-shaped subqueries
and connected by a chain of join patterns. The results are
shown in Figure 5.

4.3 Handling Disjunctive Queries

While conjunctive queries are more commonly used, SPAR-
QL also allows certain forms of disjunctions. The UNION
expression returns the union of the bindings produced by
two or more pattern groups. The OPTIONAL expressions
returns the bindings of a pattern group if there are any re-

sults, and NULL values otherwise. In this context, pat-
tern groups are sets of triple patterns, potentially containing
UNION and OPTIONAL expressions themselves.

During optimization we treat pattern groups in UNION
and OPTIONAL as nested subqueries. That is, we op-
timize the nested pattern groups first (potentially recur-
sively), and then treat them as base relations with spe-
cial costs/cardinalities during the optimization of the outer
query. For UNION we add the union of the results of the
pattern groups as if it were a base relation, for OPTIONAL
we add the result as a base relation using an outer join.

In principle it would be possible to optimize these queries
more aggressively, but most interesting optimizations re-
quire the usage of bypass plans [37] or other non tree-struc-
tured execution plans, which is beyond the scope of this
work. And these optimizations would only pay off for com-
plex queries; when the disjunctive elements are simple, our
nested optimization scheme produces the optimal solution.

4.4 Preserving Result Cardinality

The standard SPARQL semantic requires that the right
number of variable bindings are produced, even if many of
them are duplicates. However, from a processing point of
view, one should avoid the additional work for producing
and keeping duplicates.

We solve this issue by tracking the multiplicity of each
tuple during query processing. Scans over unaggregated in-
dexes always produce a multiplicity of 1, while aggregated
indexes report the number of duplicates as multiplicity. Join
operators multiply the multiplicities to get the number of
duplicates of each output tuple. Note that we can option-
ally switch off the multiplicity tracking if we can statically
derive that it has to be 1 in a subplan. When the result is
presented to the application/user, the output operator in-
terprets the multiplicities according to the specified query
semantics (distinct, reduced, or standard).

4.5 Implementation Issues

Our run-time system includes the typical set of algebraic
operators (merge-join, hash-join, filter, aggregation, etc.).
One notable difference to other systems is that our run-time
system is very RISC-style: most operators merely process
integer-encoded ids, consume and produce streams of id tu-
ples, compare ids, etc. Besides simplifying the code, this
reduced complexity allows neat implementation tricks.

For example, consider an index-scan operator that uses
a BT-tree iterator to access the physical data, comparing a
triple pattern against the data. Each entry in the triple is
either an id attribute that must be produced or bound to a
literal, which affects start/stop condition if it is in the prefix
or implies a selection if unbound entries come first. Instead
of checking for these different conditions at run-time, we can
handle them at query compilation time. Each entry is either
an id attribute or a literal. There are three entries in a triple,
which means there are eight possible combinations. With a
single method interface that has eight different implementa-
tions of the index scan operator, we can greatly reduce the
number of conditional branches in the system code. Besides
being faster, each specialized operator is much simpler as it
now implements just the logic required for its setting. Note
that we only need to specialize the step logic, which is less
than 10 lines of code for each specialization.

This RISC-style combination of simplified type system

653

start end
(s,p,0) (s,p,0)
number of triples
number of distinct 2-prefixes
number of distinct 1-prefixes
join partners on subject

[s=s [s=p [s=o
join partners on predicate

[p=s [p=p [p=o
join partners on object

[o=s [o=p [o=0

Figure 6: Structure of a histogram bucket

and simple, fast operators leads to very good CPU perfor-
mance. In our evaluation in Section 6 we include warm-cache
times to demonstrate these effects. We realize that these
kinds of code-tuning issues are often underappreciated, but
are crucial for high performance on modern hardware.

S. SELECTIVITY ESTIMATES

The query optimizer relies upon its cost model in finding
the lowest-cost execution plan. In particular, estimated car-
dinalities (and thus selectivities) have a huge impact on plan
generation. While this is a standard problem in database
systems, the schema-free nature of RDF data complicates
statistics generation. We propose two kinds of statistics.
The first one, specialized histograms, is generic and can han-
dle any kind of triple patterns and joins. Its disadvantage
is that it assumes independence between predicates, which
frequently does not hold in tightly coupled triple patterns.
The second statistics therefore computes frequent join paths
in the data, and gives more accurate predictions on these
paths for large joins. During query optimization, we use the
join-path cardinalities when available and otherwise assume
independence and use the histograms.

5.1 Selectivity Histograms

While triples conceptually form a single table with three
columns, histograms over the individual columns are not
very useful as most query patterns touch at least two at-
tributes of a triple. Instead we harness our aggregated in-
dexes, which are perfectly suited for the calculation of triple-
pattern selectivities: for each literal or literal pair, we can
get the exact number of matching triples with one index
lookup. Unfortunately this is not sufficient for estimating
join selectivities. Also, we would like to keep all auxiliary
structures for the cost model in main memory. Therefore, we
aggregate the indexes even further such that each index fits
into a single database page and includes information about
join selectivity.

Just like the aggregated indexes we build six different
statistics, one for each order of the entries in the triples.
Starting from the aggregated indexes, we place all triples
with the same prefix of length two in one bucket and then
merge the smallest two neighboring buckets until the total
histogram is small enough. This approximates an equi-depth
histogram, but avoids placing bucket boundaries between
triples with the same prefix (which are expected to be sim-
ilar).

For each bucket we then compute the statistics shown in
Figure 6. The first three values — the number of triples, num-

ber of distinct 2-prefixes, and number of distinct 1-prefixes
— are used to estimate the cardinality of a single triple pat-
tern. Note that this only gives the scan cardinality, i.e.,
the number of scanned triples, which determines the costs
of an index scan. The true result cardinality, which affects
subsequent operators, could actually be lower when literals
are not part of the index prefix and are tested by selections
later on. In this case we derive the result cardinality (and
obtain exact predictions) by reordering the literals such that
all literals are in the prefix.

The next values are the numbers of join partners (i.e., the
result cardinality) if the triples in the bucket were joined to
all other triples in the database according to the specified
join condition. As there are nine ways to combine attributes
from two triples, we precompute nine cardinalities. For ex-
ample the entry o = s is effectively

[{b]b € current bucket} Xy opject=t.subject {t|t € all triples}|.

These values give a perfect join-size prediction when joining
a pattern that exactly matches the bucket with a pattern
without literals. Usually this is not the case, we therefore
assume independence between query conditions and multi-
ply the selectivities of the involved predicates. (Such inde-
pendence assumptions are standard in state-of-the-art query
optimizers for tractability.)

5.2 Frequent Paths

The histograms discussed above have decent accuracy,
and are applicable for all kinds of predicates. Their main
weakness is that they assume independence between predi-
cates. Two kinds of correlated predicates commonly occur
in SPARQL queries. First, “stars” of triple patterns, where
a number of triple patterns with different predicates share
the same subject. These are used to select specific subjects
(i-e., entities based on different attributes of the same enti-
ties). Second, “chains” of triple patterns, where the object
of the first pattern is the subject of the next pattern, again
with given predicates. These chains correspond to long join
paths (across different entities). As both of these two cases
are common, we additionally build specialized statistics to
have more accurate estimators for such queries.

To this end, we precompute the frequent paths in the data
graph and keep exact join statistics for them. Frequency
here refers to paths with the same label sequence. Note
that we use the term path both for chains and stars, the
constructions are similar in the two cases. We characterize
a path P by the sequence of predicates p1,...,pn seen in its
traversal. Using SPARQL syntax, we define a (chain) path
Pp,....pn as
select r1 rn41 where { (r1 p1 r2).

(r2 p2 73). v (T P Ts1)}

Star paths are defined analogous, the pi,...,p, are un-
sorted in this case. We compute the most frequent paths,
i.e., the paths with the largest cardinalities, and materialize
their result cardinalities and path descriptions pi,...,pn.
Using this information we can exactly predict the join car-
dinality for the frequent paths that occur in a query. Again,
we want to keep these statistics in main memory and there-
fore compute the most frequent paths such that they still
fit on a single database page. In our experiments we could
store about 1000 paths on one 16KB page.

Finding the most frequent paths requires some care. While
it may seem that this is a standard graph-mining issue, the

Py pn =

.....

654

FrequentPath(k)
// Computes the k most frequent paths
Cy = {P,|p is a predicate in the database}
sort C'1, keep the k most frequent
C=0C,i=1
do
Ciy1=10
for each p’ € C;,p predicate in the database
if top k of C'U Ci11 U{Py,} includes all subpaths of p'p
Ciy1 = Ciz1 U{Py}
if top k of C'U C,41 U{P,, } includes all subpaths of pp’
Ciy1 = Cit1 U{Ppyp}
C = C UCi41, sort C, keep the k most frequent
Oi+1 :C¢+1 ﬂC’,z’:H—l
while C; # 0
return C

Figure 7: Frequent Path Mining Algorithm

prevalent methods in that line of research [16, 44, 49], e.g.,
based on the well-known Apriori frequent-itemset mining al-
gorithm, are not directly applicable.

Unlike the Apriori setting, a frequent path in our RDF-
path sense does not necessarily consist of frequent subpaths.
Consider a graph with two star-shaped link clusters where
all end-nodes are connected to their respective star centers
by predicates (edge labels) p1 and ps, respectively. Now
consider a single edge with predicate ps between the two
star centers. In this scenario, the path P,, will be infre-
quent, while the path Py, ps,p, Will be frequent. Therefore
we cannot simply use the Apriori algorithm.

Another problem in our RDF setting are cycles, which
could lead to seemingly infinitely long, infinitely frequent
paths. We solve this problem by two means. First, we re-
quire that if a frequent path P is to be kept, all of its sub-
paths have to be kept, too. This is required for query opti-
mization purposes anyway, as we may have to break a long
join-path into smaller joins, and it simplifies the frequent-
path computation. Second, we rank the frequent paths not
by their result cardinalities but by their number of distinct
nodes. In a tree these two are identical, but in the presence
of cycles we do not count nodes twice.

The pseudo-code of the path mining algorithm is shown
in Figure 7. It starts from frequent paths of length one
and enlarges them by appending or prepending predicates.
When a new path is itself frequent and all of its subpaths
are still kept, we add it. We stop when no new paths can be
added. Note that, although the pseudo-code shows a nested
loop for ease of presentation, we actually use a join and a
group-by operator in the implementation. For the datasets
we considered in our experiments the 1000 most frequent
paths could be determined in a few minutes.

5.3 Estimates for Composite Queries

For estimating the overall selectivity of an entire compos-
ite query, we combine the histograms with the frequent paths
statistics. A long join chain with intermediate nodes that
have triple patterns with object literals is decomposed into
subchains of maximal lengths such that only their end nodes
have triple patterns with literals. For example, a query like
?LE1 al vi. ?$1 P1 ?322. ?322 D2 ?J)g. ?333 D3 ?134.

?{E4 a4 V4. ?.284 P4 ?xs. ?x5 Ps ?.%'6. ?mﬁ ae Ve

with attribute-flavored predicates a1, a4, ag, literals v, v4,
ve, and relationship-flavored predicates p; through ps will be
broken down into the subchains for p1-p2-ps and for ps-ps
and the per-subject selections ai-vi, as4-v4, and as-ve. We
use the frequent paths statistics to estimate the selectivity
of the two join subchains, and the histograms for selections.
Then, in the absence of any other statistics, we assume
that the different estimators are probabilistically indepen-
dent, leading to a product formula with the per-subchain
and per-selection estimates as factors. If instead of a simple
attribute-value selection like ?x¢ ag v6 we had a star pattern
such as 7x¢ as us. 7Te bg V. TTe c¢ we With properties ag,
bs, cé and corresponding object literals ug, ve, we, we would
first invoke the estimator for the star pattern, using the fre-
quent paths statistics for stars, and then combine them with
the other estimates in the product form.

6. EVALUATION
6.1 General Setup

For evaluating the performance of RDF-3X, we used three
large datasets with different characteristics and compared
the query run-times to other approaches (discussed below).
All experiments were conducted on a Dell D620 PC with
a 2 Ghz Core 2 Duo processor, 2 GBytes of memory, and
running a 64-bit Linux 2.6.24 kernel. For the cold-cache
experiments we used the /proc/sys/vm/drop_caches ker-
nel interface to drop all filesystem caches before restarting
the various systems under test. We repeated all queries
five times (including the dropping of caches and the system
restart) and took the best result to avoid artifacts caused by
OS activity. For warm caches we ran the queries five times
without dropping caches, again taking the best run-time.

Our primary comparison is against the column-store-based
approach presented in [1], which has already been shown to
be highly superior to all other DBMS-based approaches in
that paper. We implemented the approach as described in
[1], but used MonetDB 5.2.0 [27] as a backend instead of C-
Store because C-Store is no longer maintained and does not
run on our hardware/OS platform. The C-Store web page
http://db.csail.mit.edu/projects/cstore/ suggests us-
ing MonetDB instead, and MonetDB worked fine. Note that
our setup uses substantially weaker hardware than [1]; in
particular the hard disk is about a factor of 6 slower than
the very fast RAID used in [1], transfering ca. 32 MB/s
in sequential reads. Taking this factor of 6 into account,
the performance numbers we got for MonetDB are compa-
rable to the C-Store numbers from [1]. For one query (Q6)
MonetDB was significantly faster than a factor of 6 (14s
vs. 10s), while for another (Q7) significantly slower (61s vs.
1.4s), but overall MonetDB performed as expected given the
slower hard disk.

As a second opponent to RDF-3X, we used PostgreSQL
8.3 as a triple store with indexes on the string dictionary and
on (subject, predicate, object), (predicate, subject, object),
and (predicate, object, subject). This emulates a Sesame-
style [8] storage system. We also tried out the current release
of a leading commercial database system with built-in RDF
support, but could not obtain acceptable performance any-
where near the run-times of the other systems. When using
its own RDF query language and despite trying several of its
auto-tuning options, it performed significantly slower than
the PostgreSQL triple store even for simple queries, and

655

failed to execute more complex queries in reasonable time.
We therefore omitted it from the presentation.

In addition to these DBMS-based opponents, we tried sev-
eral systems from the semantic web community that are
available as open-source code. Unfortunately none of them
scaled to the dataset sizes that we used. We first tried the
popular Jena2 system [46] which came out of the HP Labs
Semantic Web Programme. We used Jena version 2.5.5
with the SDB 1.0 wrapper and Apache Derby 10.3.2.1, but
were unable to import any of our three datasets in 24 hours.
Judging from the file growth, the system became continu-
ously slower and did not seem to terminate in a reasonable
time. We also tried Yars2 [19, 48], but again were unable
to import any of our datasets in 24 hours. Finally, we tried
Sesame 2.0 [8, 28], which is supposed to be one of the fastest
semantic web systems. Sesame 2.0 was able to import the
Barton dataset in 13 hours, but then needed ca. 15 minutes
for each of the first two queries and crashed due to excessive
memory usage for the more complex queries.

Note that both MonetDB and RDF-3X could import the
data sets in less than half an hour, and could run the queries
in the order of seconds. Other semantic web approaches
usually assume that the RDF data fits into main memory,
which is not the case here. All experiments below therefore
only consider RDF-3X, the column-stored-based approach
on top of MonetDB, and the PostgreSQL-based triples store.

Independently of the database system, each of the datasets
discussed below is first brought into a factorized form: one
file with RDF triples represented as integer triples and one
dictionary file mapping from integers to literals. All three
systems use the same files as inputs, loading them into fact
table(s) and dictionary. The load times of this second phase
and the database sizes are shown in Figure 8. The Mon-
etDB sizes are the initial sizes after loading. After running
the benchmark the sizes were 2.0 / 2.4 / 6.9 GB. Apparently
MonetDB builds some index structures on demand.

6.2 Barton Dataset

For the first experiment we used the Barton Library dataset
and the queries proposed as a benchmark in [1]. We pro-
cessed the data as described in [1], converting it into triple
form using the Redland parser, and then imported the triples
into our RDF-3X system. In [1] the authors pruned the data
due to C-Store limitations (they dropped all triples contain-
ing strings longer than 127 bytes and some triples with a
huge number of join partners). We left the complete data
as it was and imported it directly into all three systems.
Overall the data consists of 51,598,328 distinct triples, and
19,344,638 distinct strings. The original data was 4.1 GB
in RDF (XML) format, 7.7 GB in triple form, and 2.8 GB
in our RDF-3X store including all indexes and the string
dictionary.

We used the queries from [1] for our experiment, but as
they were given in SQL we had to reformulate them in
SPARQL for RDF-3X. Appendix A shows all queries. The
results of our measurements are shown in Figure 9. We in-
clude also the geometric mean of the query set, which is
often used as a workload-average measure in benchmarks
(e.g., TPC) and is more resilient to extreme outliers than
the arithmetic average.

The first observation is that RDF-3X performs much bet-
ter than MonetDB for all queries, and MonetDB itself per-
forms much better than PostgreSQL (as reported in [1]). We

Barton Yago Librarything

Load time | DB size | Load time | DB size | Load time | DB size

RDF-3X 13 min | 2.8 GB 25 min | 2.7 GB 20 min | 1.6 GB

MonetDB 11 min | 1.6 GB 21l min | 1.1 GB 4 min | 0.7 GB

PostgreSQL 30 min | 8.7 GB 25 min | 7.5 GB 20 min | 5.7 GB

Figure 8: Database load after triple construction
[Q1 [Q2 [Q3 [Q4 [Q5 [Q6 [Q7 [geom. mean
cold caches

RDF-3X 0.14 3.10 31.49 11.57 18.82 2.75 32.61 5.9
MonetDB 5.66 11.70 54.66 34.77 80.96 14.14 61.52 26.4

PostgreSQL | 28.32 | 181.00 | 291.04 | 224.61 | 199.07 | 207.72 | 271.20 167.8
warm caches
RDF-3X 0.001 1.17 2.22 1.58 0.49 1.20 1.26 0.4
MonetDB 0.65 1.41 3.63 9.59 77.53 1.86 2.48 3.8

PostgreSQL | 8.15 | 174.41 | 286.76 | 26.80 8.77 | 206.46 | 231.79 64.3

Figure 9: Query run-times in seconds for the Barton dataset

first discuss the results for RDF-3X vs. MonetDB. When

comparing the cold-cache times and the warm-cache times,
it becomes clear that disk I/O has a large impact on the
overall run-times. RDF-3X simply reads less data due to its
highly compressed index structures, therefore outperform-
ing MonetDB in the cold-cache case by a typical factor of 2
to 5, and sometimes by more than 10. In the warm-cache
case the differences are typically smaller but still substantial
(factor of 2, sometimes much higher). An interesting data
point is query Q4, which is relatively expensive in terms of
constructed join pairs, and where RDF-3X performs very
well even in CPU-dominated warm-cache case. Further-
more, we observe that a third critical aspect besides 1/0O
and CPU usage is memory consumption. Query Q5 has a
very large intermediate result. MonetDB apparently mate-
rializes parts of these intermediate results in main memory.
As a consequence only few database pages can be buffered,
which significantly hurts warm-cache behavior.

PostgreSQL has problems with this dataset, due to the
nature of the queries for this benchmark. Nearly all queries
are aggregations queries (usually aggregating by predicate),
and the result cardinality is large which entails expensive
dictionary lookups. For other, more natural, kinds of RDF
queries, PostgreSQL performs much better, as we will see in
the next two subsections.

To get an idea how a Yars2-style system could scale we ex-
perimentally disabled all aggregated indices. This increased
the geometric means to 9.52s (cold) and 1.04s (warm), which
is significantly slower than RDF-3X. This is still much faster
than the other systems, though, in particular due to our run-
time system and query optimizer.

6.3 Yago Dataset

The Barton dataset is relatively homogeneous, as it de-
scribes library data. As a second dataset we therefore used
Yago [40] which consists of facts extracted from Wikipedia
(exploiting the infoboxes and category system of Wikipedia)
and integrated with the WordNet thesaurus. The Yago
dataset contains 40,114,899 distinct triples and 33,951,636
distinct strings, consuming 3.1 GB as (factorized) triple
dump. RDF-3X needs 2.7 GB for all indexes and the string

656

dictionary. As queries we considered three different appli-
cation scenarios — entity-oriented, relationship-oriented, and
queries with unknown predicates — and derived eight bench-
mark queries, shown in Appendix A. These queries are more
”natural” than the Barton queries, as they are standard
SPARQL without any aggregations and with explicitly given
predicates. On the other hand, the queries are much larger
(requiring more many-to-many joins) and thus more difficult
to optimize and execute.

The results are shown in Figure 10. Again, RDF-3X
clearly outperforms the other two systems for both cold and
warm caches, by a typical factor of 5 to 10. Here PostgreSQL
performed much better than MonetDB. This is most likely
caused by the poor join orderings in MonetDB. The warm-
cache run-times are nearly as high as the cold-cache times,
which indicates that MonetDB creates large intermediate
results.

In general this dataset is much more challenging for the
query optimizer, as queries are more complex and selectivity
estimates are important. While testing our system, we no-
ticed that selectivity mis-estimations can easily cause slow-
down by a factor of 10-100 on this dataset. RDF-3X shows
excellent performance regarding both the run-time execu-
tion and the choice of execution plans by the optimizer.

6.4 LibraryThing Dataset

As a third dataset we used a partial crawl of the Library-
Thing book-cataloging social network www.librarything. com.
It consists of 9989 users, 5,973,703 distinct books (person-
ally owned by these users), and the tags that the users have
assigned to these books. Overall the dataset consists of
36,203,751 triples and 9,352,954 distinct strings, consuming
1.8 GB in its original form and 1.6 GB in RDF-3X. One par-
ticularity of this dataset is that is has a heterogeneous link
structure. In our RDF representation, each tag is mapped to
a predicate, linking the user to the book she tagged. As the
number of different tags is very large, the dataset contains
338,824 distinct predicates, whereas the other two datasets
contained only 285 and 93 distinct predicates, respectively.
While other mappings onto RDF may be possible, we used
this extremely non-schematic approach as a stress test for

[Al [A2 [A3 [B1 [B2 [B3 [C1 [C2 [geom. mean
cold caches
RDF-3X 0.29 0.28 1.20 0.28 0.99 0.33 2.23 4.23 0.73
MonetDB 43.55 | 44.13 | 55.49 | 62.94 | 182.39 | 72.22 | 101.66 | 157.11 78.29
PostgreSQL 1.62 6.31 5.46 3.04 | 117.51 4.71 29.84 59.64 10.66
warm caches
RDF-3X 0.02 0.02 0.02 0.01 0.05 0.01 0.61 1.44 0.04
MonetDB 36.92 | 32.96 | 34.72 | 49.95 64.84 | 52.22 84.41 | 131.35 54.62
PostgreSQL 0.08 0.43 0.20 0.11 7.33 0.12 0.31 50.37 0.56

Figure 10: Query run-times in seconds for the Yago dataset

all competing systems.

This data makes compression more difficult for RDF-3X,
and causes serious problems for MonetDB. MonetDB was
unable to handle 338,824 tables, creating millions of files in
the file system and swapping all the time. We therefore used
a hybrid storage scheme for MonetDB for this dataset. We
partitioned the 1000 most commonly used predicates as de-
scribed in [1], and placed the remaining triples (ca. 12%) in
one big triples table. We again constructed three kinds of
queries: book-oriented, user-oriented, and navigating book
and user chains (see Appendix A). In contrast to the Yago
dataset, there were few predicates that occurred in millions
of triples, which lowered the impact of join-ordering deci-
sions. On the other hand, the data itself is very inhomoge-
neous so that selectivities are more difficult to predict.

The results are shown in Figure 11. RDF-3X performs
very well, outperforming the opponents by a typical factor
of at least 5 and more than 30 in some cases. Between
MonetDB and PostgreSQL there is no clear winner. Overall
MonetDB seems to perform better, but it crashed two times.
It refused to execute query B3 (”too many variables”), prob-
ably because it included three patterns with variable predi-
cates (and thus at least 3000 scans). In query C2 it crashed
after 15 minutes due to lack of disk space, as it had mate-
rialized a 20 GB intermediate result (which is more than 10
times the size of the whole database).

The query A3 stands out by its high run-times. It per-
forms many joins with relatively unselective predicates (book
authors, etc.), which are expensive. The other ”difficult”
queries (B3, C1, C2) are not that difficult per se, they just
require the right choice of execution plans. B3, for exam-
ple, finds all users with books tagged as English, French,
and German. PostgreSQL starts this query by collecting all
pairs of books a user has, which is prohibitively expensive.
The optimizer of RDF-3X, on the other hand, chooses a plan
that collects for each tag the users with such books and then
joins the results, which is much more efficient.

7. CONCLUSION

This paper has presented the RDF-3X engine, a RISC-
style architecture for executing SPARQL queries over large
repositories of RDF triples. As our experiments have shown,
RDF-3X outperforms the previously best systems by a large
margin. In particular, it addresses the challenge of schema-
free data and, unlike its opponents, copes very well with data
that exhibits large diversity of property names. The salient
features of RDF-3X that lead to these performance gains
are 1) exhaustive but very space-efficient triple indexes that
eliminate the need for physical-design tuning, 2) a stream-
lined execution engine centered around very fast merge joins,

657

3) a smart query optimizer that chooses cost-optimal join or-
derings and can do this efficiently even for long join paths
(involving 10 to 20 joins), 4) a selectivity estimator based on
statistics for frequent paths that feeds into the optimizer’s
cost model.

Our future work includes further improvements of the
query optimizer (e.g., based on magic sets) and support for
RDF search features that go beyond the current SPARQL
standard. Along the latter lines, one direction is to al-
low more powerful wild-card patterns for entire paths, in
the spirit of the XPath descendants axis but for graphs
rather than trees. Proposals for extending SPARQL have
been made [3], but there is no implementation yet. A sec-
ond direction is to provide ranking of query results, based
on application-specific scoring models. This calls for top-k
query processing and poses challenging issues for algorithms
and query optimization. Finally, full SPARQL support re-
quires some additional information, in particular typing in-
formation. We feel that this can be included in the dictio-
nary, but determining the best encoding relative to runtime
performance and compression rate needs more work.

8. REFERENCES

[1] D. J. Abadi, A. Marcus, S. Madden, and K. J.
Hollenbach. Scalable semantic web data management
using vertical partitioning. In VLDB, 2007.

[2] S. Alexaki et al. The ics-forth rdfsuite: Managing
voluminous rdf description bases. In Sem Web, 2001.

[3] K. Anyanwu, A. Maduko, and A. P. Sheth. Sparq2l:
towards support for subgraph extraction queries in rdf
databases. In WWW, 2007.

[4] S. Auer et al. Dbpedia: A nucleus for a web of open
data. In ISWC/ASWC, 2007.

[5] L. Baolin and H. Bo. Path queries based rdf index. In
SKG, 2005.

[6] L. Baolin and H. Bo. Hprd: A high performance rdf
database. In NPC, 2007.

[7] BioPAX: Biological Pathways Exchange.
http://www.biopax.org/.

[8] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: An architecture for storing and querying rdf
data and schema information. In Spinning the
Semantic Web, 2003.

[9] S. Chaudhuri and K. Shim. Optimization of queries

with user-defined predicates. TODS, 24(2), 1999.

S. Chaudhuri and G. Weikum. Rethinking database

system architecture: Towards a self-tuning risc-style

database system. In VLDB, 2000.

[11] E. I. Chong et al. An efficient sql-based rdf querying

(10]

[12]

[13]

[14]

Y

[Al [A2 [A3 [B1 [B2 [B3 [C1 [C2 [geom. mean
cold caches
RDF-3X 0.28 | 1.01 21.85 | 0.14 | 0.34 | 4.17 0.28 1.21 0.89
MonetDB 2.14 | 1.41 | 1220.09 | 1.63 | 2.20 * 1.66 | >15min/* >8.16
PostgreSQL | 20.78 | 1.43 715.64 | 0.88 | 2.13 | > 8h | 5108.01 1031.63 >93.91
warm caches
RDF-3X 0.05 | 0.15 0.95 | 0.01 | 0.12 | 1.61 0.03 0.26 0.13
MonetDB 0.82 | 0.77 | 1171.82 | 0.56 | 0.63 * 0.59 | >15min/x* >4.39
PostgreSQL | 12.31 | 0.05 611.41 | 0.02 | 0.66 | > 8h | 5082.34 1013.01 >30.43

* system crashed, see description

Figure 11: Query run-times in seconds for the LibraryThing dataset

scheme. In VLDB, 2005.

E. Chu, J. L. Beckmann, and J. F. Naughton. The
case for a wide-table approach to manage sparse
relational data sets. In SIGMOD, 2007.

D. DeHaan and F. W. Tompa. Optimal top-down join
enumeration. In SIGMOD, 2007.

A. Eickler, C. A. Gerlhof, and D. Kossmann. A
performance evaluation of oid mapping techniques. In
VLDB, 1995.

C. A. Galindo-Legaria, A. Pellenkoft, and M. L.
Kersten. Fast, randomized join-order selection - why
use transformations? In VLDB, 1994.

L. Getoor and C. P. Diehl. Link mining: a survey.
SIGKDD Ezplorations, 7(2), 2005.

G. Graefe. Query evaluation techniques for large
databases. ACM Comput. Surv., 25(2), 1993.

A. Y. Halevy, M. J. Franklin, and D. Maier. Principles
of dataspace systems. In PODS, 2006.

A. Harth, J. Umbrich, A. Hogan, and S. Decker.
Yars2: A federated repository for querying graph
structured data from the web. In ISWC/ASWC, 2007.
O. Hartig and R. Heese. The sparql query graph
model for query optimization. In ESWC, 2007.

A. Hogan and A. Harth. The expertfinder corpus 2007
for the benchmarking development of expert-finding
systems. In International ExpertFinder Workshop,
2007.

D. Huynh, S. Mazzocchi, and D. R. Karger. Piggy
bank: Experience the semantic web inside your web
browser. J. Web Sem., 5(1), 2007.

Jena: a Semantic Web Framework for Java.
http://jena.sourceforge.net/.

M. Kersten and A. P. Siebes. An organic database
system. Technical report, CWI, 1999.

A. Maduko et al. Estimating the cardinality of rdf
graph patterns. In WWW, 2007.

G. Moerkotte and T. Neumann. Analysis of two
existing and one new dynamic programming algorithm
for the generation of optimal bushy join trees without
cross products. In VLDB, 2006.

Monetdb. http://monetdb.cwi.nl/.

Openrdf. http://www.openrdf.org/index.jsp.

Oracle technical network, semantic technologies
center. http://www.oracle.com/technology/tech/
semantic_technologies/index.html.

W3C: Resource Description Framework (RDF).
http://www.w3.org/RDF/.

658

(31]
(32]

(33]

(34]

(35]

(36]
(37]

(38]

(39]
(40]

(41]

[46]
(47]

(48]

RDFizers. http://simile.mit.edu/wiki/RDFizers.
ICS-FORTH RDF suite.
http://athena.ics.forth.gr:9090/RDF/.

F. Scholer et al. Compression of inverted indexes for
fast query evaluation. In SIGIR, 2002.

P. G. Selinger et al. Access path selection in a
relational database management system. In SIGMOD,
1979.

D. E. Simmen, E. J. Shekita, and T. Malkemus.
Fundamental techniques for order optimization. In
SIGMOD, 1996.

W3C: SPARQL Query Language for RDF.
http://www.w3.org/ TR /rdf-sparql-query/.

M. Steinbrunn et al. Bypassing joins in disjunctive
queries. In VLDB, 1995.

M. Stocker et al. Sparql basic graph pattern
optimization using selectivity estimation. In WWW,
2008.

M. Stonebraker et al. One size fits all? part 2:
Benchmarking studies. In CIDR, 2007.

F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a
core of semantic knowledge. In WWW, 2007.

Y. Theoharis, V. Christophides, and

G. Karvounarakis. Benchmarking database
representations of rdf/s stores. In International
Semantic Web Conference, 2005.

O. Udrea, A. Pugliese, and V. S. Subrahmanian. Grin:
A graph based rdf index. In AAAI 2007.

uniprot RDF.
http://dev.isb-sib.ch/projects/uniprot-rdf/.

N. Vanetik and E. Gudes. Mining frequent labeled and
partially labeled graph patterns. In ICDE, 2004.

T. Westmann et al. The implementation and
performance of compressed databases. SIGMOD
Record, 29(3), 2000.

K. Wilkinson et al. Efficient rdf storage and retrieval
in jena2. In SWDB, 2003.

W3C: RDF/OWL representation of WordNet.
http://www.w3.org/TR/wordnet-rdf/.

Yars2. http://sw.deri.org/svn/sw/2004/06/yars.

F. Zhu, X. Yan, J. Han, and P. S. Yu. gprune: A
constraint pushing framework for graph pattern
mining. In PAKDD, 2007.

J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2), 2006.

APPENDIX
A. SPARQL QUERIES

For completeness we include the SPARQL queries used in
our evaluation.

Barton Dataset. As the queries in [1] were given in
SQL, we had to reformulate them in SPARQL. We abbre-
viate some constants here, the queries are discussed in [1].
We had to extend the SPARQL projection clause a bit to
get equivalent queries. count is like distinct but includes
the number of occurances. duplicates is like count but only
returns bindings that are produced at least twice.

Q1: select count ?c where { 7a a 7c }

Q2: select count ?bp where { 7as a <Text>; ?bp ?bo.
filter (?bp in <predicate list>)}

Q3: select duplicates ?bp ?bo where { ?as a <Text>; ?bp
?bo. filter (?bp in <predicate list>) }

Q4: select duplicates ?bp ?bo where { 7as a <Text>; ?bp
7bo; <language> <is0639-2b/fre>. filter (?bp in <predi-
cate list>) }

Q5: select 7as 7co where { 7as <origin> <mar-
corg/DLC>; <records> 7bo. ?bo a ?co. filter (?co !=
<Text>) }

Q6: select count 7ap where { {7as a <Text>} union {?as
<records> []; a <Text>} ?as ?ap [|. filter (?ap in <predicate
list>)}

QT7: select ?as ?bo 7co where { 7as <point> "end”; <en-
coding> ?bo; a 7co }

Yago Dataset. We grouped the queries thematically into
three groups. The first group consists of oriented facts, e.g.:
”scientists from Switzerland with a doctoral advisor from
Germany” (Al). The second group is relationship oriented,
e.g. "two actors from England playing together in the same
movie” (B1). The third group examines relationships with
unknown predicates, e.g. ”two scientists related to the same
city” (C1).

A1: select 7gn ?fn where { 7gn <givenNameOf> ?p. ?fn
<familyNameOf> 7p. 7p <type> ”scientist”; <bornInLo-
cation> ?city; <hasDoctoralAdvisor> ?7a. ?7a <bornlnLo-
cation> ?city2. 7city <locatedIn> ”Switzerland”. ?city2
<locatedIn> ”Germany”. }

A2: select 7n where { 7a <isCalled> 7n; <type> "actor”;
<livesIn> 7city; <actedIn> 7ml; <directed> 7m2. 7city
<locatedIn> 7s. ?s <locatedIn> ”United_States”. 7ml
<type> "movie”; <producedInCountry> ”Germany”. ?7m2
<type> "movie”; <producedInCountry> ”Canada”. }

A3: select distinct ?n ?co where { 7p <isCalled> 7n. {
7p <type> actor” } union { ?p <type> "athlete” } 7p
<bornInLocation> ?c. 7c <locatedIn> 7s. 7s <locatedIn>
?co. Tp <type> 7t. filter(?t reaches ”politician” via <sub-
ClassOf>) }

B1: select distinct ?nl ?n2 where { ?al <isCalled> 7nl;
<livesIn> 7cl; <actedIn> 7movie. 7a2 <isCalled> 7n2;
<livesIn> 7¢2; <actedIn> ?movie. ?cl <locatedIn> ”Eng-
land”. ?c2 <locatedIn> ”England”. filter (7al != ?a2) }

B2: select 7nl 7n2 where { 7p1 <isCalled> n1; <bornIn-
Location> ?city; <isMarriedTo> 7p2. 7p2 <isCalled> 7n2;
<bornInLocation> ?city. }

B3: select distinct 7nl ?n2 where { 7nl1 <familyNameOf>
7pl. ™2 <familyNameOf> 7p2. 7pl <type> ”scientist”;
<hasWonPrize> ?7award; <bornlnLocation> 7?city. 7p2
<type> ”scientist”; <hasWonPrize> ?award; <bornInLo-

659

cation> ?city. filter (?pl != 7p2) }

C1: select distinct 7nl ?n2 where {?nl <familyNameOf>
7pl. M2 <familyNameOf> 7p2. ?pl <type> "scientist”; [
Pcity. 7p2 <type> ”scientist”; [| 7city. 7city <type> <site>
filter (?pl != 7p2) }

C2: select distinct 7n where { 7p <isCalled> 7n; [] ?cl.
[] 7c2. ?cl <type> <village>; <isCalled> ”London”. ?c2
<type> <site>; <isCalled> "Paris”. }

LibraryThing Dataset. Similar to the Yago setting
we used three query groups. First queries on books (e.g.,
A1l ”books tagged with romance, love, suspense, mystery”),
second queries on users (e.g., B1 "users who like crime nov-
els and Arthur Conan Doyle and have friends who like ro-
mances and Jane Austen”), and third queries with chains
over books and users (e.g., C1 "books tagged with romance
by users who have friends or friends of friends who have
tagged books with documentary which have also been tagged
with thriller”).

A1: select distinct ?title where { 7b <hasTitle> ?title. ||
<romance> 7h. [] <love> 7b. [] <suspense> 7b. [| <mys-
tery> ?b. }

A2: select distinct ?title where { 7b <hasTitle> ?title.
?u <romance> ?b; <love> 7b; <suspense> 7b. }

A3: select distinct ?title where { 7b <hasTitle> ?title;
<hasAuthor> 7a. ?u <mystery> 7b; <romance> []. 7b2
<hasAuthor> 7a. [] <children> ?b2. }

B1: select distinct ?u where { 7u <crime> [|; <hasFa-
voriteAuthor> ” Arthur Conan Doyle”; <hasFriend> 7f. ?f
<romance> []; <hasFavoriteAuthor> ”Jane Austen” . }

B2: select distinct ?7u where { { 7u <documentary> ?b1;
<suspense> 7bl } union { 7u <biography> ?b2; <sus-
pense> 7b2 } union { 7u <documentary> 7b3; <mystery>
?b3 } union { 7u <biography> 7b4; <mystery> ?b4 } }

B3: select distinct 7u where { 7u [] ?bl; [] 7b2; [] 7b3. []
<english> 7bl. [] <german> ?b2. [] <french> 7?b3. }

C1: select distinct ?u where { { 7u <romance> ?7bl;
<hasFriend> ?fl. ?f1 <biography> 7b2. [| <thriller> 7b2.
} union { ?u <romance> 7bl. <hasFriend> 7fl. ?f1 <has-
Friend> 7f2. 7f2 <biography> ?b2. [] <thriller> 7b2. }

C2: select distinct ?u 7u2 where { 7u <hasFavoriteAu-
thor> ?al; <america> [|; <hasInterestingLibrary> ?u2.
?bl <hasAuthor> 7al. [] <europe> ?bl. 7u2 <hasFa-
voriteAuthor> ?a2; <europe> []. 7b2 <hasAuthor> ?7a2.
[| <america> 7b2. }

