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Name [Age] Zipcode [Income
ABSTRACT Alice 2% 1p5000 85k
Given a dataset containing sensitive personal information, a statis- Bob |25 52000 | 32k
tical database answers aggregate queries in a manner that preserves Cathy| 33| 41000 | 25k
individual privacy. We consider the problem of constructing a sta- David | 38 | 23000 | 37k

tistical database usingutput perturbationwhich protects privacy ngﬁk 2‘71 igggg ggE

by injecting a small noise into each query result. We show that the Georgd 53 | 31000 | 28K
state-of-the-art approach;differential privacy suffers from two Helen 61 1 35000 | 54K
severe deficiencies: it (i) incurs prohibitive computation overhead,
and (ii) can answer only a limited number of queries, after which
the statistical database has to be shut down. To remedy the prob
lem, we develop a new technique that enforeelfferent privacy

with economical cost. Our technique also incorporatgsery re-
laxation mechanism, which removes the restriction on the number
of permissible queries. The effectiveness and efficiency of our so-
lution are verified through experiments with real data.

Table 1: The microdata

“The answers ofjg and gy are1 and0, respectively. Once these
results are returned, the adversary can assert that Alice’s income
must be above 80k, a close guess of Alice’s real salary 85k.

The above problem motivatestatistical databases, which an-
swer counting queries without leaking individuals’ privacy. An ef-
fective approach isutput perturbatiori2, 6, 11, 13], which works
by injecting a small random noise into each query result. For
1. INTRODUCTION queries that pinpoint sensitive information (e.g,and ¢), their

The evolution of information technology has enabled an organi- @nSwers are dominated by noise; hence, privacy is preserved. On
zation (e.g., hospitals, retailers) to collect large volumes of sensitive th€ other hand, the noise has little effect on queries that retrieve
personal data (e.g., medical records, transaction history), which is Nigh-level statistics (e.g., find the number of people earning more
usually referred to amicrodata To facilitate research, these or- than 30Kk), since they usually have large results. i ,
ganizations often need to provide public access to their microdata, NUmerous output perturbation techniques are available in the
which, however, may pose a risk to individual privacy. For exam- SFatIStICS literature (see [2] and the refgrences ther.elln.). Thosg tech-
ple, assume that the Census Bureau maintains an online databasfidues, however, are not based on a rigorous definition of privacy
for answering count queries on the microd@tin Table 1, which [12]. To overcome this defect, Dinur and Nissim [11] develop
contains three columnsdge Zipcode and Income (Nameis in- a principle callede-dlﬁgrentlal prlvacygto be elaborated in Sec.-.
cluded to facilitate row referencing). Consider an adversary who 0N 2), and employs it to avoid queries that can reveal sensitive
knows the age0 and zipcodel 5000 of Alice, and the fact that |nf0r.mat|on.. Specifically, le©) be the set of prewous!y answered
Alice is involved inT'. To infer the income of Alice, the adversary ~ dueries. Given a new quewy, the database determines whether

may issue the following two querieg andgj: {q} U Q violatese-differential privacy. If yesg is rejected; oth-
erwise, the database reports a noisy result. As proved in [11], this

approach guarantees that an adversary can recover any sensitive in-
formation with very low probability, even if s/he has audited the
results of all the queries in history.

1.1 Motivation

Despite being the state of the artdifferential privacy has two
drawbacks that severely reduce its practical applicability. First,
somewhat surprisingly, there is no existing solution for checking
e-differential privacy. As detailed in the next section, the difficulty
stems from the computation of the so-called sensitivity which

go: SELECT COUNT(*) FROMT
VWHERE Age < [20, 20] AND Zipcodee [15k, 15K]
AND Incomee [80Kk, +00)

qo: SELECT COUNT(*) FROMT'
WHERE Age€ [20, 20] AND Zipcodee [15k, 15K]
AND Incomee (—oo, 80k)
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«d- is a crucial component in verifying-differential privacy. The best
s efforts are due to Dinur et al. [13], who point out several special
)ty cases wheré; sensitivity can be calculated. Similar attempts have
st also been made in [5, 19, 23]. Unfortunately, the calculation prob-
1Nlem in general is still open. In other words, currentigifferential
privacy is virtually inapplicable when arbitrary queries are allowed.
The second defect of-differential privacy also exists in all
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the previous output perturbation solutions. Specificallgew the our solution always correctly indicates so, thus guaranteeing that
database denies a query, it simply returns nothing. This incurs privacy breach can never happen.
rather negative user experience, because a legitimate user would Another salient feature of the proposed technique is that it incor-
have to spend a long time trying different queries before getting an porates an effective query relaxation mechanism, to provide useful
answer. Even worses-differential privacy supports only a finite  answers to the denied queries. This remedies the common defect
number of queries [11]. In other words, after a period of time, the of all the previous output-perturbation solutions (mentioned in Sec-
statistical database will have to go offline, and all future queries are tion 1.1), because now a user no longer needs to go through the
directly refused. annoying process of modifying her/his query repetitively. Instead,
In fact, for a denied query, it is possible to return a useful  s/he immediately obtains a similar query suggested by the database,
synthetic answerwhich is synthesized from the reported answers together with the query’s answer. We perform extensive experi-
of the past queries. To illustrate, assume that the database reportedhents to evaluate our algorithms, and confirm their effectiveness

an answen; for queryg;:

SELECT COUNT(*) FROMT
WHERE Age€ [20, 50] AND Incomee [40k, 70K]

qi:

and now receives a quety:

SELECT COUNT(*) FROMT'
WHERE Age€ [20, 51] AND Incomee [40k, 70K]

q:

If ¢ needs to be denied for privacy preservation, we may still return
a1 to the user, along with the definition gf (so that the user knows
a1 is the result of query; thatrelaxesher/his original query;;).
Since the predicates in andg; are similar, the answer; would
still be useful to the user. We refer to the proceseetxation

In general, relaxation may combine the results of multiple
queries. To illustrate, consider:

¢2:  SELECT COUNT(*) FROMT

VHERE Agee [30, 69] AND Incomee [0, 39999]
gs: SELECT COUNT(*) FROMT

VHERE Agee [30, 69] AND Incomee [40000, 99999]
g5 SELECT COUNT(*) FROMT

VHERE Agee [30, 69] AND Incomee [0, 99999]

The exact result of; equals the sum of those @f andgs. Assume
that the database has returned a resu{ti3) for g2 (¢3), but denies
q5. In this case, we may report a synthetic answe#- a3 for g5.

Note that the answer is approximate, becausandas are noisy.

and efficiency in practice.

The rest of the paper is organized as follows. Section 2 reviews
e-differential privacy and its related concepts. Section 3 studies
the computation of.; sensitivity, and presents our conservative
method for verifyinge-differential privacy. Section 4 elaborates
the details of query relaxation. Section 5 contains an experimental
evaluation. Section 6 reviews the previous work related to ours.
Finally, Section 7 concludes the paper with directions for future
work.

2. PRELIMINARIES

Let T be a microdata table, which contaidsattributesA;, ...,
A, with finite and discrete domains. We aim to support queries of
the form

SELECT COUNT(*) FROMT
VWHERE pred(A1) AND... AND pred(Aq)

such thapred(A;) has the format
A; = *x0rA; € [zi,yil,

wherez; andy; are two values in the domain &f;*. We consider
count queries, because of their imperative roles in various data anal-
ysis tasks, including OLAP, association rule mining, decision tree
learning, etc.

Given a queryy, we denote its real result ¢h asq(T"). To pro-
cess queries in a privacy preserving manner, we adopt the output-

Furthermore, returning the synthetic answer does not compromisepPerturbation methodology in [13] to design a statistical database

any privacy guarantee. This is because both quesemndqs, as
well as their reported results, andags, are already public knowl-
edge. Anything derivedolelyfrom such knowledge is also public
knowledge.

It is worth pointing out that the meaning of query relaxation in
our context is drastically different from its counterpart in relational
databases [18, 26]. Specifically, in [18, 26], when an SQL query

D. Specifically, given a query, D returns aperturbed answer
q(T) + ¢, whered is a random variable following baplacedistri-
bution, with a probability density function

f(6) = e

A is known as th@oise magnitudef D, and is also the expectation
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returns an empty result, relaxation performs the smallest modifica- of |§|. We denote the perturbed answeé®).

tion to the query predicates in order to retrieve at least one tuple.
The solutions in [18, 26] cannot be adapted to our circumstances.

1.2 Contributions

By injecting noise in the above manngr,ensures a strong type
of privacy protection e-differential privacy[13]. This notion of
privacy is formulated through the following definitions.

This paper proposes a novel output-perturbation solution based DEFINITION1 (SIBLING TABLES). Two microdata table®;

on an in-depth study of the algorithmic aspects-diffferential pri-
vacy. First, we prove, for the first time, that exact computation of
L, sensitivity is NP-hard. Recall thdt; sensitivity is required in
checkinge-differential privacy. Thus, the NP-hardness result rules
out the existence of any algorithm for verifyiredifferential pri-
vacy efficiently.

Fortunately, it is possible to efficiently calculate a 2-approximate
upper bound of the.; sensitivity. This result leads to a fast ap-
proach that verifieg-differential privacy in a safe, conservative,
manner. Specifically, whea-differential privacy does not hold,
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andT> aresiblings if they have the same schema and cardinality,
and differ in only one tuple. O

EXAMPLE 1. LetT) be the microdata tabl& in Table 1. By
changing the income of Alice to another value (e.g., 30k), we obtain
an alternative tabl@s. Ty andT: are siblings. O

Yf A s categorical, we assume that there existsAgra total or-
dering, which lists the leaves of;’s taxonomy tree [16] from left
to right.



DEFINITION 2 (e-DIFFERENTIAL PRIVACY [13]). LetQ =

queryq is issued taD, we inspect the se&f of queries thatD has

{q1, ..., gm } be any subset of the queries that have been answeredevaluated previously. 151, (QU{q}) > €}, ¢ is denied; otherwise,

by D, andR = {ri, ..., } be a set of arbitrary real numberB.
ensures-differential privacy if the following inequality holds for
any R and any pair of sibling tableg, and7s:

Pr [Vi,qi(D) =r;| Al] <e- Pr[Vi,qi(D) =r; | Ag],

whereA; (Az) denotes the event thdi (73) is the microdata on
which D is constructed. O

ExamMpPLE 1 (CONTINUED). Suppose that a statistical
databasé is built onT;. Consider an adversary who tries to infer
the income of Alice. Let) be the set of queries issued by the
adversary, and;s: the set of results returned [dy. If D ensures
e-differential privacy € < 1), the adversary gains little knowledge
about Alice’s income, after observirngs:. To understand this, let
us assume thab is constructed on another microdata table (e.qg.,
T>), where Alice’s income is arbitrarily modified. By Definition 2,
D may still return S as the results for the queries @. In
particular,

Pr D returnsSsi | Alice’s income is NOT modifieft
< e - Pr[D returnsSs | Alice’s income is modified!

Notice that, where is small,e€ ~ 1 + ¢, which is close tal. In
other words,Ssit provides the adversary with very little informa-
tion, regarding the income of Alice. In general, a smailllyads to
tighter privacy protection. O

As will be shown in Theorem 1, to decide whetlempreserves
e-differential privacy, it suffices to inspect (i) the noise magnitude
A of D, and (ii) theL; sensitivityof the queries answered Y.

DEFINITION 3 (L1 SENSITIVITY [13]). Given a setQ of
queries, itsl; sensitivitySz1(Q) equals:

S11(Q) = max (Z |la(T1) — Q(Tg)!> ; (@)
q€Q
whereT; andT> are any two sibling microdata tables. O

EXAMPLE 2. Consider the querieg andgg in Section 1. Let
Q = {qo, g5 }- We will show thatS.1(Q) = 2.

Let 71 andT» be any two sibling microdata tables, agd =
{qo,q4}. SinceT; andT> differ in one tuple, we hav@o (Th) —
q(T2)] < 1 and|g(Th) — qo(T2)| < 1, which leads to
> cq|a(T) — q(T2)] < 2. Hence,S1.1(Q) < 2.

Consider thafl; equals Table 1, and, is a sibling ofT%, which
changes Alice’s income to 30k. We haygT1) = 1, qo(12) = 0,
q0(Th) = 0, andqy(T2) = 1. Therefore,S.1(Q) > |1 —0| +
|0 — 1] = 2. Thus,S11(Q) = 2. a

THEOREM1 ([13]). A statistical databaseD ensurese-
differential privacy, if and only ifS.1(Q) < e\, where) is the
noise magnitude db, and @ is the set of queries that have been
answered byD 2.

Based on Theorem 1, Dwork et al. [13] propose a framework for
constructingD as follows. Before answering any query, we choose
appropriate values fok and e, which decide the query accuracy

q(D) is returned as the result fgr In this way,D always ensures
e-differential privacy.

Essential to the above framework is that we must be able to de-
cide whetherS.1(Q U {¢}) > e for any queryg. This turns out
to be computationally difficult, as discussed in the next section.

3. THE HISTOGRAM APPROACH

In Section 3.1, we prove the NP-hardness of compu$ipg(Q),
and then give a method for deriving a 2-approximate upper bound
of Sr1(Q). Section 3.2 describes a histogram approach, which
enables a statistical database to process each query in an efficient
and privacy preserving manner. Finally, Section 3.3 points out a
limitation of output perturbation, which motivates the solutions in
Section 4.

3.1 Convergence of Queries

Let D be a statistical database, which has a noise magniXude
and has answered a sgtof queries. Given a new queky, our
objective is to decide iD still preserveg-differential privacy after
answering;. By Theorem 1, it suffices to verify whethé,; (Q U
{q}) < eX. The verification turns out to be NP-hard:

LEmmA 1. Deciding whetherSz1(Q) is larger than a thresh-
old is NP-hard.

PROOF. See the appendix.[]

Combining the lemma with Theorem 1 leads to:

CoOROLLARY 1. Verification of e-differential privacy is NP-
hard.

We thus switch our attention to calculating an upper-bound of
Sr1(Q U {q}), which, as explained later, allows us to conserva-
tively determine whetheq can be answered. For this purpose, we
introduce the following concepts.

DEFINITION 4 (DATA SPACE/ QUERY REGION). Given T,
we define itsdata space2 as ad-dimensional space, where the
i-th dimension(1 < i < d) is A;. Theregionof a queryg is a
rectangler in Q2 such that, for any € [1, d],

e if ¢ has a predicateA; € [z;, y;]", the projection ofr on 4;
equalsz;, y:];

e otherwise (i.e.q has a predicateA; = "), the projection of
r on A; covers all values ind;. O

Since eachd; (i € [1,d]) has a finite and discrete domai@,
can be regarded as a setddflimensional points. Accordingly, the
microdatal” can also be viewed as a set of points.

DEFINITIONS5 (PoPULARITY / CONVERGENCH. Let @ be
a set of queries, an@® be the set containing the regions of all
queries inR. For any poinip in the spacé?, its popularity p(Q) in
Q is the number of regions iR that coverp.
The convergencef @, denoted a€’(Q), is the largesp(Q) of
all pointsp € Q. O

ExaMPLE 3. For example, le€ consist of the querieg and

and degree of privacy protection, respectively. Then, whenever ¢, in Section 1.1. Figure 1 shows their regionsandr,, namely,

2The concept ofl; sensitivity and Theorem 1 can be adapted to
any queries (e.g., SUM, MAX, MIN) that map the microdata to
real numbers. See [13] for detalils.
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R ={r1, r2}. Any pointp in r1 N r2 has a popularitp(Q) = 2
in Q. If pis covered only by either; or rs, its popularity is 1. All
points outside; andr2 have popularity 0. Thus}(Q) =2. O
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Figure 1: Popularity and convergence

Algorithm Procesqq)
[* q is the query being answered */

1. ans = NULL
2. r =the query region of
3. Spuk = the set of buckets in histograt that intersect
4. if all bucketsB € Spuk have counters smaller than /2
5. ans=q(D); Q =QU{q}
6. for each buckeB € Spuk
7. B.c=B.c+1
8. if B.c = eA\/2 and|H| < 6, thenSplit(B)

/* 0 is the maximum number of buckets allowed */
9. returnans

Figure 2: Query processing algorithm

C(Q) can be used to derive a 2-approximate boundof(Q):

LEMMA 2. For any setQ of queries,Sr1(Q) < 2-C(Q).

PROOF. LetT; andTx be two sibling microdata tables, such that
Sqeq|q(Tr) — q(T2)| = S11(Q). By Definition 1, there should
exist only one tuple; (¢2) in 71 (7%2) that does not appear if
(T1). LetT5 andT} be two tables such th&t = {¢1} and7, =
{t2}. We haveSscqq(T3) — q(Tu)| = Sr1(Q). Foranyg € Q,
q(T3) andq(T4) is either0 or 1. Therefore,

S11(Q) = Zqe|a(T3) — q(Tu)| < Teeqq(Ts) + Sqcq(Ty).

implying that either Xqcqq(T3) or X.eqq(Ty) is at least
Sr1(Q)/2. Without loss of generality, assuni®,cqq(7s) >
S11(Q)/2. Letp; be the point irk2 whosei-th (1 < ¢ < d) coor-
dinate ofp; equalsti[A;]. Let R be the set of regions of the queries
in Q. By Definition 5, at most'(Q) regions inR coverp;. Hence,

t1 satisfies at most'(Q) queries inQ, i.e.,X,cqq(T3) < C(Q).
Therefore,S11(Q)/2 < Y4e0q(T3) < C(Q), which completes
the proof. O

The lemma motivates a simple approach to enstaiferential
privacy. We only need to maintain the populargyQ) for each
pointp € Q. Whenever a new queryis received, we inspect the
points inQ) covered by the region of. If all of them have popu-
larities at mosk\/2, ¢ is answered; otherwise, is denied. The
approach, unfortunately, is impractical, since it requires keeping
as many values as the points in the whole sgacé&lo overcome
this drawback, in the next subsection, we employ an approximation
technique to monito€'(Q U {¢}) with small space.

3.2 A Histogram Approach

Let @ be the set of queries that have been answereld,land R
be the set of regions of those queries. We maintain a histogtam
which partitions the data spaéeinto disjoint buckets with rect-
angular extents. Each buckBt € H is associated with a counter
B.c, equal to the number of query regionshrintersectingB. The
largest numbe# of buckets ifH is a system parameter, decided by
how much space can be allocated fér

Apparently, any poinp in B is covered by at mosB.c queries
in Q, i.e., the popularityp(Q) of p in Q is at mostB.c. Therefore,
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Figure 3: lllustration of our histogram approach

if B.c < e)/2for every bucketB € H, we havep(Q) < e\/2 for
any pointp € Q. Hence, by Lemma 2511 (Q) < e), indicating
that D preserves-differential privacy (Theorem 1).

Query Processing. The above observation leads to the algorithm
Processin Figure 2 for answering queries. Given a new query
with regionr, Processidentifies the sefSpuk of buckets inH in-
tersectingr. If any bucket inShu has a counter at leash /2, the
answerans for ¢ is NULL, i.e., ¢ is denied. Otherwisé?rocesge-
portsans = ¢(D) (recall thatg(D) has included a Laplace noice),
addsq to @, and increases the counters of the bucketSyin

When|H| < 6 (i.e., there is still space to store more buckets),
counter increases may trigger bucket splits. Specifically, for any
bucketB € Shu, in caseB.c = e\/2, Processinvokes theSplit
sub-routine to decomposg in into new buckets. The details of
Splitwill be elaborated shortly.

EXAMPLE 4. Suppose that the microdata tafffeis Table 1,
and the maximum permissible popularit)/2 is 3. Initially, H
has a single buckeB;, which covers the entire data space, and its
Bj.cequals 0.

The first query to our statistical databaBeis the ¢; in Sec-
tion 1.1), whose regiom, is illustrated in Figure 3aB; is the only
bucket inH overlappingr (i.e., Souc = {B1} in the pseudocode
of Proces$. SinceBi.c =0 < e)\/2 = 3, itis safe to answeq ;
hence, we repou; (D) to the user. Accordingly) becomesq; },
and B;.c equalsl. Figure 3b demonstrates the extent/#f, and
its counterB; .c in the bracket.

The next two queries t® are theg, andgs mentioned in Sec-
tion 1.1, whose regionsg; andr;s respectively are depicted in Fig-
ure 3c. Bothg: andgs are answerable, as can be verified in the
same way ag.. After returninggz (D) and gs3(D), @ becomes
{¢1, g2, g3}, and the counter oB; grows to3, reaching the split
thresholdeA /2. Thus,B; is decomposed (by the sub-routiBglif)
into B, and B3, whose extents are shown in Figure 3d. The details



Algorithm Split (B)
/* Bis a bucket to be decomposed */
U = the set of regions of the queriesdnthat partially intersecB
ifU#£0
removeB from H
rn = the intersection of all the regions Ui
ifro=0
split B into bucketsB’ and B with the minimumB’.c + B .c
using the cutting lines passing the boundaries of the regiof’s in
else
repetitively splitB by the cutting lines passing the boundaries:ef
until a bucket has extemt,
insert the new buckets infd with counters set t@3.c

Figure 4: Bucket split algorithm

onpwNE

© N

of the decomposition will become clear latdB;.c = 2 because
Bs overlaps two querieg; andg: in Q. Likewise, Bs.cis also 2.
The fourth queryy, to D is:

SELECT COUNT(*) FROMT
WHERE Age=* AND Incomec [40000, 99999]

q4:

whose regiomr, is presented in Figure 3e. Among the two buckets
B3, Bs in H, only Bs intersectsry (i.e., Shux = {Bs}). Since
Bs.c =2 < €)\/2, ¢4 is answerableD returnsgs (D), and updates
Qto{qi,q2,qs,qa}. Bs.cbecomes 3, triggering a split. Decompo-
sition of B3 leads to 4 bucket®,, Bs, Bg, andB7, whose extents
and counters are illustrated in Figure 3f. Finalyincludes totally
five buckets.

It is worth mentioning that, sincB~ has a counter 3= e\ /2, all
future queries whose regions intersé&ttwill be denied. O

Bucket Decomposition. Figure 4 presents the details 8plit,
which Processdeploys to decompose a buckBtwhose counter
B.c equalseA/2. Split begins by retrieving the séf of regions
in R that partially intersectB (recall thatR contains the regions
of the setQ of previously-answered queries). Of = (), exactly
e\/2 regions inR fully contain B. In this case, splitting3 does
not lower its counter, because all pointsBrhave popularitye\ /2
in Q. Hence Splitsimply terminates, and keegsin H.

Next we focus on the cadé # 0. Split removesB from H,
computes the intersectiom, of the regions irl/. Then, it divides
B using one or moreuts

DEFINITION 6 (CuT). Let L be ad — 1 dimensional plane in
Q that is perpendicular to an axis. Tlat of B by L results in
bucketsB’ and B”, which are separated k¥, and their union is
B. We say that_ is acutting line O

In casern = 0, Splitattempts all the cutting lines that go through
a boundary of every region iti. Among those lines$plitdecom-
posesB using the one that minimizes the sum of the counters of
the new buckets, i.eB’.c + B” .c is the smallest. We aim to min-
imize B'.c + B” .c, because a smalles’.c (B".c) allows us to
answer more queries intersectii®j (B"), i.e., a lower value of
B’.c+ B".cleads to a larger number of admissible queries.

EXAMPLE 4 (CONTINUED). Letus revisitthe momentin Ex-
ample 4 when the countds; .c reaches the split threshold /2 =
3. At this point,Q = {Q1, Q2,Qs}, and their regions+, ra, 73
are shown in Figures 3a and 3c. To decompBseSplitidentifies
U = {r1,r2,7r3}, since all these regions intersdgt. Clearly,rn
is empty (in fact, the intersection ef andrs is already empty).
Thus, Split tries to cutB; using the vertical/horizontal lines that
contain the edges ofi, ..., r3. It can be verified that, among all
those lines, the horizontal lineacome= 40k is the best, achieving
the smallesB;.c + Ba.c = 4. O
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If 7~ # (), B is decomposed into multiple buckets, one of which
has the extent exacthy. Split accomplishes this using only the
setScye Of cutting lines that contain the boundariesref. Clearly,

Scut has2d lines. Splitrandomly picks one of them, and uses it to
decomposeB into B’, B”. One of B’, B” is disjoint withr~, and

is retained inH directly. Suppose, without loss of generality, that
B’ is disjoint withrn; then, B” must coverrn, and is split further
using another cutting line frorficu. This process is repeated, until
the extent of a bucket is,. To understand why we decompaBe

in such a way, observe that any pointrin (B — rn) is covered by
exactlyeA/2 (at moste) /2 — 1) queries. In other words, all queries
that intersect~ should be denied, whereas any queries that cover
only the points inB — r~ can be answered. Therefore, we separate
rn from the other points iB.

EXAMPLE 4 (CONTINUED). Consider the moment in Exam-
ple 4 when the counteBs.c equals 3. At this time,Q
{Q1,Q2, Qs,Q4}, whose regionss, ..., 74 can be found in Fig-
ures 3a, 3c, 3e. To decompoBg, SplitfindsU = {ri,rs,r4}.
Note thatrs is not included since it is disjoint witlBs. The in-
tersectionrn of all regions inU is the shaded area in Figure 3e.
Therefore,Scut has four cutting linesAge= 30, Age= 50, Income
= 40k, andincome= 70k, each of which contains an edgeref,
respectively.Bs is decomposed int@., Bs, Bgs, B7 by using the
linesAge= 30,Age= 50, Income= 70k in this order. O

Split can be implemented i® (e - log(e\)) time. SincePro-
cessinvokes Split at most () times, it has a time complexity
O (OeX - log(eN)), wheref is the number of buckets.

3.3 Limitation of Output Perturbation

We close this section with a theoretical result on the maxi-
mum number of queries that can be answered without violating
e-differential privacy. Given a query, we define itsvolumeas
the percentage of points @ that qualify its WHERE condition.
Specially, a query with predicated; = " on all A4; (¢« € [1,d])
has a volume 1. Then:

LEMMA 3. Consider any solution that (i) guarantees
differential privacy, and (ii) perturbs each query answer by a
Laplace noise having magnitude Let6 be the maximum num-
ber of queries that can be processed by such a solution. Then,

1. if each query has a fixed volurag0 < s < 1),

€A
o< 2s(1—s)’ ®)
2. if each query has a volume at leastand at mostl — s’
(0< s <1/2),
€A
o< (4

PrROOF Assume that the solution has answered a (@ebf
queries. Due te-differential privacy, by Theorem 15.1(Q) <
eX. Letn = |Q], andp; (1 < i < n) be thei-th point inQ2. With-
out loss of generality, suppose that, among all point,ip; has
the largest popularity i@. Then,

n-p1(Q) > Bi1pi(Q). (%)

Let Q1 be the set of queries i) whose regions covep;, and
Q2= Q — Q1. Sop1(Q) = |Q1].

Consider the following propositioty: Vi € [2,n], p1(Q) —
pi(Q1) + pi(Q2) < Sr1(Q). Assume for the moment thaf is



valid (we will prove Z shortly). In the following, we wiII first show
that, when each query i) has a volume, |Q| < 23(1 -y holds.
Since each query i) coversn - s point in 2, we know

Siiapi(@) =1Q| - n s, (6)
which implies thatX} ,p;(Q1) = Q1| - (n - s — 1), and
Siopi(Q2) = (IQ] — |Q1]) - n - s. Furthermore, Equations 5

and 6 lead t@:(Q) > |Q] - s. Then, by propositiorZ, we have
EZL:zSLl(Q)

> Uiop1(Q) — Bitopi(Q1) + Tisopi(Q2)
= @l (n=1)—|Q]-(n-s -1+ (Q - [@1]) -n-s
= (@ n-(1-25)+|Q|-n-s
> Q| s n-(1-28)+1Q|-n-s
= 2|Q|-(1—35)-n-s.
This indicategn — 1)S11(Q) > 2|Q| - n(1 — s)s, leading to
n—1 Si(Q) €A
Q= 2(1—s)s 2(1—s)s’

which establishes Equation 3.

Next, we will show that, when each querydhhas a volume in
[s',1 — s'], Equation 4 holds. Letol(q) denote the volume of any
querygq. By propositionZ, we knowX;_,S11(Q)

Yo (Q) — Xiopi(Q1) + Xiopi(Q2)
Qi+ (n—1)= > (n-vol(q) — 1) + > (n-vol(q))

qeQ qEQ2

Qi -n— > (n-vol(g))+ > (n-wvol(q

qEQ1 q€Q2

n- Z (1 —wol(q)) +n - Z vol(q)

qeQ qEQ2

n- Z (1-(1=5))+n- Z s

q€Q1 9€Q2
n-Q|-s.

In other words(n — 1)S.1(Q) > |Q| - n - s’, which implies that

2

Y

-1 SLl(Q) <2

8/

Q< —

validating Equation 4.
It remains to prove propositiod. Assume, on the contrary, that
there existg € [2, n] such that

p1(Q) — p;(Q1) +p;(Q2) > Sr1(Q). (7)

Let @3 be the set of queries i, whose regions contaijpy. Lett;
and¢s be the tuples corresponding pe andp;, respectively. Let
T (T>) be a microdata table including only (¢2). By Definition 1,
T andT> are siblings. Since any query @s covers bothp; and
pj, it holds that

Vg € Qs3, q(Th) = q(12) = (8)
As each query i1 — @3 coversp; but notp;, we know
Vg € Q1 — Qs, q(T1) =1, q(T2) = 0. 9)
Furthermore,
Vg € Q2, q(T1) =0, q(12) = 0. (10)
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Combining Equations 8, 9, and 10,¢¢|q(T1) — ¢(13)]

Ygesla(Th) — q(T2)| + Tgeqi —@sla(Th) — q(T2)]
+Xgeqqla(Th) — q(T2)]

Ygeq: q(Tl) — Ygeqn q(TQ) + EQEqu(TQ)'
As Y4eq,q(Th) P(Q), Xgeq,q(T2)
L4eq2q(T2) = p;(Q2), by Equations 7, 114elq(T3) —
Z0e019(T1) — 41 4(T2) + Zqeq,q(T2)
P1(Q) — p;(Q1) + p;(Q2).

By our hypothetic assumption earlier, the above is greater than

S11(Q). Thus, we have arrived &,co|q(Th) — q(T)| >
S11(Q), which contradicts Definition 3. []

1y

p;i(Q1),
q(T»)]

Equation 4 leads to the following corollary.

COROLLARY 2. Letn be the total number of points . To
guaranteec-differential privacy, any solution, which perturbs each
query answer by a Laplace noise with a magnitudean process
at mostn - e\ queries with volumes i(0, 1).

PROOF For any query with a volume if0, 1), it should contain
at leastl point (and at most — 1 points) inQ2. Therefore, the vol-
ume of each query lies ifi/n, 1 — 1/n]. By Equation 4, the total
number of allowable queries is at mest/(1/n), which proves the
corollary. [

Hence, any output-perturbation method leveraging Laplatsen
can answer at mog®(n) queries (where, = |Q)), after which the
statistical database will simply stop functioning. In contrast, the
total number of possible queries 6his ©(n?). The next section
presents a technique to remedy this drawback.

4. QUERY RELAXATION

The solution in Section 3 denies a query if answering it violates
e-differential privacy. As explained in Section 1.1, query denial
reduces the utility of the database. In the sequel, we remedy the
problem with query relaxation.

Specifically, let¢* be a query that is rejected by the statistical
databaséD>. Query relaxation returns (i) the definition of a query
q*’, and (ii) a synthetic answaer for ¢*’. In particular,¢*’ may
not necessarily be the samegs but in case they are nag;"’ is
similar to ¢*. Furthermorep is synthetic, because it derivation
differs from the normal process th&t uses to compute an answer
(recall that, if D accepts a query, then the answer is obtained by
adding a Laplace noise to the query’s real result). In particular,
is synthesized by utilizing only theeportedanswers of the past
queries. Remember that those queries and their reported answers
are already publicly available. Thugery relaxation is using only
the public knowledge to infer the result @f. This guarantees-
differential privacy because, as mentioned in Section 1.1, whatever
derived solely from public information remains public knowledge.

4.1 Compound

To avoid ambiguity, we say thd? acceptsa query if D returns
aperturbed answeusing the method in Section 3 (i.e., processing
the query causes no privacy violation). Accepted queries are dis-
tinguished from the othedenied queriesfor which D produces
synthetic answersia relaxation. Given any sef of accepted
queries, itstotal answerequals the sum of the reported answers
of all queries inS.

Let Q be the set of accepted queries in history, ahé denied
query whose region ig8*. Relaxation looks for a subsét, of @,
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Figure 5: lllustration of a compound
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containing accepted queries whose regions can be put together tqy’

form a rectangle similar to*. Then, we use the total answerBf

as the synthetic answer fgf. However, some queries iRy may
have overlapping regions in which case their intersections are over-
counted. Therefore, to increase accuracy, relaxation also searche
for another subseP_ of @, involving queries whose regions cor-
respond to the intersection areasih. To cancel the effect of
over-counting, we subtract the total answerof from that of P, .

The pair of( Py, P—) constitutes @ompoundwhich is formalized
below:

DEFINITION 7 (CoMPOUND). Two disjoint setsP; and P—
of queries constitute @mpoundP, if:

1. For each poinp in the data spac®, p(P) — p(P-) equals
0 or 1, wherep(P;) andp(P-) are the popularities g in
Py andP_, respectively.

2. All pointsp € Q satisfyingp(P1) — p(P-) = 1 form a
rectanglerqirr, which is thedifference regiorof P. O

We refer to| P, U P_| as thesizeof P. As explained earlier, we
compute asynthetic answeof P by

Y ad) - Y o).

qeEP qeP_

(12)

wheregq(D) is the reported answer of an accepted qugeryntu-
itively, condition 1 of Definition 7 requires no over-counting at all
in the synthetic answer d@?. The difference regionis, formulated

in condition 2, is exactly the region that the synthetic answer corre-
sponds to. Furthermoregs is also the relaxed queky*’ returned

to the user. Hence, condition 2 demamgsg to be a rectangle.

EXAMPLE 5. Assume that) consists of four queriega, gz,
..., @D, Whose regions 4, ..., rp are illustrated in Figure 5. Let
P, = {gqp}andP- = {qa,qB,qc}. Then,P = (P},P_)isa
compound. Specifically, for any poiptoutsider p, its popularities
p(Py) andp(P-) in Py and P_ respectively are both 0. For any
point p insiderp but outside the grey areg(P,) andp(P-) are
both 1. For any poinp in the grey aregy(Py) = 1 whereap(P-)
= 0. Hence, condition 1 is fulfilled. Furthermore, condition 2 is
also satisfied becaugg P.) — p(P+) = 1 only whenp is in the
shaded area, which is thus the difference regioR of he synthetic
answer ofP equalsgp (D) — (qa(D) + ¢s(D) + qc(D)). O

Ideally, the difference regiongir of a compoundP should be
identical to the regiom™ of the denied query*. When this is not
true, we need a metric for quantifying the quality of a compound.
The next subsection addresses this issue.

4.2 Relaxation Error

Let r be an axis-parallel rectangle in the spdze Denote its
projection on the-th dimension { < i < d) as[r.z;, r.y;]. Also,
useA;.mazx (A;.min) to represent the maximum (minimum) value
on thei-th axis. As mentioned earlier, given a denied quefy
with regionr™, we want to find a compoun#& whose difference
regionrgis IS as similar ta-* as possible. To measure the similarity
betweenrgix andr™*, we introduce the following metric:
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Algorithm Patch-checKP, q)
/* P is a compound and an accepted query */
rqiff = the difference region oP
r = the region ofg*
ifrggNr =0
if the union ofrg andr is a rectangle
if the relaxation error drops after includingn P4+
returnP.
else ifrgir coversr andrgi — r is a rectangle
if the relaxation error drops after includiggn P—
returnP_
10. return NULL

Figure 6: Checking whether a query is a patch
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Figure 7: lllustration of Patch-check

DEFINITION8 (RELAXATION ERROR). Let P be a com-
pound and;* a denied query with region*. Therelaxation error

E(P,q) equals
) (13)

d ( |r*.@s — rait.xi| + |y — iy
5 (e
i=1
O

Ul

A;mazx — A;.min

where weightsvy, ..., w4 can be any positive values.

Weightw; (¢ € [1,d]) is a constant reflecting the importance of
dimensionA;. A largew; means that4; is imperative, such that
even a small difference betweefi andrgi along this dimension
may cause heavy penalty. A smal] achieves the opposite effect.
For simplicity, in the sequel, we assumg = ... = wg = 1
because our solutions extend to arbitrary weights directly.

Given a compound’, Equation 13 suggests an easy way to iden-
tify which query can be inserted i to reduce relaxation error. We
refer to such a query aspatch

DEFINITION9 (PaTcH). Let Q the set of accepted queries
andP = {P;, P_} be a compound. Consider a quere Q that
does not belong td® yet. We say that is a positive (negativg
patchif, after includingqg in Py (P-), (i) P remains a compound
and (i) E(P, ¢*) decreases. O

Figure 6 gives an algorithiRatch-checKor verifying whether a
query g is a patch for a compoun# = {P;, P_}. In case it is,
Patch-checlndicates whetheq should be added t8 or P_. If ¢
is not a patch, the algorithm returns NULL. Next, we illustrate the
algorithm using an example.

EXAMPLE 6. Assume that) containsqa, gz, gc whose re-
gionsra, ...,r¢ are shown in Figure 7a. Rectangfeis the region
of a denied query*. Consider a compountt = (P, P_), where
Py = {ra} andP- = (. The difference regiongitt of Pisra4.

To see whethegs is a patchPatch-checlstarts by noticing that
rg is disjoint withrgi (Line 3 of Figure 6). In this case, the algo-
rithm examines if the union ofgix andr g is a rectangle (Line 4).
The answer is negative, and therefdPatch-checketurns NULL.
The regionrc of g, on the other hand, is disjoint withi, and
meanwhile, can uniong into a rectangle. Henc®atch-checlex-
amines whether inclusion af- in Py reduces the relaxation error
(Line 5). For this purpose, it obtains the new (if ¢ is indeed
inserted inPy), which is the shaded area in Figure 7a. Clearly,
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Figure 8: Atrtificial queries reduce relaxation error

compared to the originaki, the shaded area is more similartg
implying lower relaxation error. Thereforge is a positive patch,
andPatch-checketurnsP,. (Line 6).

Consider another example, wherg, rg, rc, r* are demon-
strated in Figure 7br(y is the bold rectangle). Again, suppose
P = (P4, P-),whereP; = {ra} andP_ = ), and apparently,
thergir of P isr 4. Let us applyPatch-checko verify whethery g is
a patch. Sincep intersectsgir, Patch-checlexecutes Line 7, and
proceeds only if (iyqir encloses s and (ii) the difference between
rqif andrp is a rectangle. Here, although (i) is true, (ii) is not.
Hence,Patch-checKinishes with NULL. On the other hand¢
satisfies both (i) and (i), and thuBatch-checlproceeds to inspect
the relaxation error after adding- to P (Line 8). The shaded
area in Figure 7 shows the new (if gc is in P_), which is a
better approximation of* than the originalqir. Hence,qc is a
negative patch, and the algorithm terminates vith(Line 9). O

4.3 Atrtificial Patches

So far we have assumed that a compouhdontains only the
queries inQ that areexplicitlyissued by users in the past. This sec-

Algorithm Relax(q*, &)

I* ¢* is a denied query, an§lthe maximum compound size */

1. g =the queryinQ minimizing E(P, ¢*), whereP = {q}, P_ = 0,
andP = {Py,P_}

2. ans =the reported answer qf
3. while the size ofP is smaller tharg
4. M = the set of queries i®Y that are patches faP
[* using Patch-checkn Figure 6 */
5 M = M U Sani I* See Section 4.3 about derivirgy */
6 if M = 0 then goto Line 14
7. else
8. g = the patch inM whose insertion ifP minimizesE (P, q)
9 if ¢ ¢ Q thenz = Proces$g)
10. elsex = the reported answer gf
11. if ¢ is a positive patch
12. Py =P, U{¢},ans=ans+v
13. elseP_ = P_ U{q'}; ans = ans — v

14. returnans and the difference region a?
Figure 9: The relaxation algorithm

Specifically, thg2i — 1)-th (1 < ¢ < d) query has a region whose
projection on dimensiom; is:

[raite.zj, raitr.y;] i j #
[rai.zi, v .2s) if j =dandr*.x; > .z
[r*.2;, rar.z;)  otherwise

Similarly, the region of th@:-th query has the following projection
onAj;:

[rait.xj, rai.y;] 05 F# i
(Tdif‘f~yi7 7‘*~yi] if j =1 andr*.yi > Tdiff.Yi
(r*.yi,rair.y;)  Otherwise

tion explores another possibility: we can also dynamically generate 4.4  Probabilistic Accuracy

a query, force the database to proceswitally(i.e., using the so-

Recall that, given a compoun#, we return a synthetic answer

lution in Section 3), and then, use its perturbed answer to obtain av calculated by Equation 12, and a relaxed qugry The value

better synthetic answer for the denied qugty

To illustrate, consider Figure 8a, wheré is the region ofg™,
andrgi (the bold rectangle) is the difference region of the current
compoundP. Obviously,rgi is a poor approximation of*. Imag-
ine, however, that whadan accepted querys in @ whose region
is r4. This query is a negative patch, because its inclusioR-in
shrinksrqir to the shaded area, which is significantly more simi-
lar tor*. In fact, even thouglg is not in@Q, we can instruct the
databaseD to process it (as an accepted quetight away, after
which g4 can be incorporated iy, and hence, becomes a candi-
date patch to be selected Bgtch-checKFigure 6).

In Figure 8a, the artificial querya aligns with the right edge of
r*. Sometimes, it is better to align with the left edger6f For
example, let us examine Figure 8b, wherg is the region of an
artificial querygs. Apparently,gg a positive patch, as its insertion
in P, expandsqitt to the shaded area, which has much lower re-
laxation error. Similarly, artificial queries may also be created on
the y-dimension, by aligning with the upper and lower edges of
respectively.

In general, given a compound with difference region i, we
prepare amrtificial patch-setSaqi as follows. FirstSaqi is initiated
with 2d artificial queries, each of which aligns with a boundary
of rairr (details clarified shortly). Then, we involatch-checko
eliminate those queries i that are not patches (i.e., they do

not reduce the relaxation error). Some remaining queries may be

denied byD due toe-differential privacy (i.e., if they intersect a
bucket in the histograrfi with countere\/2; see Section 3), and
are also removed frorfari. The resultingSar is the final artificial
patch-set.

It remains to explain how to obtain the initiad queries iNSar.
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v is actually an unbiased estimate the real regtli¢7’), but has a
variance proportional to the size &f

LEMMA 4. Equation 12 has the expected valié(T), and its
variance is2)\? - | Py U P_|, where) is the noise magnitude @.
PrROOF For any query; in Py or P_, leté, be the noise thab
injects intog(D). Denotev as the value of Equation 12.
v = Y4er,q(D) —X4er_q(D)
Sgep, (9(T) +dq) — Yger_ (a(T) + dq)
quP+ Q(T) - quPf‘I(T) + 2q€P+ 5q - quPf 5q-
By Equation 1, the mean and variance&df p, 0, — Xqepr_Jd, are
0and2)?-| P, UP_|, respectively. Hence, has an expected value
Yeer, q(T) — qep_q(T), and varianc@\’ - |P; U P_|. Next,
we will show thatSeep, q(T) — Sqcp_q(T) = ¢*'(T).
Consider the-th (1 < ¢ < |T|) tuplet; in T'. Letp; be the point
representation of; in 2, andG = {p; | 1 <14 < |T|}. Thus,

Yger, q(T) = Epeap(Py), andEsep_q(T) = Epeap(P-).

Let rqirr be the difference region @, which is also the region*’
of ¢*'. By Definition 7, for any poinp € Q, p(P}) — p(P-) =1
if p € rair; otherwisep(Py) — p(P-) = 0. Hence YXyep, q(T) —

Ygep q(T) = EpeG(P(P+) - P(Pf))

EPEGﬁ'rdiff (p(P+) - p(P*)) + EPEG*Tdiff (p(P+) - p(P*))
EpeGnranl + LpeG—ran0

Speap({d™'}) ¢ (T).
which completes the proof.[]
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Ty Parameter Values
100k 1 s 100k Bs noise magnitude: 2000
o 80kj o 30k B, ) B0 histogram size threshol@l | 102, 10%, 107, 10%, 10°
S 60k | S o0kl @[5 P c 0.1,0.2,0.3,04,05
2 40K 2 40k | 3) query volumes 1%, 2%, 4%, 8%, 16%
S0k} 71 20k 50 compound size threshold 1,2,3,4,5
0 N ’”; { 0 _ ’ _ Table 2: Parameters and examined values
0 20 40 60 80 100 Age 0 20 40 60 80 100 Age
(a) The queries id) (b) The buckets in histografi )
P ={g@},P. =0 Inthe sec_onql round{elaxcreates_a seY/ of patches in the same
rag afier #6 (an artificial query) manner. This time, no query fro is added ta\/. The artificial
100k 7 the st 100k patch-setSani, on the other hand, has a negative pajghwhose
30k - round 30k regionrg is given in Figure 10d. Thusy/ includes onlygs, which
§ 60Kk \ } § 60k ) is placed inP_. As a result, the difference regionir shrinks to
2 40k } } 2 Lok /;}j%f;;' t}ge sh?de}d area of Figure 10d. At this tinf®, = {g2,¢3} and
| round — = 1964
20k Fs/‘ } 20k Now that the size ofP has reached the upper boufd= 3,
0 020 L40 "60 80 100 Age 0 0720 40 60 80100 Age Split finishes, and returns the synthetic answerPpfand the fi-
(c) After the first round (d) After the second round nal rar. After this, g needs to included g (which is now
Pi = {go,q3}, P— = 0 Py = {g2, g5}, P_ = {qs} Q = _{q_l,qQ,q;;,q4,q6}) because, as expl_alned in Se_ctlo_n 4.3,
i ) an artificial query is processed normally using the solution in Sec-
Figure 10: lllustration of Relax tion 3. 0

Since the variance of the synthetic answer grows with the size  Each round oRelaxexamines the queries § once, which takes
of P, we allow the user to specify an upper-boufidn the size  ((ge)) time because) contains at mosfle)/2 queries, wherd

of a compound, i.e., there can be at mosjueries inP U P_. is the number of buckets in the dynamic histogram. Since there are
The value of¢ controls the tradeoff between relaxation error and  at most¢ rounds,Relaxruns inO(£0e)) time.

query accuracy: a largérleads to compounds consisting of more
queries, which lowers relaxation error but increases the noise in 5 EXPERIMENTS
the query results; on the other hand, a smdllensures less noisy )

query answers, but may incur higher relaxation error This section experimentally evaluates the effectiveness of the

proposed solutions. We use a real dataset CENSUS (obtainable

45 Relaxation Algorithm from http://www.ipums.orgwith one million tuples, each storing
Based on the previous analysis, Figure 9 formally presents the the information of an American. It has four attributége Educa-

query relaxation algorithrRelax Given a denied query*, Relax tion, Occupation andincome whose domain sizes ar®, 14, 23,

starts with a simple compoungl whoseP- is empty, and its, arjdl()(), respectlve!y. We aim atguarenteeujglﬁerentlal privacy

contains the query i) (the set of accepted queries) most similar With & noise magnitude. = 2000. This choice ofA ensures that

to ¢*. Then,Relaxproceeds in rounds, each of which adds a query the expected ebsolgte error of eachl query answer is a small value

to P to minimize the relaxation error. Such a query is chosen from 2000 (as explained in Section 2), which accounts for ang/% of

bothQ and the artificial patch et computed as in Section 4.3, the cardinality of CENSUS.

More rounds are carried out until either the sizeFohas reached Each query has the formselect count(*) from CENSUS where

the upper bound, or no more patch can be found. Ay € [z1,51] and Az € [z2, y2]. Here,A; and A, are two random
attributes of CENSUS. Intervdk;, y;] falls in the domain ofA;

ExAMPLE 7. Assume thaD has accepted the s@tof queries (1 <4 <2),anditslengthy; —z; equals,/s-(A;.maz— A;.min),
q1, 92, g3, qu before, whose regions,, ..., 74 are illustrated in whereA;.mazx (A;.min) is the maximum (minimum) value in the
Figure 10a. At this point, the histogratd has the buckets in Fig-  domain of A;, and s the query volume (defined in Section 3.3).
ure 10b, and the largest permissible bucket coustg¢® equals 3 The center; of [z, y;] follows one of the following distributions,
(for ensuringe-differential privacy). Now,D receives a new query  which reflect the patterns of users’ queries in practice [7]:
gs whose regions is shown in Figure 10cD deniesgs, because ! .
75 intersects a bucke®, , whose counter 3 equads./2. Then,D o Data z; = 1[A;], wheret is a tuple randomly selected from
invokesRelaxto derive a synthetic answer. Assume the maximum CENSUS.
compound sizg to be 3. e Uniform: z; is a random value in the domain df,.

Among all the queries i), g2 is the most similar tgs; hence, ) ) ) ) .
Relaxinitializes P, = {¢»} andP_ = 0. Clearly, the difference A (Data- or Uniform-) workload contains 20k queries with an iden-

regionrgps of P is 72, i.€., the shaded area in Figure 10a. tical s obeying the same distribution. o .
The algorithm enters the first roundRelaxbuilds a setM of Table 2 summarizes the parameters examined in our experi-
patches ofP. For this purpose, it employBatch-checKFigure 6) ments. Unless otherwise stated, each parameter is set to its default
to examine every query i@ that is not inP yet. The examination value (bold ip the table) in each experiment. All the experiments
reveals thays is a positive patch; hencé/ = {gs}. Then,Relax are accomplished on a computer with a 3 GHz Pentium IV CPU

computes the artificial patch-sét in the way described in Sec- ~ and one gigabytes memory.
tion 4.3, and adds all queries Sf to M. It can be verified that Processing Capacity without Relaxation. The first set of ex-

here Sai = 0, thus causing no change M. As g3 is the only periments studies the number of queries that can be answered by
element inM, it is inserted inPy (remember thags is a positive our Histogramapproach (Section 3) without query relaxation. For
patch), which thus becomds., g3 }. This changes the difference = comparison, we implement the only existing solution [13] that en-
regionrgi to be the shaded area in Figure 10c. sures-differential privacy in handling count queries. This solution,
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referred to aPisjoint, processes an incoming query, if and only if

its region does not overlap any of the queries answered previously.

In the experiment of Figure 11a, we submit the querieshata-

workload to the underlying statistical database, and measure the

average relaxation error (%)

, average compound size
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the upper bounds. The capacity increases linearly witfihis is
expected, because the capacity is proportional to the ¢ili2 on
C(Q), which, in turn, is linear ta. On the other hand, a greater

s results in a smaller capacity, since handling queries with larger
regions causes faster growth@fQ).

number of processed queries, as a function of the number submit-Quality of Relaxation. The effectiveness of query relaxation (Sec-

ted. The figure demonstrates the resultsDigjoint, Histogram
adopting various numbeis of buckets, and the theoretical upper
bounds given by Lemma 3. Figure 11b illustrates the results of
a similar experiment with &niformrworkload. For eachy, the
curve ofHistograminitially increases because, during this period,
the bucket counters are smaller than the lieky2, thus permit-

tion 4) is determined by: (i) the relaxation error (calculated by
Equation 13) and (ii) the size of the final compound. The former
indicates the amount of modification to the original query’s predi-
cates, whereas the latter determines the variance of a synthetic an-
swer (see Lemma 4).

By varying ¢ from 1 to 5, Figure 13a (13b) illustrates the aver-

ting additional queries to be processed. The curve eventually turns29e relaxation errors (compound sizes) of the queries that demand

horizontal, when the counters have reached the limit.
We use the ternprocessing capacityo refer to the total num-

relaxation inData- and Uniform-workloads, respectively. The av-
erage error is very small, indicating that a compound region used to

ber of queries in a workload that are answered by the database derive a synthetic answer is almost identical to the original query

Observe that the capacity bfistogramgrows along withd. This

region. The error decreaseséescalates, since allowing a larger

is because a histogram with more buckets provides a better esti-compound raises the chance of finding a good compound (whose
mate ofC/(Q), and hence, reduces the chance of denying a query région incurs little relaxation error). The average compound size is

that could have been processed (if the 8&l)) was maintained).
Nevertheless, we witness no obvious gain by raigibgyond10°,
implying thatd = 10° already offers adequate precision for max-
imizing the processing capacity. Whénis fixed, Histogramis
able to answer more queries itJaiform-workload than in Data-
workload. This is due to the fact that, uniform queries have less
overlap in their regions, which leads to a lowg(Q), and hence,
fewer query denials.

For uniform queries and = 10°, the processing capacity of
Histogramapproaches the upper bound, which confirms the effec-

fairly low, implying a small variance in the reported answers. Note
that a compound size can be well belgwbecause the relaxation
algorithm may terminate before the size reaches

In Figure 14a (14b), we plot the average relaxation error (com-
pound size) as a function efwhen this parameter distributes from
0.1 to 0.5. Both factors decreaseabecomes larger. To under-
stand this, recall that a greatesllows the database to process more
queries (see Figure 12a), rendering a largexsesable by relax-
ation, and thus, enhancing relaxation quality. Figures 15a and 15b
demonstrate the relaxation error and compound size jssaried

tiveness of the proposed bucket maintenance algorithm. Since anP&tween 1% and 16%. The two factors increase wjthhich can
upper bound assumes an “ideal” query distribution, it is reasonable 29ain be explained by the relationship between the relaxation qual-

for the actual capacity to be lower, especially given a “bad” distri-
bution such aPata. Notice thaHistogramhas significantly higher
capacity tharDisjoint. Since this is true in all the subsequent ex-
periments, we omibisjoint in the following diagrams.

Next, we investigate the effects efands on the processing ca-
pacity ofHistogram Figure 12a (12b) plots the actual capacity as a
function of e (s) for workloads of both distributions, together with
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ity and the database’s processing capacity (c.f. Figure 12b). In all
cases, the relaxation error and compound size remain at very low
levels, confirming the usefulness of our synthetic answers.

Computation Overhead. In the next set of experiments, we eval-
uate the average processing time required by our technique in an-
swering queries. Figures 16a and 16b plot the computation over-
head as a function afands, respectively. The overhead escalates



average relaxation error (%) , average compound size

05 = Oriform —2.— all 6 buckets to process each yvorklgad, and hence, the computation
04! Data —5— ¥ Lg| Skew—e— 3 overhead for both workloads is similar.
0.3 D U
0r 1/ 6. RELATED WORK
o1 05 Output perturbation is first studied by the statistics community
'[ (see [2] for a survey). In particular, Denning [10] devises a method
0‘1 5 p o 16 0 N 5 p s 16 that proposes to answer queries on a random sample set of the
s (%) s (%) underlying data; Fellegi and Phillips [15] devises a method that
(a) Average relaxation error (b) Average compound size ~ founds each query result to the nearest multiple of a pre-defined
Figure 15: Relaxation quality vs. s numbgr, while Achugbue and Chln [1] anq Dalenius [9] investigate
: ) variations of this method. As pointed out in [12], however, the ex-
o5 Computation time (ms) 30 Somputation time (ms) isting approaches in the statistics literature mainly address the util-
Uniform —&— 4 Uniform —&— ity of perturbed query results, without providing solid guarantees
20 Data —5— h 25[ Data —5— on privacy preservation, which severely limits their practicability.
15 20 In [11], Dinur and Nissim provide the first formal study on the
10 15 } amount of noise needed by any output perturbation scheme to en-
52 10 sure privacy in count queries. They show that, if an unlimited num-
5 ber of queries are allowed, the noise in each query answer must be
00 T 02 03 o4 os 0 N 5 4 s 16 linear to the dataset cardinality, otherwise, an adversary may be
’ ‘ £ ' ‘ s (%) able to restore the entire dataset precisely from the query results. As
(a) Vs.e (b) Vs. s an unfortunate implication, when the dataset is sizable, query an-
computation time (ms) computation time (ms) swers will have to be erroneous tq avoid privacy disclosure. Dwork
25 Uniform —A— 100 ) iform —&— \ et al. [14] further prove that, even if the statistical database employs
20 Data —&— Data —&— arbitrary noise in answerin@.269 fraction of the queries, and re-
154 turns relatively accurate answers for the rest, an adversary can still
reconstruct most tuples in the dataset.
10 To circumvent the problem, Blum et al. [6] propose a solution
5 that permits onlyo(n) count queries, but provides more accurate
0 1 answers. This solution is subsumed by the differential privacy
1 2 3 4 5 10 100 100 10 a1 mechanism [13], which allows a larger number of queries and of-
3 6 fers a higher degree of privacy protection. McSherry and Talwar
(c) Vs.€ (d) vs.0 [20] extend differential privacy for arbitrary queries, while Nissim
Figure 16: Computation time et al. [22] improve the techniques in [13] by taking into account the

smooth sensitivitgf the queries.

) ) ) Besides output perturbatiomjuery restrictionand input per-
with the increase of (decrease of), due to the following reasons.  tyrpation are also popular techniques for implementing statistical
First, a larger leads to a greater processing capacity, as shown in gatabases. Specifically, query restriction [8, 17, 21] works by deny-
Figure 12a. In turn, a high processing capacity renders the main-jnq queries that may lead to privacy breach, and returning exact an-
tenance of the dynamic histogram less efficient, because each exswer for the other queries. Compared to output perturbation, this
ecution of Split requires a scan through all previously answered technique offers more useful query results, but weaker privacy pro-
queries (see Line 1 in Figure 2). Consequently, the computation tection. In particular, none of the existing query restriction tech-
time increases witle. On the other hand, a largerresults in a nique can achieve-differential privacy.
smaller processing capacity (see Figure 12b), and hence, a lower \yhen input perturbation is adopted, the statistical database first
computation cost. ) sanitizes the microdata witfeneralizatior{24, 25] orrandom per-
~ Figure 16c demonstrates the computation overhead as a funcyrpation[3, 4], and then processes queries using the sanitized data.
tion of ¢. The overhead increases wighsince a greatef enables  The major advantage of input perturbation is that it is able to an-
our technique to utilize larger compounds (for query relaxation), swer any number of queries. Nevertheless, the benefit is at the cost
which, however,. require more tlme. to construct. In Figure 16d, we of sacrificing query accuracy. Dwork et al. [13] prove that, for prac-
plot the processing overhead, varyiffom 10* to 10°. The over- tical datasets, random perturbation necessarily incurs larger error
head escalates with the increasedof This is because, a larger  than output perturbation, in achievirggifferential privacy. They

0 allows more buckets in the dynamic histogram, which entails ajso show that generalization cannot be used to enstiifterential
higher processing cost, since our technique needs to inspect allyiyacy at all.

histogram buckets to dgcide whether a query is answerable. In-

terestingly, wheré = 10°, the query overhead @data-workload

is much lower than that dfniform-workload. To understand this, 7. CONCLUSIONS

observe that the number of histogram buckets increases, only when Althoughe-differential privacy has been established as an impor-
the statistical database processes an answerable query (see Figant paradigm for statistical databases, it remains unclear whether
ure 2). SinceData-workload permits a smaller processing capac- the paradigm can be efficiently applied when the incoming (count)
ity than Uniform-workload, few histogram buckets are created for queries have arbitrary predicates. This paper provides a pessimistic
Data-workload, and thus, the computation overhead is lower. This answer, by proving that evaluatingdifferential privacy is NP-
phenomenon does not occur whén< 10°, because the maxi-  hard. Fortunately, as the second step, we show that it is possible
mum numbers of histogram buckets entailed by each workloads isto efficiently enforce this paradigm in a conservative manner. Our
larger than10®, i.e., givend < 10°, our technique have to utilize  results lead to a histogram approach, which enables the processing
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of a majority of queries that qualify-differential privacy. Further-

more, given a query that violates the paradigm, our relaxation tech-
nique still provides a useful answer, as opposed to simply denying

the query completely as in previous solutions.

Our work also opens several avenues for future research. First, in
this paper we concentrate on statistical databases that answer count

[14] C. Dwork, F. McSherry, and K. Talwar. The price of privacy
and the limits of Ip decoding. IRroc. of ACM Symposium
on Theory of Computing (STOQ)ages 85-94, 2007.
[15] P. Fellegi and J. L. Phillips. Statistical confidentiality: Some
theory and applications to data disseminatibnnals of
Economic and Social Measuremer®(2):399-409, 1974.

queries. It is interesting to investigate whether our solutions can [16] V. lyengar. Transforming data to satisfy privacy constraints.

be adapted to support other aggregate queries (e.g., SUM, MIN,
MAX) as well. Second, the proposed solutions assume that there
are no updates in the microdata. We plan to study extensions for 17]
the scenarios where only insertions are possible (i.e., append-only),

and both insertions and deletions are allowed. Finally, our method

is designed for relational tables. It is a challenging problem to de- [18]
vise output perturbation techniques for other types of microdata

such as social networks, locations of moving objects, strings, etc.
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Appendix: Proof of Lemma 1

We will prove the lemma, by a reduction from théaximum 2-
Satisfiabilityproblem, which is NP-complete. Specifically, lete
a 2-CNF formula withm clauses om variablesv; (1 < i < n).
Given an positive integét, the Maximum 2-Satisfiability problem
asks whether there is an assignment of boolean values such
that at leask clauses inF’ evaluate tdrue.

Given any2-CNF formula F', we construct a sef) of count
queries on a microdata tabfe as follows.T' containsn attributes
A, ..., Ay, all of which have a domaif0, 1, 2, 3}. For each clause
in F', we create six queries i). Specifically, letc; be thej-th
clause inF, such thaic; involves thea-th ands-th variablesz
andzg. Letby, ..., b, ben integers, such that, for anye [1,n],
we haveb; = 0 if the negation ofv; appears irc;, andb; = 1
otherwise. The six queries corresponding:ta@re as follows:

SELECT COUNT(*) FROMT
WHERE A, € [ba, ba] AND Ag € [bg, bs]

qji1-

3For simplicity, we omit the predicates that have the form «”,



gj2: SELECT COUNT(*) FROMT'
WHERE A, € [ba,boa] AND Ag € [1 — bg, 1 — bg]
gj3: SELECT COUNT(*) FROMT'
VWHERE A, € [1 — ba,1 — ba] AND A € [bg, bg]
gja: SELECT COUNT(*) FROMT
WHERE A, € [2 + ba, 2 + ba]
AND Ag € [2 + bg, 2 + bg|
gj5: SELECT COUNT(*) FROMT'
WHERE A, € [2 + ba, 2 + ba]
AND Ag € [3 — bs,3 — bg]
gje: SELECT COUNT(*) FROMT'

WHERE A, € [3 — ba, 3 — ba)
AND Ag € [2 + bg, 2 + bg]

Let ¢[A] denote the value of a tupteon an attributed. The above
six queries have the following properties:

1. The predicates in the six queries are mutually disjoint. Thus,
no tuple can satisfy the predicates in two of these queries si-

multaneously.

2. Atuplet violates the predicates if}1, ¢;2, andg;s simulta-
neously, if and only iftf[A.] = 1 — bs andt[Ag] = 1 — bg.
In other words,¢ satisfiesg;j1, g;2, or g;s, if and only if
t[Aa] = ba Ort[Ag] = bg. Similarly, for any tuplée that ful-
fills the predicates ig;4, g;5, Or gj6, We havel[A,] = 24 bq
ort[Ag] = 2 + bg, and vice versa.

Totally, @ containsém queries, which can be constructed frdm
in linear time.

Next we will prove that, if and only i1 (Q) > 2k, there exists
an assignment of boolean valuesuto(1 < i < n) that satisfies
at leastk clauses inF'. For that purpose, we will first show that
the “only if” direction holds. Without loss of generality, assume
that the firstt clauses, ..., cx in F are satisfied under a certain
assignment ob;. Based on this assignment, we construct a pair
of sibling microdata table$; and7: as follows.T; contains only
one tuplet:, such that for any € [1,n], we havet;[A;] = 1 if
v; = true, andti[A;] = 0 otherwise. Similarlyl> has only one
tuplets, such thatz[A;] = 2 + t1[A;] (1 < i < n).

Consider theg-th clausg1 < j < k) ¢; in F', and the six queries
gj1, -, gj6 IN Q constructed fronz;. Letz, andzg be the two
variables involved irz;. Without loss of generality, assume that
andxg are assigned valuesue and false, respectively. In that
case,ti1[A.] = 1 andti1[Ag] = 0. Sincec; evaluates tdrue,
eitherz, or -z should appear ie;. Thus,b, = 1 or b, = 0.
Therefore, eitheti[A.] = ba Or t1[Ag] = bg must hold. By the
properties ofj;1, ..., gj6,

gi1(Th) + g2 (Th) + g;3(T1) = 1

gja(T1) + ¢;5(T1) + gj6(11) = 0.
Similarly, it can be verified that

g1 (T2) + ¢j2(T2) + ¢;3(T2) = 0,

gj4(T2) + 55 (12) + gj6(12) = 1.

For convenience, given any microdata tableve defineQ; (T") =
01(T) + 4;2(T) + ¢;3(T), and Q3(T) = q;a(T) + ¢;5(T) +
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g;6(T"). We have

Sti(@) = > |g(Th) — q(Tn)|

1€Q
> i (|g (T1) — g (T2)| + - + |qz6 (Th) — qz6(T2)])
le
> > (|Qi(Ty) — Qi(Ty)| + |Q5(Ty) — Q5(Tv)])
_

It remains to show that, i671(Q) > 2k, there must exist an
assignment of boolean valuesip(1 < ¢ < n), such that at least
k clauses inF are satisfied. Lef; and7Ty be a pair of sibling
microdata tables, such that .., |q(T3) — ¢(T)| = S1(Q).
Recall thatTy and Ty differ in only one tuple. Lets (t4) be the
tuple inT4 (T4) that does not appear ifi; (7%). LetTs (T4) be a
microdata table, such thaf (¢4) is the only tuple contained iffi;
(T4). We have

> |a(Ts) — q(To)] = > |a(T3) — q(T1)].
q€Q q€Q
Since|q(T;§) — q(Ti)| = S11(Q) > 2k,

> [a(Ts) — a(To)| > 2k.
q€Q

(14)

Because botf’s and T4 contain only one tuple, for any € Q,
q(T3) and q(T4) take value zero or one. By Equation 14, either
> geqd(Ts) > kory_ . ,aq(Ts) > k must be true.

Without loss of generality, assume thal, _, q(73) > k. Then,

/<;<Z (T3) =

qeQ

> (QilTs) + Qj(Tx)). (15)

Recall that, for any € [1, m], the query predicates 1, g;2, ...,
gj6 are disjoint. ThereforeR);(13) + Q’(Ts) takes value zero or
one. LetJ be the set of integers ifi, m], such that for any € J,
Q;(Ts) + Q5(T3) = 1. By Equation 15|.J| > k holds.

We are now ready to assign boolean values;t¢l < i < n),
such that at least clauses inF’ evaluate tdrue. In particular,

- { if t3[Az‘} =1 Ortg[Ai} =3

otherwise
For anyj € J, let us consider thg-th clausec; in F', and the
six queriesg;j1, ..., gjs iN Q constructed frome;. Since@;(71s) +
Q;-(Tg) = 1, t3 should satisfy the predicates in one of the six
queries. Without loss of generality, assume thdtlfills the pred-
icates ing;s. Let A, and Ag be the two attributes involved igy4.
Then, eithets[An] = 2+b, Ort3[Ag] = 3—bs should hold. Con-
sider the case whefy[A.] = 2 + b.. By Equation 16, ifba = 0
(i.e., the negation af, appears in;), we haver, = false. Oth-
erwise,x, = true. This indicates that; evaluates t@rue. Simi-
larly, whent3[Ag] = 3—bg, it can be shown that; is also satisfied.
Therefore, for anyj € J, ¢; is satisfied under our assignment of
boolean values to; (1 < ¢ < n). Since|J| > k, the lemma is
proved.

true,

false, (16)





