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ABSTRACT
In probabilistic databases, lineage is fundamental to both query
processing and understanding the data. Current systems s.a. Trio
or Mystiq use a complete approach in which the lineage for a tu-
ple t is a Boolean formula which represents all derivations of t. In
large databases lineage formulas can become huge: in one public
database (the Gene Ontology) we often observed 10MB of lineage
(provenance) data for a single tuple. In this paper we propose to
use approximate lineage, which is a much smaller formula keep-
ing track of only the most important derivations, which the system
can use to process queries and provide explanations. We discuss in
detail two specific kinds of approximate lineage: (1) a conservative
approximation called sufficient lineage that records the most impor-
tant derivations for each tuple, and (2) polynomial lineage, which
is more aggressive and can provide higher compression ratios, and
which is based on Fourier approximations of Boolean expressions.
In this paper we define approximate lineage formally, describe al-
gorithms to compute approximate lineage and prove formally their
error bounds, and validate our approach experimentally on a real
data set.

1. INTRODUCTION
In probabilistic databases, lineage is fundamental to processing

probabilistic queries and understanding the data. Many state-of-
the-art systems use a complete approach, e.g. Trio [7] or Mystiq
[16, 46], in which the lineage for a tuple t is a Boolean formula
which represents all derivations of t. In this paper, we observe
that for many applications, it is often unnecessary for the system
to painstakingly track every derivation. A consequence of ignor-
ing some derivations is that our system may return an approximate
query probability such as 0.701 ± 0.002, instead of the true value
of 0.7. An application may be able to tolerate this difference, es-
pecially if the approximate answer can be obtained significantly
faster. A second issue is that although a complete lineage approach
explains all derivations of a tuple, it does not tell us which facts are
the most influential in that derivation. In large data sets, a deriva-
tion may become extremely large because it aggregates together a
large number of individual facts. This makes determining which
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individual facts are influential an important and non-trivial task.
With these observations in mind, we advocate an alternative to

complete lineage called approximate lineage. Informally, the spirit
of approximate lineage is to compress the data by tracking only the
most influential facts in the derivation. This approach allows us to
both efficiently answer queries, since the data is much smaller, and
also to directly return the most important derivations. We motivate
our study of approximate lineage by discussing two application do-
mains: (1) large scientific databases and (2) similarity data. We
show that approximate lineage can compress the data by up to two
orders of magnitude, e.g. 100s of MB to 1MB, while providing
high-quality explanations.

Application (1): Large Scientific databases In large scientific
databases, lineage is used to integrate data from several sources
[12]. These sources are combined by both large consortia, e.g.
[14], and single research groups. A key challenge faced by scien-
tists is that facts from different sources may not be trusted equally.
For example, the Gene Ontology Database (GO) [14] is a large
(4GB) freely available database of genes and proteins that is in-
tegrated by a consortium of researchers. For scientists, the most
important data stored in GO is a set of associations between pro-
teins and their functions. These associations are integrated by GO
from many sources, such as PubMed articles [45], raw experimen-
tal data, data from SWISS-PROT [9], and automatically inferred
matchings. GO tracks the provenance of each association, using
what we call atoms. An atom is simply a tuple that contains a de-
scription of the source of a statement. An example atom is “Dr. X’s
PubMed article PMID:12593804”. Tracking provenance is crucial
in GO because much of the data is of relatively low quality: ap-
proximately 96% of the more than 19 million atoms stored in GO
are automatically inferred. To model these trust issues, our system
associates each atom with a probability whose value reflects our
trust in that particular annotation. Fig. 1 illustrates such a database.

Example 1.1 A statement derivable from GO is, “Dr. X claimed
in PubMed PMID:12593804 that the gene Argonaute2 (AGO2) is
involved in cell death”[26]. In our model, one way to view this
is that there is a fact, the gene Argonaute2 is involved in cell
death and there is an atom, Dr. X made the claim in PubMed
PMID:12593804. If we trust Dr. X, then we assign a high confi-
dence value to this atom. This is reflected in Fig. 1 since the atom,
x1, has a high probability, 3

4 . More complicated annotations can
be derived, e.g. via query processing. An example is the view V in
Fig. 1, that asks for gene products that share a process with the gene
‘Aac11’. The tuple, AGO2 (t6), that appears in V is derived from
the facts that both AGO2 and Aac11 are involved in “cell death” (t1

and t4) and “embryonic development” (t2 and t5); these tuples use
the atoms x1 (twice), x2 and x3 shown in the Annotations table.

A benefit of annotating the data with confidence scores is that
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Process (P) Annotations (Atoms)

Gene Product Process λ
(t1) AGO2 “Cell Death” x1

(t2) AGO2 “Embryonic Development” x1

(t3) AGO2 “Gland development” x2

(t4) Aac11 “Cell Death” x2

(t5) Aac11 “Embroynic Development” x3

Atom Code Description P
x1 TAS “Dr. X’s PubMed PMID:12593804” 3

4
x2 NAS “Dr. Y’s RA Private Communication” 1

4
x3 IEA “Inferred from Computational Similarity” 1

8

Level I DB (Complete Lineage) Level II Lineage (Approximate)

V(y) D P(x, y), P(‘Aac11’, y), x , ‘Aac11’
Gene Product λ

(t6) AGO2 (x1 ∧ x2) ∨ (x1 ∧ x3)

Type Lineage Formula
Sufficient λ̃S

t6 = x1 ∧ x2

Arithmetization λ̃A
t6 = x1(1 − (1 − x2)(1 − x3))

Polynomial λ̃P
t6 =

33
128 +

21
32 (x2 −

1
4 ) + 9

16 (x3 −
1
8 )

Figure 1: Process (P) relates each gene product to a process, e.g. AG02 is involved in “cell death”. Each tuple in Process has
an annotation from the set of atoms. An atom, xi for i = 1, 2, 3, is a piece of evidence that has an associated probability, e.g. x1

is the proposition that we trust “Dr. X.’s PubMed article PMID:12593804”, which we assign probability 3
4 . V is a view that asks for

“Gene Products that share a process with a product ‘Aac11”’. Below V’s definition is its output in the original database with a complete
approach. At the right examples of approximate lineage functions we consider are listed. The compressed database is obtained by
replacing λ with one of these functions, e.g. λ̃S

t6 . This database is inspired by the Gene Ontology (GO) database [14].The terms (Level
I) and (Level II) are specific to our approach and defined in (Sec. 1.1).

the scientist can now obtain the reliability of each query answer.
To compute the reliability value in a complete approach, we may
be forced to process all the lineage for a given tuple. This is chal-
lenging, because the lineage can be very large. This problem is not
unique to GO. For example, [13] reports that a 250MB biological
database has 6GB of lineage. In this work, we show how to use
approximate lineage to effectively compress the lineage more than
two orders of magnitude, even for extremely low error rates. Im-
portantly, our compression techniques allow us to process queries
directly on the compressed data. In our experiments, we show that
this can result in up to two orders of magnitude more efficient pro-
cessing than a complete approach.

An additional important activity for scientists is understanding
the data; the role of the database in this task is to provide interactive
results to hone the scientist’s knowledge. As a result, we cannot
tolerate long delays. For example, the lineage of even a single tuple
in the gene ontology database may be 9MB. Consider a scientist
who finds the result of V in Fig 1 surprising: One of her goals may
be to find out why t6 is returned by the system, i.e. she wants a
sufficient explanation as to why AGO2 was returned. The system
would return that the most likely explanation is that we trust Dr.X
that AGO2 is related to cell death (t1) and Dr.Y’s RA that Aac11
is also related to cell death (t4). An alternative explanation uses t1

and the automatic similarity computation (t5). However, the first
explanation is more likely, since the annotation associated with t4

(x2) is more likely than the annotation of t5 (x3), here 1
4 = p(x2) ≥

p(x3) = 1
8 .

A scientist also needs to understand the effect of her trust policy
on the reliability score of t6. Specifically, she needs to know which
atom is the most influential to computing the reliability for t6. In
this case, the scientist is relatively sure that AGO2 is associated
with cell death, since it is assigned a score of 3

4 . However, the
key new clement leading to this surprising result is that Aac11 is
also associated “cell death”, which is supported by the atom x2,
the statement of Dr. Y’s RA. Concretely, x2 is the most influential
atom because changing x2’s value will change the reliability of t6

more than changing any other atom. In our experiments, we show
that we can find sufficient explanations with high precision, e.g. we
can find the top 10 influential explanations with between 70% and
100% accuracy. Additionally, we can find influential atoms with

high precision (80% − 100% of the top 10 influential atoms). In
both cases, we can conduct these exploration tasks without directly
accessing the raw data.

Application (2): Managing Similarity Scores Applications
that manage similarity scores can benefit from approximate lineage.
Such applications include managing data from object reconcilia-
tion procedures [3, 34] or similarity scores between users, such as
iLike.com. In iLike, the system automatically assigns a music com-
patibility score between friends. The similarity score between two
users, e.g. Bob and Joe, has a lineage: It is a function of many
atomic facts, e.g. which songs they listen to and how frequently,
which artists they like, etc. All of these atomic facts are combined
into a single numeric score which is then converted into quantita-
tive buckets, e.g. high, medium and low. Intuitively, to compute
such rough buckets, it is unnecessary to precisely maintain every
bit of lineage. However, this painstaking computation is required
by a complete approach. In this paper, we show how to use approx-
imate lineage to effectively compress object reconciliation data in
the IMDB database [35].

1.1 Overview of our Approach
At a high level, both of our example applications, large scientific

data and managing similarity scores, manage data that is annotated
with probabilities. In both applications, we propose a two-level
architecture: The Level I database is a large, high-quality database
that uses a complete approach and is queried infrequently. The
Level II database is much smaller, and uses an approximate lineage
system. A user conducts her query and exploration tasks on the
Level II database, which is the focus of this paper.

The key technical idea of this work is approximate lineage,
which is a strict generalization of complete lineage. Abstractly,
lineage is a function λ that maps each tuple t in a database to a
Boolean formula λt over a fixed set of Boolean atoms. For example
in Fig. 1, the lineage of the tuple t6 is λt6 = (x1 ∧ x2)∨ (x1 ∧ x3). In
this paper, we propose two instantiations of approximate lineage: a
conservative approximation, sufficient lineage, and a more aggres-
sive approximation, polynomial lineage.

In sufficient lineage, each lineage function is replaced with a
smaller formula that logically implies the original. For example, a
sufficient lineage for t6 is λ̃S

t6 = x1 ∧ x2. The advantage of suffi-
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cient lineage is that it can be much smaller than standard lineage,
which allows query processing and exploration takes to proceed
much more efficiently. For example, in our experiments process-
ing a query on an uncompressed data took 20 hours, while it com-
pleted in 30m on a database using sufficient lineage. Additionally,
understanding query reliability is easy with sufficient lineage: the
reliability computed for a query q is always less than or equal to
the reliability computed on the original Level I database. However,
only monotone lineage functions can be represented by a sufficient
approach.

The second generalization is polynomial lineage which is a
function that maps each tuple t in a database to a real-valued poly-
nomial on Boolean variables, denoted λ̃P

t . An example polynomial
lineage is λ̃P

t6 in Fig. 1. There are two advantages of using real-
valued polynomials instead of Boolean-valued functions: (1) pow-
erful analytic techniques already exist for understanding and ap-
proximating real-valued polynomials, e.g. Taylor series or Fourier
Series, and (2) any lineage function can be represented by polyno-
mial approximate lineage. Polynomial lineage functions can allow
a more accurate semantic than sufficient lineage in the same amount
of space, i.e. , the difference in value between computing q on the
Level I and Level II database is small. In Sec. 5 we demonstrate a
view in GO such that polynomial lineage achieves a compression
ratio of 171 : 1 and sufficient lineage achieves 27 : 1 compression
ratio with error rate less than 10−3 (Def. 2.10).

Although polynomial lineage can give better compression ratios
and can be applied to a broader class of functions, there are three
advantages of sufficient lineage over polynomial lineage: (1) suf-
ficient lineage is syntactically identical to complete lineage, and
so can be processed by existing probabilistic relational databases
without modification, e.g. Trio and Mystiq. (2) The semantic of
sufficient lineage is easy to understand since the value of a query
is a lower bound of the true value, while a query may have either
a higher or lower value using polynomial lineage. (3) Our exper-
iments show that sufficient lineage is less sensitive to skew, and
can result in better compression ratios when the probability assign-
ments to atoms are very skewed.

In both lineage systems, there are three fundamental technical
challenges: creating it, processing it and understanding it. In this
paper, we study these three fundamental problems for both forms
of approximate lineage.

1.2 Contributions, Validation and Outline
We show that we can (1) efficiently construct both types of ap-

proximate lineage, (2) process both types of lineage efficiently and
(3) use approximate lineage to explore and understand the data.

• In Sec. 2, we define the semantics of approximate lin-
eage, motivate the technical problems that any approxi-
mate lineage system must solve and state our main results.
The technical problems are: creating approximate lineage
(Prob. 1); explaining the data, i.e. finding sufficient expla-
nations (Prob. 2), finding influential variables (Prob. 3); and
query processing with approximate lineage (Prob. 4).

• In Sec. 3, we define our implementation for one type of ap-
proximate lineage, sufficient lineage. This requires that we
solve the three problems above: we give algorithms to con-
struct it (Sec. 3.2), to use it to understand the data (Sec. 3.3),
and to process further queries on the data (Sec. 3.4).

• In Sec. 4, we define our proposal for polynomial approximate
lineage; our proposal brings together many previous results
in the literature to give algorithms to construct it (Sec. 4.2),
to understand it (Sec. 4.3) and to process it.

• In Sec. 5, we provide experimental evidence that both ap-
proaches work well in practice; in particular, we show that
approximate lineage can compress real data by orders of
magnitude even with very low error, (Sec. 5.2), provide
high quality explanations (Sec. 5.3) and provide large perfor-
mance improvements (Sec. 5.4). Our experiments use data
from the Gene Ontology database [14, 52] and a probabilistic
database of IMDB [35] linked with reviews from Amazon.

We discuss related work in Sec. 6 and conclude in Sec. 7.

2. STATEMENT OF RESULTS
We first give some background on lineage and probabilistic

databases, and then formally state our problem with examples.

2.1 Preliminaries: Queries and Views
In this paper, we consider conjunctive queries and views written

in a datalog-style syntax. A query q is a conjunctive rule written
q D g1, . . . , gn where each gi is a subgoal, that is, a relational pred-
icate. For example, q1 D R(x), S (x, y, ‘a’) defines a query with a
join between R and S , a variable y that is projected away, and a con-
stant ‘a’. For a relational database W, we write W |= q to denote
that W entails q.

2.2 Lineage and Probabilistic Databases
In this section, we adopt a viewpoint of lineage similar to c-tables

[29, 36]; we think of lineage as a constraint that tells us which
worlds are possible. This viewpoint results in the standard possible
worlds semantics for probabilistic databases [16, 20, 29].

D 2.1 (L F). An atom is a Boolean
proposition about the real world, e.g. Bob likes Herbie Hancock.
Fix a relational schema σ and a set of atoms A. A lineage func-
tion, λ, assigns to each tuple t conforming to some relation in σ, a
Boolean expression overA, which is denoted λt. An assignment is
a functionA → {0, 1}. Equivalently, it is a subset ofA, denoted A,
consisting of those atoms that are assigned true.

Fig. 1 illustrates tuples and their lineages. The atoms represent
propositions about data provenance. For example, the atom x1 in
Fig. 1 represents the proposition that we trust “Dr. X’s PubMed
PMID:12593804”. Of course, atoms can also represent more
coarsely grained propositions, “A scientist claimed it was true” or
finely-grained facts “Dr. X claimed it in PubMed 18166081 on
page 10”. In this paper, we assume that the atoms are given; we
briefly discuss this at the end the current section..

To define the standard semantics of lineage, we define a possible
world W through a two-stage process: (1) select a subset of atoms,
A, i.e. an assignment, and (2) For each tuple t, if λt(A) evaluates to
true then t is included in W. This process results in an unique world
W for any choice of atoms A.

Example 2.2 If we select A13 = {x1, x3}, that is, we trust Dr. X
and Dr. Y’s RA, but distrust the similarity computation, then
W1256 = {t1, t2, t5, t6} is the resulting possible world. The reason
is that for each ti ∈ W1256, λti is satisfied by the assignment corre-
sponding to A13 and for each t j < W1256, λt j is false. In contrast,
W125 = {t1, t2, t5} is not a possible world because in W125, we know
that AGO2 and Aac11 are both associated with Cell Death, and so
AGO2 should appear in the view (t6). In symbols, λt6 (W125) = 1,
but t6 < W125.

We capture this example in the following definition:
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D 2.3. Fix a schema σ. A world is a subset of tuples
conforming to σ. Given a set of atoms A and a world W, we say
that W is a possible world induced by A if it contains exactly those
tuples consistent with the lineage function, that is, for all tuples
t, λt(A) ⇐⇒ t ∈ W. Moreover, we write λ(A,W) to denote the
Boolean function that takes value 1 if W is a possible world induced
by A. In symbols,

λ(A,W) def
=
∧
t:t∈W

λt(A)
∧
t:t<W

(1 − λt(A)) (1)

Eq. 1 is important, because it is the main equation that we general-
ize to get semantics for approximate lineage.

We complete the construction of a probabilistic database as a dis-
tribution over possible worlds. We assume that there is a function
p that assigns each atom a ∈ A to a probability score denoted p(a).
In Fig. 1, x1 has been assigned a score p(x1) = 3

4 , indicating that we
are very confident in Dr. X’s proclamations. An important special
case is when p(a) = 1, which indicates absolute certainty.

D 2.4. Fix a set of atoms A. A probabilistic assign-
ment p is a function from A to [0, 1] that assigns a probability
score to each atom a ∈ A. A probabilistic databaseW is a prob-
abilistic assignment p and a lineage function λ that represents a
distribution µ over worlds defined as:

µ(W) def
=
∑
A⊆A

λ(A,W)

∏
i:ai∈A

p(ai)


∏

j:a j<A

(1 − p(a j))


Given any Boolean query q onW, the marginal probability of q

denoted µ(q) is defined as

µ(q) def
=
∑

q:W |=q

µ(W) (2)

i.e. the sum of the weights over all worlds that satisfy q.

Since for any A, there is a unique W such that λ(A,W) = 1, µ
is a probability measure. In all of our semantics, the semantic for
queries will be defined similarly to Eq. 2.

Example 2.5 Consider a simple query on our database:

q1() D P(x, ‘Gland Development’), V(x)

This query asks if there exists a gene product x, that is associated
with ‘Gland Development’, and also has a common function with
‘Aac11’, that is it also appears in the output of V . On the data
in Fig. 1, q1 is satisfied on a world W if and only if (1) AGO2 is
associated with Gland development and (2) AGO2 and Aac11 have
a common function, here, either Embryonic Development or Cell
Death. The subgoal requires that t3 be present and the second that
t6 be present. The formula λt3∧λt6 simplifies to x1∧x2, i.e. we must
trust both Dr.X and Dr.Y’s RA to derive q1, which has probability
3
4 ·

1
4 =

3
16 ≈ 0.19.

We now generalize the standard (complete) semantics to give ap-
proximate semantics; the approximate lineage semantics are used
to give semantics to the compressed Level II database.

Sufficient Lineage Our first form of approximate lineage is
called sufficient lineage. The idea is simple: Each λt is replaced
by a Boolean formula λ̃S

t such that λ̃S
t =⇒ λt is a tautology. In-

tuitively, we think of λ̃S
t as a good approximation to λt if λS

t and
λt agree on most assignments. We define the function λ̃S (A,W)
following Eq.1:

λ̃S (A,W) def
=
∧
t:t∈W

λ̃S
t (A)

∧
t:t<W

(1 − λ̃S
t (A)) (1s)

The formula simply replaces each tuple t’s lineage, λt with suf-
ficient lineage, λ̃S

t and then checks whether W is a possible world
for A given the sufficient lineage.This, in turn, defines a new prob-
ability distribution on worlds µ̃S :

µ̃S (W) def
=
∑
A⊆A

λ̃S (A,W)

∏
i:ai∈A

p(ai)


∏

j:a j<A

(1 − p(a j))


Given a query q, we define µ̃S (q) exactly as in Eq. 2, with µ syn-

tactically replaced by µ̃S , i.e. as a weighted sum over all worlds
W satisfying q. Two facts are immediate: (1) µ̃S is a probabil-
ity measure and (2) for any a conjunctive (monotone) query q,
µ̃S (q) ≤ µ(q). Sufficient lineage is syntactically the same as stan-
dard lineage. Hence, it can be used to process queries with existing
relational probabilistic database systems, such as Mystiq and Trio.
If the lineage is a large DNF formula, then any single disjunct is a
sufficient lineage. However, there is a trade off between choosing
sufficient lineage that is small and lineage that is a good approxi-
mation. In some cases, it is possible to get both. For example, the
lineage of a tuple may be less than 1% of the original lineage, but
still be a very precise approximation.

Example 2.6 We evaluate q from Ex. 2.5. In Fig. 1, a suffi-
cient lineage for tuple t6 is trusting Dr. X and Dr. Y’s RA, that
is λ̃S

t6 = x1 ∧ x2. Thus, q is satisfied exactly with this probabil-
ity which is ≈ 0.19. In this example, the sufficient lineage com-
putes the exact answer, but this is not the general case. In con-
trast, if we had chosen λ̃S

t6 = x1 ∧ x3, i.e. our explanation was
trusting Dr.X and the matching, we would have computed that
µ̃S (q) = 3

4 ·
1
8 =

3
32 ≈ 0.09 ≤ 0.19.

One can also consider the dual form of sufficient lineage, nec-
essary lineage, where each formula λt is replaced with a Boolean
formula λ̃N

t , such that λt =⇒ λ̃N
t is a tautology. Similar proper-

ties hold for necessary lineage: For example, µ̃N is an upper bound
for µ, which implies that using necessary and sufficient lineage in
concert can provide the user with a more robust understanding of
query answers. For the sake of brevity, we shall focus on sufficient
lineage for the remainder of the paper.

Polynomial Lineage In contrast to both standard and sufficient
lineages that map each tuple to a Boolean function, polynomial ap-
proximate lineage maps each tuple to a real-valued function. This
generalization allows us to leverage approximation techniques for
real-valued functions, such as Taylor and Fourier series.

Given a Boolean formula λt on Boolean variables x1, . . . , xn an
arithmetization is a real-valued polynomial λA

t (x1, . . . , xn) in real
variables such that (1) each variable xi has degree 1 in λA

t and (2)
for any x1, . . . , xn ∈ {0, 1}n, we have λt(x1, . . . , xn) = λA

t (x1, . . . , xn)
[42, p. 177]. For example, an arithmetization of xy∨ xz is x(1− (1−
y)(1−z)) and an arithmetization of xy∨ xz∨yz is xy+ xz+yz−2xyz.
Fig. 1 illustrates an arithmetization of the lineage formula for t6,
which is denoted λA

t6 .
In general, the arithmetization of a lineage formula may be ex-

ponentially larger than the original lineage formula. As a result, we
do not use the arithmetization directly; instead, we approximate it.
For example, an approximate polynomial for λt6 is λ̃P

t6 in Fig. 1.
To define our formal semantics, we define λ̃P(A,W) generalizing

Eq. 1 by allowing λ̃P to assign a real-valued, as opposed to Boolean,
weight.

λ̃P(A,W) def
=
∏
t:t∈W

λ̃P
t (A)

∏
t:t<W

(1 − λ̃P
t (A)) (1p)
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In addition to assigning real-valued weights to worlds, as op-
posed to Boolean weights, Eq. 1p maps an assignment of atoms,
A, to many worlds by polynomial lineage, instead of to only a sin-
gle world, as is done in the standard approach and sufficient ap-
proaches.

Example 2.7 In Fig. 1, W1256 is a possible world since
λ(A,W1256) = 1 for A = {x1, x3}. In contrast, λ̃P(A,W1256) ,
1. To see this, λ̃P(A,W1256) simplifies to λ̃P

t6 (A,W1256), since all
other lineage functions have {0, 1} values. Evaluating λ̃P

t6 (A) gives
33
128 +

21
32 (0 − 1

4 ) + 9
16 (1 − 1

8 ) = 75
128 ≈ 0.58. Further, approximate

lineage functions may assign non-zero mass even to worlds which
are not possible. For example W125 is not a possible world, but
λ̃P(A,W13) = 1 − λt6 (A)(1 − 75

128 ) , 0.

The second step in the standard construction is to define a prob-
ability measure µ (Def. 2.4); In approximate lineage, we define a
function µ̃P – which may not be a probability measure – that assigns
arbitrary real-valued weights to worlds. Here, pi = p(ai) where p
is a probability assignment as in Def. 2.4:

µ̃P(W) def
=
∑
A⊆A

λ̃(A,W)

∏
i:ai∈A

pi


∏

j:a j<A

(1 − p j)

 (3)

Our approach is to search for λ̃P that is a good approximation,
that is if for any q, we have µ̃(q) ≈ µ(q), i.e. the value computed
using approximate lineage is close to the standard approach. Sim-
ilar to sufficient lineage, we get a query semantic by syntactically
replacing µ by µ̃P in Eq. 2. However, the semantics for polynomial
lineage is more general than the two previous semantics, since an
assignment is allowed map to many worlds.

Example 2.8 Continuing Ex. 2.7, in the original data, µ(W1256) =
9

128 . However, µ̃P assigns W1256 a different weight:

µ̃P(W1256) = λ̃P(W1256)(
3
4

)(
1
8

)(1 −
1
4

) =
75
128

9
128

Recall q1 from Ex. 2.5; its value is µ(q1) ≈ 0.19. Using Eq. 3,
we can calculate that the value of q1 on the Level II database using
polynomial linage in Fig. 1 is µ̃P(q1) ≈ 0.17. In this case the error is
≈ 0.02. If we had treated the tuples in the database independently,
we would get the value 1

4 ∗
11
32 ≈ 0.06 – an error of 0.13, which is an

order of magnitude larger error than an approach using polynomial
lineage. Further, λ̃P is smaller than the original Boolean formula.

2.3 Problem Statements and Results
In our approach, the original Level I database, that uses a com-

plete lineage system, is lossily compressed to create a Level II
database, that uses an approximate lineage system; we then per-
form all querying and exploration on the Level II database. To re-
alize this goal, we need to solve three technical problems (1) create
a “good” Level II database, (2) provide algorithms to explore the
data given the approximate lineage and (3) process queries using
the approximate lineage.

Internal Lineage Functions Although our algorithms apply to
general lineage functions, many of our theoretical results will con-
sider an important special case of lineage functions called internal
lineage functions [7]. In internal linage functions, there are some
tables (base tables) such that every tuple is annotated with a single
atom, e.g. P in Fig. 1. The database also contains derived tables
(views), e.g. V in Fig. 1. The lineage for derived tables is derived
using the definition of V and tuples in base tables. For our pur-
poses, the significance of internal lineage is that all lineage is a

special kind of Boolean formula, a k-monotone DNFs (k-mDNF).
A Boolean formula is a k-mDNF if it is a disjunction of monomi-
als each containing at most k literals and no negations. The GO
database is caputred by an internal lineage function.

P 2.9. If t is a tuple in a view V such that, when un-
folded, references k (not necessarily distinct) base tables, then the
lineage function λt is a k-mDNF.

One consequence of this is that k is typically small. And so, as in
data complexity [1], we consider k a small constant. For example,
an algorithm is considered efficient if it is at most polynomial in the
size of the data, but possibly exponential in k.

2.3.1 Creating Approximate Lineage
Informally, approximate lineage is good if (1) for each tuple t the

function λ̃t is a close approximation of λt, i.e. λt and λ̃t are close
on many assignments, and (2) the size of λ̃t is small for every t.
Here, we write λ̃t (without a superscript) when a statement applies
to either type of approximate lineage.

D 2.10. Fix a set of atoms A. Given a probabilistic
assignment p forA, we say that λ̃t is an ε-approximation of λt if

Ep[(λ̃t − λt)2] ≤ ε

where Ep denotes the expectation over assignments to atoms in-
duced by the probability function p.

Our goal is to ensure that the lineage function for every tuple in
the database has an ε-approximation. Def. 2.10 is used in compu-
tational learning, e.g. [40, 50], because an ε-approximation of a
function disagrees only a few inputs:

Example 2.11 Let y1 and y2 be atoms such that p(yi) = 0.5 for i =
1, 2. Consider the lineage function for some t, λt(y1, y2) = y1 ∨ y2

and an approximate lineage function λ̃S
t (y1, y2) = λ̃P

t (y1, y2) = y1.
Here, λt and λ̃S

t (or λ̃P
t ) differ on precisely one of the four as-

signments, i.e. y1 = 0 and y2 = 1. Since all assignments are
equally weighted, λ̃S

t is a 1/4-approximation for λ. In general, if λ1

and λ2 are Boolean functions on atoms A = {y1, . . . , yn} such that
p(yi) = 0.5 for i = 1, . . . , n, then λ1 is an ε approximation of λ2 if
λ1 and λ2 differ on less than an ε fraction of assignments.

Our first problem is constructing lineage that has arbitrarily small
error approximation and occupies a small amount of space.

P 1 (C L). Given a linage function
λt and an input parameter ε, can we efficiently construct an ε-
approximation for λt that is small?

For internal lineage functions, we show how to construct ap-
proximate lineage efficiently that is provably small for both suf-
ficient lineage (Sec. 3.2) and polynomial lineage (Sec. 4.2), under
the technical assumption that the atoms have probabilities bounded
away from 0 and 1, e.g. we do not allow probabilities of the form
n−1 where n is the size of the database. Further, we experimen-
tally verify that sufficient lineage offers compression ratios of up to
60 : 1 on real datasets and polynomial lineage offers up to 171 : 1
even with stringent error requirements, e.g. ε = 10−3.

2.3.2 Understanding Lineage
Recall our scientist from the introduction, she is skeptical of an

answer the database produces, e.g. t6 in Fig. 1, and wants to un-
derstand why the system believes that t6 is an answer to her query.
We informally discuss the primitive operations our system provides
to help her understand t6 and then define the corresponding formal
problems.
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Sufficient Explanations She may want to know the possible ex-
planations for a tuple, i.e. a sufficient reason for the system
to return t6. There are many explanations and our technical
goal is to find the top-k most likely explanations from the
Level II database.

Finding influential atoms Our scientist may want to know which
atoms contributed to returning the surprising tuple, t6. In a
complicated query, the query will depend on many atoms, but
some atoms are more influential than others. Informally, an
atom x1 is influential if it there are many assignments such
that it is the “deciding vote”, i.e. changing the assignment
of x1 changes whether t6 is returned. Our technical goal is
to return the most influential atoms directly from the Level II
database, without retrieving the much larger Level I database.

Intuitively, sufficient lineage supports sufficient explanations bet-
ter than polynomial lineage because the lineage formula is a set of
good sufficient explanations. In contrast, our proposal for polyno-
mial lineage supports finding the influential tuples more naturally.
We now discuss these problems more formally:

Sufficient Explanations An explanation for a lineage function
λt is a minimal conjunction of atoms τt such that for any assignment
a to the atoms, we have τ(a) =⇒ λt(a). The probability of an ex-
planation, τ, is P[τ]. Our goal is to retrieve the top-k explanations,
ranked by probability, from the lossily-compressed data.

P 2. Given a tuple t, calculate the top-k explanations,
ranked by their probability using only the Level II database.

This problem is straightforward for sufficient lineage, but chal-
lenging for polynomial lineage. The first reason is that polynomials
seem to throw away information about monomials. For example,
λ̃P

t6 in Fig. 1 does not mention the terms of any monomial. Fur-
ther complicating matters is that even computing the expectation of
λ̃P

t6 may be intractable, and so we have to settle for approximations
which introduce error. As a result, we must resort to statistical tech-
niques to guess if a formula τt is a sufficient explanation. In spite of
these problems, we are able to use polynomial lineage to retrieve
sufficient explanations with a precision of up to 70% for k = 10
with error in the lineage, ε = 10−2.

Finding Influential Atoms The technical question is: Given a
formula, e.g. λt6 , which atom is most influential in computing λt6 ’s
value? We define the influence of xi on λt, denoted Infxi (λt), as:

Infxi (λt)
def
= P[λt(A) , λt(A ⊕ {i})] (4)

where ⊕ denotes the symmetric difference. This definition, or a
closely related one, has appeared has appeared in wide variety of
work, e.g. underling causality in the AI literature [31, 44], influ-
ential variables in the learning literature [40], and critical tuples in
the database literature [41, 47].

Example 2.12 What influence does x2 have on tuple t6 presence,
i.e. what is the value of Infx1 (λt6 )? Informally, x2 can only change
the value of λt6 if x1 is true and x3 is false. This happens with
probability 3

4 (1− 1
8 ) = 21

32 , which is not coincidentally the coefficient
of x2 in λ̃t6 .

The formal problem is to find the top k most influential variables,
i.e. the variables with the k highest influences:

P 3. Given a tuple t, efficiently calculate the k most in-
fluential variables in λt using only the level II database.

This problem is challenging because the Level II database is a
lossily-compressed version of the database and so some informa-
tion needed to exactly answer Prob. 3 is not present. The key ob-
servation for polynomial lineage is that the coefficients we retain
are the coefficients of influential variables; this allows us to com-
pute the influential variables efficiently in many cases. We show
that we can achieve an almost-perfect average precision for the top
10. For sufficient lineage, we are able to give an approach with
bounded error to recover the influential coefficients.

2.3.3 Query Processing with Approximate Lineage
Our goal is to efficiently answer queries directly on the Level II

database, using sampling approaches:

P 4. Given an approximate lineage function λ̃ and a
query q, efficiently evaluate µ̃(q) with low-error.

Processing sufficient lineage is straightforward using existing
complete techniques; However, we are able to prove that the er-
ror will be small. We verify experimentally that we can answer
queries with low-error 10−3, 2 orders of magnitude more quickly
than a complete approach. For polynomial lineage, we are able to
directly adapt techniques form the literature, such as [8].

2.4 Discussion
The acquisition of atoms and trust policies is an interesting fu-

ture research direction. Since our focus is on large databases, it is
impractical to require users to label each atom manual. One ap-
proach is to define a language for specifying trust policies. Such
a language could do double duty, by also specifying correlations
between atoms. We consider the design of a policy language to be
important future work. In this paper, we assume that the atoms are
given, the trust policies are explicilty specified, and all atoms are
independent.

3. SUFFICIENT LINEAGE
We define our proposal for sufficient lineage that replaces a com-

plicated lineage formula λt, by a simpler (and smaller) formula λ̃S
t .

We construct λ̃S
t using several sufficient explanations for λt.

3.1 Sufficient Lineage Proposal
Given an internal lineage function for a tuple t, that is, a mono-

tone k-DNF formula λt, our goal is to efficiently find a sufficient
lineage λ̃S

t that is small and is an ε-approximation of λt (Def. 2.10).
This differs from L-minimality [6] that looks for a formula that is
equivalent, but smaller. In contrast, we look for a formula that
may only approximate the original formula. More formally, the
size of a sufficient lineage λ̃S

t is the number of monomials it con-
tains, and so is small if it contains few monomials. The definition
of ε-approximation (Def. 2.10) simplifies for sufficient lineage and
gives us intuition how to find good sufficient lineage.

P 3.1. Fix a Boolean formula λt and let λ̃S
t be a suf-

ficient explanation for λt, that is, for any assignment A, we have
λ̃S

t (A) =⇒ λt(A). In this situation, the error function sim-
plifies to E[λt] − E[λ̃S

t ]; formally, the following equation holds
E[(λt − λ̃

S
t )2] = E[λt] − E[λ̃S

t ]

Prop. 3.1 tells us that to get sufficient lineage with the low error, it
is enough to look for sufficient formula λ̃t with high probability.

P S. The formula (λt − λ̃
S
t )2 is non-zero only if λt ,

λ̃S
t , which means that λt = 1 and λ̃S

t = 0, since λ̃S
t (A) =⇒ λt(A)

for any A. Because both λt and λ̃S
t are Boolean, (λt − λ̃

S
t )2 ∈ {0, 1}

and simplifies to λt − λ̃
S
t . We use linearity of E to conclude.
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Scope of Analysis In this section, our theoretical analysis con-
siders only internal lineage functions with constant bounded prob-
ability distributions; a distribution is constant bounded if there is a
constant β such that for any atom a, p(a) > 0 implies that p(a) ≥ β.
To justify this, recall that in GO, the probabilities are computed
based on the type of evidence: For example, a citation in PubMed is
assigned 0.9, while an automatically inferred matching is assigned
0.1. Here, β = 0.1 and is independent of the size of the data. In the
following discussion, β will always stand for this bound and k will
always refer to the maximum number of literals in any monomial
of the lineage formula. Further, we shall only consider sufficient
lineage which are subformulae of λt. This choice guarantees that
the resulting formula is sufficient lineage and is also simple enough
for us to analyze theoretically.

3.2 Constructing Sufficient Lineage
The main result of this section is an algorithm (Alg. 3.2.1) that

constructs good sufficient lineage, solving Prob. 1. Given an error
term, ε, and a formula λt, Alg. 3.2.1 efficiently produces an approx-
imate sufficient lineage formula λ̃S

t with error less than ε. Further,
Thm. 3.2 shows that the size of the formula produced by Alg. 3.2.1
depends only on ε, k and β – not on the number of variables or
number of terms in λt; implying that the formula is theoretically
small.

Algorithm 3.2.1 Suff(λt, ε) constructs sufficient lineage
Input: A monotone k+1-DNF formula λt and an error ε > 0
Output: λ̃S

t , a small sufficient lineage ε-approximation.
1: Find a matching M, greedily. (*A subset of monomials*)
2: if P[λS

t ] − P[M] ≤ ε then (*If λt is a 1-mDNF always true*)
3: Let M = m1 ∨ · · · ∨ ml s.t. i ≤ j implies P[mi] ≥ P[m j]

4: return Mr
def
= m1, . . . ,mr, r is min s.t. P[λt] − P[Mr] ≤ ε.

5: else
6: Select a small cover C = {x1, . . . , xc} ⊆ var(M)
7: Arbitrarily assign each monomial to a xc ∈ C that covers it
8: for each xi ∈ C do
9: λS

i ← Suff(λi[xi → 1], ε/c). (*λi[xi → 1] is a k-DNF*)
10: return

∨
i=1,...,n λ

S
i .

Algorithm Description Alg. 3.2.1 is a recursive algorithm,
whose input is a k-mDNF λt and an error ε > 0, it returns λ̃S

t , a
sufficient ε-approximation. For simplicity, we assume that we can
compute the expectation of monotone formula exactly. In practice,
we estimate this quantity using sampling, e.g. using Luby-Karp
[38]. The algorithm has two cases: In case (I) on lines 2-4, there
is a large matching, that is, a set of monomials M such that dis-
tinct monomials in M do not contain common variables. For ex-
ample, in the formula (x1 ∧ y1) ∨ (x1 ∧ y2) ∨ (x2 ∧ y2) a match-
ing is (x1 ∧ y1) ∨ (x2 ∨ y2). In Case (II) lines 6-10, there is a
small cover, that is a set of variables C = {x1, . . . , xc} such that
every monomial in λt contains some element of C. For example,
in (x1 ∧ y1) ∨ (x1 ∧ y2) ∨ (x1 ∧ y3), the singleton {x1} is a cover.
The relationship between the two cases is that if we find a maximal
matching smaller than m, then there is a cover of size smaller than
km (all variables in M form a cover).

Case I: (lines 2-4) The algorithm greedily selects a maximal
matching M = {m1, . . . ,ml}. If M is a good approximation,
i.e. P[λS

t ] − P[
∨

m∈N m] ≤ ε then we trim M to be as small as
possible so that it is still a good approximation. Observe that
P[
∨

m∈M m] can be computed efficiently since the monomials
in M do not share variables, and so are independent. Fur-

ther, for any size l the subset of M of size l with the highest
probability is exactly the l highest monomials.

Case II: (lines 6-10) Let var(M) be the set of all variables in the
maximal matching we found. Since M is a maximal match-
ing, var(M) forms a cover, x1, . . . , xc. We then arbitrarily
assign each monomial m to one element that covers m. For
each xi, let λi be the set of monomials associated to an ele-
ment of the cover, xi. The algorithm recursively evaluates on
each λi, with smaller error, ε/c, and returns their disjunction.
We choose ε/c so that our result is an ε approximate lineage.

T 3.2 (S  P. 1). For any ε > 0, Alg. 3.2.1
is a randomized algorithm that computes small ε-sufficient lineage
with linear data complexity. Formally, the output of the algorithm,
λ̃t satisfies two properties: (1) λ̃S

t is an ε-approximation of λt and
(2) the number of monomials in λ̃t is less than k!β−(

k
2) logk( 1

ε
) +

O
(
logk−1( 1

δ
)
)
, which is independent of the size of λt.

P S. The running time follows immediately, since no
monomial is replicated and the depth of the recursion at most k,
the running time is O(k|λt |). The algorithm is randomized because
we need to evaluate E[λt]. Claim (1) follows from the preceding
algorithm description.

To prove claim (2), we inspect the algorithm. In Case I, the max-
imum size of a matching is upper bounded by β−k log( 1

ε
) since a

matching of size m in a k-dnf has probability at least 1−(1−βk)m; if
this value is greater than 1−ε, we can trim terms; combining this in-
equality and that 1− x ≤ e−x for x ≥ 0, completes Case I. In Case II,
the size of the cover c satisfies c ≤ kβ−k log( 1

ε
). If we let S (k + 1, ε)

denote the size of our formula at depth k+ 1 with parameter ε, then
it satisfies the recurrence S (k+1, ε) = (k+1)β−(k+1) log( 1

ε
)·S (k, ε/c),

which grows no faster than the claimed formula.

Completeness Our goal is to construct lineage that is small as pos-
sible; one may wonder if we can efficiently produce substantially
smaller lineage with a different algorithm. We give evidence that no
such algorithm exists by showing that the key step in Alg. 3.2.1 is
intractable (NP-hard) even if we restrict to internal lineage func-
tions with 3 subgoals, that is k = 3. This justifies our use of a
greedy heuristic above.

P 3.3. Given a k-mDNF formula λt, finding a sub-
formula λ̃S

t with d monomials such that λ̃S
t has largest probability

among all subformula of λt is NP-Hard, even if k = 3.

The reduction is from of finding a matching in a k-uniform k-
regular hypergraph. The greedy algorithm is essentially an optimal
approximation for this hypergraph matching [33]. Since our prob-
lem appears to be more difficult, this suggests – but does not prove
– that our greedy algorithm may be close to optimal.

3.3 Understanding Sufficient Lineage
Both Prob. 2, finding sufficient explanations, and Prob. 3, finding

influential variables deal with understanding the lineage functions:
Our proposal for sufficient lineage makes Prob. 2 straightforward:
Since λS

t is a list of sufficient explanations, we simply return the
highest ranked explanations contained in λ̃S

t . As a result, we focus
on computing the influence of a variable given only sufficient lin-
eage. The main result is that we can compute influence with only a
small error using sufficient lineage. We do not discuss finding the
top-k efficiently; for which we can use prior art, e.g. [46]. We re-
state the definition of influence in a computationally friendly form
(Prop. 3.4) and then prove bounds on the error of our approach.
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P 3.4. Let xi be an atom with probability p(xi) and
σ2

i = p(xi)(1 − p(xi)). If λt is a monotone lineage formula:

Infxi (λt) = σ−2
i E[λt(xi − p(xi))]

The use of Prop. 3.4 is that to show that we can compute influ-
ence from sufficient lineage with small error:

P 3.5. Let λ̃S
t be a sufficient ε-approximation of λt,

then for any xi ∈ A s.t. p(xi) ∈ (0, 1), we have the following pair
of inequalities

Infxi (λ̃
S
t ) −

ε

σ2 p(xi) ≤ Infxi (λt) ≤ Infxi (λ̃
S
t ) +

ε

σ2 (1 − p(xi))

This proposition basically says that we can calculate the influ-
ence for uncertain atoms. With naı̈ve random sampling, we can es-
timate the influence of sufficient lineage to essentially any desired
precision. The number of relevant variables in sufficient lineage
is small, so simply evaluating the influence of each variable and
sorting is an efficient solution to solve Prob. 3.

3.4 Query Processing
Existing systems such as Mystiq or Trio can directly process suf-

ficient lineage since it is syntactically identical to standard (com-
plete) lineage. However, using sufficient lineage in place of com-
plete lineage introduces errors during query processing. In this sec-
tion, we show that the error introduced by query processing is at
most a constant factor worse than the error in a single sufficient
lineage formula.

Processing a query q on a database with lineage boils down to
building a lineage expression for q by combining the lineage func-
tions of individual tuples, i.e. intensional evaluation [22, 46]. For
example, a join producing a tuple t from t1 and t2 produces lineage
for t, λt = λt1 ∧ λt2 . We first prove that the error in processing a
query q is upper bounded by the number of lineage functions com-
bined by q (Prop. 3.6). Naı̈vely applied, this observation would
show that the error grows with the size of the data. However, we
observe that the lineage function for a conjunctive query depends
on at most constantly many variables; from these two observations
it follows that the query processing error is only a constant factor
worse.

P 3.6. If λ̃S
1 and λ̃S

2 are sufficient ε approximations
for λ̃1 and λ̃2 then, both λ̃S

1 ∧ λ̃
S
2 and λ̃S

1 ∨ λ̃
S
2 are 2ε sufficient

approximations.

This proposition is essentially an application of a union bound
[42]. From this proposition and the fact that a query q that pro-
duces n tuples and has k subgoals has kn logical operations, we can
conclude that if all lineage functions are εS approximations, then
µ(q) − µ̃S (q) ≤ εS kn. This bound depends on the size of the data.
We want to avoid this, because it implies that to answer queries as
the data grows, we would need to continually refine the lineage. We
can do much better using essentially the same idea as in Sec. 3.2:

L 3.7. Given a database with sufficient approximate lin-
eage such that λ̃t is a ε-approximation of λt for every tuple t and
a query q with k subgoals, the error of q is only a constant factor
worse than ε. Formally, for any δ > 0 we have:

µ(q) − µ̃S (q) ≤ kε f (k, δ) + δ

where f (k, δ) def
= k!β−(

k
2) logk( 1

δ
)+O
(
logk−1( 1

ε
)
)

and β is the constant
of the bounded distribution.

This shows that sufficient lineage can be effectively utilized for
query processing, solving Prob. 4.

4. POLYNOMIAL LINEAGE
In this section, we propose an instantiation of polynomial lin-

eage based on sparse low-total-degree polynomial series. We focus
on the problems of constructing lineage and understanding lineage,
since there are existing approaches, e.g. [8], that solve the prob-
lem of sampling from lineage, which is sufficient to solve the query
evaluation problem (Prob. 4).

4.1 Sparse Fourier Series
Our goal is to write a Boolean function as a sum of smaller terms;

this decomposition is similar to Taylor and Fourier series decom-
positions in basic calculus. We recall the basics of Fourier Series
on the Boolean Hypercube1.

In our discussion, we fix a set of independent random variables
x1, . . . , xn, e.g. the atoms, where pi = E[xi] (the expectation) and
σ2

i = pi(1 − pi) (the variance). Let B be the vector space of real-
valued Boolean functions on n variables; a vector in this space is a
function λ : {0, 1}n → R. Rather than the standard basis for B, we
define the Fourier basis for functions. To do so we equip B with
an inner product that is defined via expectation, that is, 〈λ1, λ2〉

def
=

E[λ1 · λ2]. This inner product induces a norm, ‖λt‖
2 def
= 〈λt, λt〉.

This norm captures our error function (see Def. 2.10) since E[(λt −

λ̃P
t )2] =

∥∥∥λ̃t − λ̃
P
t

∥∥∥2. We can now define an orthonormal basis for
the vector space using the set of characters:

D 4.1. For each z ∈ {0, 1}n, the character associated
with z is a function from {0, 1}n → R denoted φz and defined as:

φz
def
=
∏
i:zi=1

(xi − pi)σ−1
i

Since the set of all characters is an orthonormal basis, we can
write any function in B as a sum of the characters. The coefficient
of a character is given by projection on to that character, as we
define below.

D 4.2. The Fourier transform of a function λt is de-
noted Fλt and is a function from {0, 1}n → R defined as:

Fλt (z) def
= 〈λt, φz〉 = E[λtφz]

The Fourier series of f is defined as
∑

z∈{0,1}n Fλt (z)φz(A).

The Fourier series captures λt, that is, for any assignment A,
f (A) =

∑
z∈{0,1}n Fλt (z)φz(A). An important coefficient is Fλt (0),

which is the probability (expectation) of λt. We give an example of
to illustrate the computation of Fourier series:

Example 4.3 Let λt = x1 ∨ · · · ∨ xn, that is, the logical or of
independent n random variables. The arithmetization for λt is
1 −
∏

i=1,...,n(1 − xi). Applying Def. 4.2, Fλt (0) = E[λt] = 1 −∏
i=1,...,n(1 − p(xi)) and for z , 0:

Fλt (z) = E
[
φz
(
1 −
∏

i=1,...,n(1 − xi)
)]

= E
[
φz −

(∏
i:zi=1 φei (1 − xi)

) (∏
j:z j=0(1 − x j)

)]
=

(∏
i:zi=1 σi

) (∏
j:z j=0(1 − p(x j))

)
where for i = 1, . . . , n, σ2

i = p(xi)(1 − p(xi)) (the variance of xi).

Our goal is to get a small, but good approximation; we make this
goal precise using sparse Fourier series:

1For more details, see [40, 43]
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D 4.4. An s-sparse series is a Fourier series with at
most s non-zero coefficients. We say λ has an (s, ε) approximation if
there exists an s-sparse approximation λ̃P

t such that
∥∥∥λt − λ̃

P
t

∥∥∥2 ≤ ε.
A best s-sparse series for a function λ is the s-sparse series that
minimizes ε.

Our approach for polynomial lineage is to approximate the lin-
eage for a tuple t, λt, by a sparse Fourier series λ̃P

t , ideally an (s, ε)-
sparse approximation for small s and ε. Additionally, we want λ̃P

t to
have low total degree (constant) so we can describe its coefficients
succinctly (in constant space).

Selecting an approximation The standard approach to approxi-
mation using series is to keep only the largest coefficients, which is
optimal in this case:

P 4.5. For any Boolean function λt and any s > 0,
a best s-spare approximation for λt is the s largest coefficients in
absolute value, ties broken arbitrarily.

4.2 Constructing Lineage
We construct polynomial lineage by searching for the largest

coefficients using the KM algorithm [39]. The KM algorithm is
complete in the sense that if there is an (s, ε) sparse approxima-
tion it finds an only slightly worse (s, ε+ ε2/s) approximation. The
key technical insight, is that k-DNFs do have sparse (and low-total-
degree) Fourier series, [40, 50]. This implies we only need to keep
around a relatively few coefficients to get a good approximation.
More precisely,

T 4.6 ([39, 40, 50]). Given a set of atoms A =

{x1, . . . , xn} and a probabilistic assignment p, let β =

mini=1,...,n{p(xi), 1 − p(xi)} and λt be a (not necessarily monotone)
k-DNF function over A, then there exists an (s, ε)-approximation
λ̃P

t where s ≤ kO(kβ−1 log( 1
ε )) and the total degree of any term in λ̃P

t is
bounded by c0β

−1k log( 1
ε
) where c0 is a constant. Further, we can

construct λ̃P
t in randomized polynomial time.

The KM algorithm is an elegant recursive search algorithm.
However, a key practical detail is at each step it requires that we
use a two-level estimator, that is, the algorithm requires that at
each step, we estimate a quantity y1 via sampling; to compute each
sample of y1, we must, in turn, estimate a second quantity y2 via
sampling. This can be very slow in practice. This motivates us to
purpose a cheaper heuristic: For each monomial m, we estimate
the coefficient corresponding to each subset of variables of m. For
example, if m = x1 ∧ x2, then we estimate 0, e1, e2 and e12. This
heuristic takes time 2k |λt |, but can be orders of magnitude more ef-
ficient in practice, as we show in our evaluation section (Sec. 5.2).
This is linear with respect to data complexity.

4.3 Understanding Approximate Lineage
Our goal in this section is to find sufficient explanations and in-

fluential variables, solving Prob. 2 and Prob. 3, respectively.
Sufficient Explanations Let λt be a lineage formula such that

E[λt] ∈ (0, 1) and λ̃P
t be a polynomial approximation of λt. Given

a monomial m, our goal is to test if m is a sufficient explanation for
λt. The key idea is that m is a sufficient explanation if and only if
P[λt∧m] = P[m], since this implies the implication holds for every
assignment.

If λ̃P
t is exactly the Fourier series for λt, then we can compute

each value in time O(2k), since

E[λ̃P
t m] =

∑
z:zi=1 =⇒ i∈m

Fλt (z)

 ∏
i∈m:zi=1

σ


 ∏

j∈m:z j=0

µ j

 (5)

However, often λt is complicated, which forces us to use sampling
to approximate the coefficients of λ̃P

t . Sampling introduces noise in
the coefficients. To tolerate noise, we relax our test:

D 4.7. Let τ > 0, the tolerance, and δ > 0, the confi-
dence, then we say that a monomial m is a (τ, δ) sufficient expla-
nation for λ̃P

t if:

PN [|E[λ̃P
t · m] − E[m]︸            ︷︷            ︸

(†)

| ≤ τ] ≥ 1 − δ (6)

where N denotes the distribution of the sampling noise.

The intuition is that we want that E[λ̃P
t m] and E[m] to be close

with high probability. For independent random sampling, the N is
a set of normally distributed random variables, one for each coef-
ficient. Substituting Eq. 5 into Eq. 6 shows that (†) is a sum of 2k

normal variables, which is again normal; we use this fact to esti-
mate the probability that (†) is less than τ.

Our heuristic is straightforward, given a tolerance τ and a confi-
dence δ: For each monomial m, compute the probability in Eq. 6, if
it is within δ then declare m a sufficient explanation. Finally, rank
each sufficient explanation by the probability of that monomial.

Influential tuples The key observation is that the influence of xi

is determined by its coefficient in the expansion [40, 50]:

P 4.8. Let λt be an internal lineage function, xi an
atom and σ2

i = p(xi)(1 − p(xi)) then

Infxi (λt) = σ−1
i Fλt (ei)

This gives us a simple algorithm for finding influential tuples
using polynomial lineage, simply scale each Fλt (ei), sort them and
return them. Further, the term corresponding to ei in the transform
is Fλt (ei)φei = Infxi (λt)(xi − p(xi)), as was shown in Fig. 1.

5. EXPERIMENTS
In this section, we answer three main questions about our ap-

proach: (1) In Sec. 5.2, do our lineage approaches compress the
data? (2) In Sec. 5.3, to what extent can we recover explana-
tions from the compressed data? (3) In Sec. 5.4, does the com-
pressed data provide a performance improvement while returning
high quality answers? To answer these questions, we experimented
with the Gene Ontology database [14] (GO) and similarity scores
from a movie matching database [35, 46].

5.1 Experimental Details
Primary Dataset The primary dataset is GO, that we described

in the introduction. We assigned probability scores to evidence tu-
ples based on the type of evidence. For example, we assigned a high
reliability score (0.9) to a statement in a PubMed article, while we
assigned a low score (0.1) to an automated similarity match. Al-
though many atoms are assigned the same score, they are treated
as independent events. Additionally, to test the performance of our
algorithms, we generated several probability values that were ob-
tained from more highly skewed distributions, that are discussed in
the relevant sections.

Primary Views We present four views which are taken from the
examples and view definitions that accompany the GO database
[14]. The first view V1 asks for all evidence associated with a fixed
pair of gene products. V2 looks for all terms associated with a fixed
gene product. V3 is a view of all annotations associated with the
Drosophila fly (via FlyBase [21]). V4 is a large view of all gene
products and associated terms. Fig. 2 summarizes the relevant pa-
rameters for each view: (1) the number of tables in the view defini-
tion (2) the number of sources evidence, that is, how many times it
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Query Tables # Evidence # Tuples Avg. Lin. Size Size
V1 8 2 1 234 12k
V2 6 2 1119 1211 141M
V3 6 1 295K 3.36 104M
V4 7 1 28M 7.68 31G

Figure 2: Query statistics for the GO DB [14].
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Figure 3: (a) Compression ratio as error increases in log scale
for query V2. (b) Distribution of size of DNF for V2 with and
without compression, x-axis is sorted by size, e.g. x = 1 is the
largest DNF (823k).

joins with the evidence table (3) the number of tuples returned (4)
the average of the lineage sizes for each tuple, and (5) the storage
size of the result.

Secondary Dataset To verify that our results apply more gener-
ally than the GO database, we examined a database that (fuzzily)
integrated movie reviews from Amazon [2] that have been inte-
grated with IMDB (the Internet Movie Database) [35]. This data
has two sources of imprecision: matches of titles between IMDB
and Amazon, ratings assigned to each movie by automatic senti-
ment analysis, that is, a classifier.

Experimental Setup All experiments were run on a Fedora core
Linux machine (2.6.23-14 SMP) with Dual Quad Core 2.66GHz
16Gb of RAM. Our prototype implementation of the compression
algorithms was written in approximately 2000 lines of Caml. Query
performance was done using a modified C++/caml version of the
Mystiq engine[10] backed by databases running SQL Server 2005.
The implementation was not heavily optimized.

5.2 Compression
We verify that our compression algorithms produce small ap-

proximate lineage, even for stringent error requirements. We mea-
sured the compression ratios and compression times achieved by
our approaches for both datasets at varying errors.

Compression Ratios Fig. 3(a) shows the compression ratio ver-
sus error trade-off achieved by polynomial and sufficient lineage for
V2. Specifically, for a fixed error on the x-axis the y axis shows the
compression ratio of the lineage (in log scale). As the graph illus-
trates, in the best case, V2, the compression ratio for the polynomial
lineage is very large. Specifically,even for extremely small error
rates, 10−3, the compressed ratio 171 : 1 for polynomial lineage
versus 27 : 1 times smaller for sufficient lineage. In contrast, V3 is
our worst case. The absolute maximum our methods can achieve
is a ratio of 3.36 : 1, which is the ratio we would get by keeping a
single monomial for each tuple. At an error ε = 0.01, polynomial
lineage achieves a 1.8 : 1 ratio, while sufficient lineage betters this
with a 2.1 : 1 ratio.

The abundance of large lineage formula in V2 contain redundant
information, which allows our algorithms to compress them effi-
ciently. Fig. 3(b) shows the distribution of the size of the original
lineage formulae and below it the size after compression. There are
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Figure 5: (a) Compression Ratio ( |Original|
|Compressed| ) (b) The distribu-

tion of lineage size in IMDB view, by rank.

some very large sources in the real data; the largest one contains
approximately 823k monomials. Since large DNFs have proba-
bilities very close to one, polynomial lineage can achieve an ε-
approximation can use the constant 1. In contrast, sufficient lineage
cannot do this.

Effect of Skew We investigate the effect of skew, by altering
the probabilistic assignment, that is, the probability we assigned to
each atom. Specifically, we assigned an atom a score drawn from
a skewed probability distribution. We then compressed V1 with the
skewed probabilities. V1 contains only a single tuple with moderate
sized lineage (234 monomials). Fig. 4(a) shows the compression
ratio as we vary the skew from small means, 0.02, to larger means,
0.5. More formally, the probability we assign to an atom is drawn
from a Beta distribution with β = 1 and α taking the value on the
x axis. Sufficient lineage provides lower compression ratios for
extreme means, that is close to 0.02 and 0.5, but is more consistent
in the less extreme cases.

Compression Time Fig. 4(b) shows the processing time for each
view we consider. For views V2, V3 and V4, we used 4 dual-core
CPUs and 8 processes simultaneously. The actual end-to-end run-
ning times are about a factor of 8 faster, e.g., V2 took less than 30m
to compress. It is interesting to to note that the processor time for
V2 is much larger than the comparably sized V3, the reason is that
the complexity of our algorithm grows non-linearly with the largest
DNF size. Specifically, the increase is due to the cost of sampling.

The compression times for polynomial lineage and sufficient lin-
eage are close; this is only true because we are using the heuristic
of Sec. 4.2. The generic algorithm is orders of magnitude slower: It
could not compress V1 in an hour, compared to only 0.5s using the
heuristic approach. Our implementation of the generic search algo-
rithm could be improved, but it would require orders of magnitude
improvement to compete with the efficiency the simple heuristic.

IMDB and Amazon dataset Using the IMDB movie data, we
compressed a view of highly rated movies. Fig. 5(a) shows the
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compression ratio for versus error rate. Even for stringent error
requirements, our approach is able to obtain good compression ra-
tios for both instantiations of approximate lineage. Fig. 5(b) shows
the distribution of the lineage size, sorted by rank, and its sufficient
compression size. Compared to Fig. 3, there are relatively few large
lineage formulae, which means there is less much opportunity for
compression. On a single CPU, the time taken to compress the data
was always between 180 and 210s. This confirms that our results
our more general than a single dataset.

5.3 Explanations
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Figure 6: (a) Shows the precision of the top-k explanations ver-
sus the number of terms in the polynomial expansion (c) The
number (precision) of influential variables in the top 10 re-
turned using sufficient lineage that are in the top 10 of the un-
compressed function.

We assess how well approximate lineage can solve the explana-
tion tasks in practice, that is finding sufficient explanations (Prob. 2)
and finding influential variables (Prob. 3). Specifically, we answer
two questions: (1) How well can sufficient lineage compute influ-
ential variables? (2) How well can polynomial lineage generate
sufficient explanations?

To answer question (1), we created 10 randomly generated prob-
abilistic assignment for the atoms in V1; we ensured that the result-
ing lineage formula had non-trivial reliability, i.e. , in (0.1, 0.9). We
then tested precision: Out of the top 10 influential variables, how
many were returned in the top 10 using sufficient lineage (Sec. 3.3)?
Fig. 6(b) shows that for high error rates, ε = 0.1, we still are able
to recover 6 of the top 10 influential variables and for lower error
rates, ε = 0.01, we do even better: the average number of recov-
ered top 10 values is 9.6. The precision trails-off for very small
error rates due to small swaps in rankings near the bottom of the
top 10, e.g., all top 5 are within the top 10.

To answer question (2), we used the same randomly generated
probabilistic assignments for the atoms in V1 as in the answer to
question (1). Fig. 6(a) shows the average number of terms in the
top k explanations returned by the method of Sec. 4.3 that are ac-
tual sufficient explanations versus the number of terms retained
by the formula. We have an average recall of approximately 0.7
(with low standard deviation), while keeping only a few coeffi-
cients. Here, we are using the heuristic construction of polynomial
lineage. Thus, this experiment should be viewed as a lower bound
on the quality of using polynomial lineage for providing explana-
tions.

These two experiments confirm that both sufficient and polyno-
mial lineage are able to provide high quality explanations of the
data directly on the compressed data.

5.4 Query Performance
Fig. 7 shows the effect of compression on execution time of V2;

The query asks to compute each tuple in the view. The y-axis is
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Figure 7: Query performance on (a) V2. (b) IMDB data.

in log scale, it takes just under 20 hours to run this query on the
uncompressed data. On data compressed with sufficient lineage at
ε = 0.001, we get an order of magnitude improvement; the query
takes approximately 35m to execute. Using the data compressed
with polynomial lineage, we get an additional order of magnitude;
the query now runs in 1.5m.

Fig. 7(b) shows the effect of compression on query performance
for the IMDB movie dataset where the compression was not as dra-
matic. Again our query was to compute the lineage for each tuple
in the view. The time taking is to perform Monte Carlo sampling
on the now much smaller query. As expected, the data with higher
error, and so smaller, allows up to a five time performance gain. In
this example both running times scale approximately with the size
of compression.

6. RELATED WORK
Lineage systems and provenance are important topics in data

management, [12, 13, 17, 28]. Compressing lineage is cited as an
important techinque to scaling these systems [13]. Of these, only
[30] considers probabilistic data, but not approximate semantics.

There is long, successful line of work that compresses (deter-
ministic) data to speed up query processing [18, 23, 25, 51, 53].
In wavelet approaches, probabilistic techniques are used to achieve
a higher quality synopses, [18]. In contrast, lineage in our setting
contains probabilities, which must be captured. The fact that the
lineage is probabilistic raises the complexity of compression. For
example, the approach of Garofalakis et al. [23] assumes that the
entire wavelet transform can be computed efficiently. In our work,
the transform size is exponential in the size of the data. Proba-
bilistic query evaluation can be reduced to calculating a single co-
efficient of the transform, which implies exact computation of the
transform is intractable [16, 27]. Aref et al. [19] advocate an ap-
proach to operate directly on compressed data to optimze queries
on Biological sequences. However, this approach is not lineage
aware and so cannot extract explanations from the compressed data.

In probabilistic databases, lineage is used for query processing in
Mystiq [16, 46] and Trio [54]. However, neither considers approxi-
mate lineage. Ré et al. [46] consider approximately computing the
probability of a query answer, but do not consider the problem of
storing the lineage of a query answer. These techniques are orthog-
onal: We can use the techniques of [46] to compute the top-k query
probabilities from the Level II database using sufficient lineage.
Approximate lineage is used to materialize views of probabilistic
data; this problem has been previously considered [47], but only
with an exact semantics.

Sen et al. [49] consider approximate processing of relational
queries using graphical models, but not approximate lineage. In
the graphical model literature [15, 37] approximate representation
is considered, where the goal is to compress the model for improved
performance. However, the data and query models of the our ap-
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proaches is different. Specifically, our approach leverages the fact
that lineage is database is often internal.

Our approach to computing polynomial lineage is based on com-
putational learning techniques, such as the seminal paper by Linial
et al. [40], and others, [8, 11, 43]. A key ingredient underlying
these results are switching lemmata, [5, 32, 48].

So far, learning techniques have only been applied to compress-
ing the data, but have not compressed the lineage [4, 24]. A dif-
ference between our approach and this prior art is that we do not
discard any tuples, but may discard lineage.

Explanation is a well-studied topic in the Artificial Intelligence
community, see [31, 44]. The definition of explanation of a fact is
a formula that is a minimal and sufficient to explain a fact – which
is similar to our definition – but they additionally require that the
formula be unknown to the user. We do not model the knowledge
of users, but such a semantic would be very useful for scientists.

7. CONCLUSION
In this paper, we have proposed two instantiations of approxi-

mate lineage, a conservative approximation called sufficient lineage
and a more aggressive approximation called polynomial lineage.
The intuition behind both approaches is to keep track of only the
most important explanations or correlations. We provided funda-
mental algorithms to create, explore and understand, and process
approximate lineage. Our approach acheives high compression ra-
tios, high-quality explanations and good query performance.
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