

A Skip-list Approach for Efficiently Processing
Forecasting Queries

Tingjian Ge, Stan Zdonik
Department of Computer Science

Brown University

{tige, sbz}@cs.brown.edu

ABSTRACT
Time series data is common in many settings including scientific
and financial applications. In these applications, the amount of
data is often very large. We seek to support prediction queries
over time series data. Prediction relies on model building which
can be too expensive to be practical if it is based on a large
number of data points. We propose to use statistical tests of
hypotheses to choose a proper subset of data points to use for a
given prediction query interval. This involves two steps: choosing
a proper history length and choosing the number of data points to
use within this history. Further, we use an I/O conscious skip list
data structure to provide samples of the original data set. Based
on the statistics collected for a query workload, which we model
as a probability mass function (PMF) over query intervals, we
devise a randomized algorithm that selects a set of pre-built
models (PM’s) to construct, subject to some maintenance cost
constraint when there are updates. Given this set of PM’s, we
discuss interesting query processing strategies for not only point
queries, but also range, aggregation, and JOIN queries. We
conduct a comprehensive empirical study on real world datasets
to verify the effectiveness of our approaches and algorithms.

1. INTRODUCTION
1.1 Motivation and Our Solution
There has been recent interest in forecasting queries [10].
Scientific, financial, and business applications rely on time series
data [30, 28]. Decision making often requires forecasting over
time series data at different time scales. The following three
example areas illustrate (1) short-, (2) medium-, and (3) long-term
forecasting requirements respectively.

(1) Scheduling: Forecasts of the level of demand for various
products are an essential input to near-term scheduling of
production, transportation, and personnel.

(2) Acquiring resources: Forecasting is needed to determine
future resource requirements in order to plan for acquisition
lead times that could span several months.

(3) Determining resource requirements: Forecasts of financial,
human, and technological requirements are helpful for
determining what resources an organization will need in the
long-term.

In these applications, the amount of data is often very large.
Consider the time series of trades and quotes (called ticks). Stock
quotes arrive every second. Financial analysts want to predict
stock prices minutes ahead, hours ahead, days ahead, months
ahead, or sometimes years ahead. Our goal is to use a moderate
amount of data for any prediction interval (a term which we use
to mean how far into the future we predict), so that we can
explore a larger portion of the huge space of possible models to
find a model that can serve as an accurate predictor. Note that we
use the term “forecast” and “prediction” interchangeably in this
paper.

A simple example of a forecasting query is the following:
SELECT * FROM ticks
WHERE symbol = “IBM” and time = NOW + 1 day
Clearly, excessive granularity of data is unnecessary and
inefficient or even impractical for a given prediction interval. For
example, to predict the stock price of some company one year
from now, it is wise to use a history length of a certain number of
years (say, 20 years). Too short a history may give a partial
picture of the evolution of the stock data, thus making the
prediction result inaccurate [15]. On the other hand, too long a
history length may not offer more useful information for the
prediction, and sometimes may even complicate and disturb the
model building [31], thereby, also reducing accuracy.

Forecasting requires a model of the time series that is a function
of the form v = M(t) where t is time and v is the value at time t.
For the types of models discussed in this paper, selection of
model M is like curve fitting. A history length of 20 years with
one tick per-second has 20*365*24*3600 = 630,720,000 values!
A typical model selection and building process is expensive, and
using this large number of data points is impractical. In fact, even
for predicting 15 days from now (using, say, a 12-month history),
the required history length would still be prohibitively large with
over 30 million values.

Thus, one might not want to use such a fine granularity as one
value per second for predicting something one year or even 10
days in the future. There have also been studies in the statistics
and forecasting literature on the minimum number of data points
required for forecasting (e.g., see [14, 16]). For the prediction of a
specified interval, we choose a subsequence embedded within the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’08, August 24-30, 2008, Auckland, New Zealand.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

984

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

original time series as a “new” time series of a different “time
granularity”. In summary,
• We may use different “absolute history lengths” for different

forecast intervals f.
• Given a history length h(f), we determine the number of data

points n to use for model building.

We use a skip list data structure [24] to provide fast data access
for different levels of granularity. In addition to supporting
prediction, a skip list also supports searching (i.e., indexing).
Each level of the skip list has a set of models (i.e., prediction
functions) associated with it. We can also build models at the leaf
level of a skip list to interpolate missing data values in the past.
Note that the searching and interpolation aspects are
straightforward and the focus of this paper is on prediction of
various future intervals using data at different levels of the skip
list.

The original skip list data structure is only meant to be in
memory. To be scalable for large data sets, it needs to be stored
on disk. We adopt it in our context and discuss its organization on
the disk.

Different levels of a skip list have different data densities. For a
given query interval f, as we discussed earlier, we can determine a
proper history length h(f) to use and the number of subsequence
data points n to use within h(f) for model building. Thus, n/h(f)
gives a data density which we use to select a level of the skip list
that has the closest density.

Throughout the paper, we use multiple regression models to
illustrate our ideas for a couple of reasons:
• Practice shows that it gives good results and is widely used

[15]. There have been more than 35 surveys among
forecasting users [29, 17] since 1970. Regression is the
method that users have the highest level of satisfaction with
among all time series forecasting methods.

• It does not require data points to be equidistant, which makes
it more flexible and more widely applicable to database
applications in which data is not limited to time series data.

We note that it is straightforward to extend the ideas in this paper
to other forecasting models.

If characteristics of the workload are known, we can pre-build a
set of models for prediction queries using our skip list technique.
If the workload is unknown, we can build the models on the fly.
We must also consider the maintenance costs for updating the pre-
built models as new data comes in. It is worth noting that on-line
performance will be improved using our skip-lists when we must
either dynamically build models or frequently maintain (rebuild)
the models under update.

We present a randomized algorithm called ChoosePMSet to select
a set of models to pre-build subject to a maintenance cost
constraint. This constraint is based on query interval workload
information described as a PMF (Probability Mass Function). A
prediction query is hence answered by picking the “closest” pre-
built model (PM) to use. We measure how well the set of PM’s
“serves” the workload by computing the expected model distance
(which we define in Section 4) of a prediction query. The PM for
prediction queries are analogous to materialized views (MV) for
traditional queries. The key difference is that an MV materializes
the data tuples while a PM only “materializes” the parameters of a

model (e.g., coefficients of a polynomial), which is highly
compact.

Using PM’s for query processing is more straightforward for
point queries than for more complex query types. We discuss
query processing techniques using PM’s for interesting query
types, namely, range queries, aggregations, and join queries. We
avoid materializing future data points for efficiency. Finally, we
perform a comprehensive empirical study on two real world
datasets to verify the algorithms and approaches set forth in the
paper.

To sum up, the contributions of this paper are:
• A proposal for using the skip list data structure to build

models that simultaneously provide search, interpolation,
and prediction (SIP) capabilities.

• A proposal of using PM (Pre-built Models) to efficiently
process prediction queries. A randomized algorithm to
effectively select a set of PM’s to build, subject to a
maintenance cost constraint. We analyze how well the set of
PM’s produced by the algorithm serves a given query load.

• Query processing techniques using PM’s.
• A comprehensive empirical study using real world data sets.

1.2 Related Work
In the context of online and streaming applications, there has
been previous work (e.g., [7] and [21]) that addresses a similar
problem to ours, namely, query processing when there is a large
amount of historical data. Bulut and Singh (in [7]) develop a
technique using Discrete Wavelet Transform that summarizes a
dynamic stream incrementally at multiple resolutions. Palpanas et
al. (in [21]) introduce the notion of general amnesic functions
which describe the precision loss for queries on different periods
in the past.
The work in [7, 21] concerns online streaming in which large
amounts of historical data must be discarded, while our work is
aimed at stored data. Often, fine-granularity historical data is
needed for queries. Also, in the case of stock ticks or medical
databases, there is often a regulatory requirement to store all the
data. These days, large amounts of data are being generated by
measurement infrastructures that continuously monitor a variety
of things like military object positions or environmental
properties. In these examples, the data volume is huge. Searching,
for existing values, interpolating missing values, and predicting
future values are all important. The skip lists in our solution can
be used for searching and interpolation in addition to prediction,
making them more general than [7, 21].
Furthermore, [7, 21] addresses general queries on the past (point,
range and "inner product" queries) while our work aims
specifically at forecasting queries of various types: point, range,
aggregations, and join. For forecasting queries, our skip list
approach is simpler and more efficient in that (1) the database
engine does not need to pay any computation overhead associated
with maintaining and transforming data summaries; (2) the
approach in [7, 21] has to discard some recent data points to build
a model that uses data points (almost) equidistant in time in order
to ensure that the least square error metric for optimization is fair
for all time periods in the chosen history length.
In fact, forecasting using data of higher sample frequency is a
known problem in the literature [2]. In particular, the study in [2]

985

shows that the improvement of forecasting results using higher
sampling frequency can be quite dramatic. The skip list approach
provides a platform to explore data of different densities.
The skip list data structure was invented in 1990 by Pugh [24]. Its
elegance and simplicity have drawn a lot of attention. Munro et
al. [19] proposed a deterministic version to guarantee logarithmic
costs. Aspnes and Shah [4] proposed skip graphs, which are a
distributed structure based on skip lists, and provide the
functionality of a balanced tree in a distributed system for fault
tolerance. Abraham et al. proposed an improved version, so-called
“skip B-trees”, that combines the advantages of skip graphs with
features of B-trees. There is also a project called “skipDB” [33]
which is a database implemented with a skip list instead of a B-
tree. It is claimed to be transactional, portable, fast and small.
Time series is one of the primary special data types required
within scientific databases [30]. There has been a lot of work,
especially in data mining, on similarity and pattern matching in
time series. To list but a few, work along these lines includes [12,
23, 32, 22, and 13]. Time series forecasting has been a major
focus for research in other fields. In particular, valuable tools for
forecasting and time series processing appear in statistics and
signal processing. [8] is a recent and comprehensive review of
this research over the past 25 years. [6] and [11] present
additional work in this area.

In the context of databases, Yi et al. [31] developed a fast method
to analyze co-evolving time sequences jointly to allow estimation
or forecasting of missing/future values, quantitative data mining,
and outlier detection. Tulone and Madden [27] presented a
method for approximating the values of sensors in a wireless
sensor network based on time series forecasting. Also in the
context of sensor networks, Deshpande and Madden [9]
developed view abstraction for the underlying interpolation and
prediction models to support declarative queries. More recently,
Duan and Babu [10] developed algorithms that can compose
prediction operators into a good plan for a given query and
dataset.

Our work differs from earlier work in important ways. We focus
on the data management aspects, specifically, the scalability issue
for predictive query processing when the time series data set is
large. This is crucial for query performance as well as prediction
accuracy since typically model building is expensive. We target
the issue of choosing the right subset of data to answer prediction
queries on a given future interval. We also discuss interesting
query processing strategies for handling complex query types,
whereas in [10], for example, only point queries are supported,
but not other query types such as range query, aggregation, and
join. Last but not least, our skip list approach also simultaneously
provides search and interpolation capabilities.

The remainder of this paper is organized as follows. In Section 2,
we give the background knowledge of this work. Section 3 shows
the building blocks of how we use skip lists to provide SIP
functionalities. We discuss how to use statistical tests of
hypotheses to determine a proper history length and the number of
data points within this history to use for building a model for a
given query interval. We show how to select a set of models to
pre-build in Section 4, query processing techniques in Section 5,
and an extension to multiple independent variables in Section 6.

Section 7 presents the experimental results. Finally, we conclude
the paper in Section 8.

2. BACKGROUND
2.1 Skip Lists
A skip list [24] is a randomized counterpart of a balanced tree
structure, such as the B+ tree. As shown in Figure 1, the skip list
structure supports levels, each of which is a linked list of sorted
keys. It is quite simple: a key at level i also appears at level i+1
with probability p. Thus, logically, insert and delete are rather
simple: insert into leaf level first, and then toss a coin such that
with probability p we also put it in the next higher level. The
procedure stops when it fails to appear in some level. Deletion of
a key k simply removes k from all levels. Probabilistically, it is
equivalent to a tree of fan-out 1/p. The balance of the equivalent
tree is automatically maintained by the magic of probability.

We search for an element e by traversing pointers until we either
find e or we overshoot the node containing e. When we overshoot
e at the current level, the search moves down to the next level
starting at the node with the largest found key less than e. For
example, in Figure 1, suppose we want to search for the node with
key 27. We start at the head of the top level, find the pointer to 30
which overshoots 27. Then we go down to the next level, follow
a pointer to 15, then the pointer to 30 which again overshoots.
Next, we begin at node 15 and go to the lower level, follow the
pointer to 24, then the pointer to 30 which overshoots. Finally,
starting at node 24, we descend to the bottom level and find 27.

2.2 Forecasting Models
As we discussed in Section 1, forecasting queries are useful for
applications in many domains. One can extend SQL with
additional constructs like a keyword NOW that can be used in a
query such as “SELECT price FROM ibm_ticks WHERE time =
now + 10 days” which would produce a prediction of IBM’s stock
price ten days from now.
To answer forecasting queries, people build mathematical models
on the existing data, trying to find the trends that reflect the
underlying governing factors. Using such a model one would
expect to make a reasonable forecast of a value in the future.
Forecasting has been closely related to time series data (a
sequence of observations xt , each one being recorded at a specific
time t), although it can be applied to variables other than time.
Time series forecasting is a well-studied area in statistics. There
are a rich set of models that statisticians have developed for this
purpose. We refer readers to some excellent introductory books,
e.g., [6, 11, 15]. Below, we briefly introduce multiple regression
models as a forecasting method since we use it in this work, for
the reasons we discussed in Section 1.
Multiple regression (a.k.a. linear regression), a time-honored
technique going back to Pearson’s use in 1908, is a regression
method that models the relationship between a dependent variable
Y, independent variables Xi, i = 1,…, p, and a random term ε. The

Figure 1. Illustrating the skip list data structure.

22
77

99

1515

1818
2424

2727

3030 NILNIL

3333
3434

986

model can be written as Y = β0 + β1X1 + β2X2 + … + βpXp + ε.
Note that Y is called a "dependent" variable (i.e., dependent on
Xi's) and Xi's are collectively called "independent" variables, even
though they may not be independent among themselves. It is often
erroneously thought that the reason the technique is also called
"linear regression" is that the graph is a straight line or that Y is a
linear function of the X variables. But if the model is, say, Y = β0
+ β1x + β2x2 + ε, it is still a multiple (linear) regression, that is,
linear in x and x2 respectively, even though the graph on x by
itself is not a straight line.

Thus, power terms can be added as independent variables to
explore curvilinear effects and cross-product terms can be added
as independent variables to explore interaction effects. In general,
the function can be a polynomial of any degree. This is often
called polynomial fit which is a specific type of multiple
regression. Usually, least squares estimates are used to obtain the
coefficients βi. For time series data, the function would be a
polynomial on the time variable. We refer readers to any statistics
textbook (e.g., [16]) for details. As mentioned in Section 1,
surveys show that multiple regression, as a prediction tool, is
widely used and the most satisfactory in practice [15].

2.3 Statistical Tests of Hypotheses
In statistics, there are two general methods available for making
inferences about parameters based on some population data. We
can estimate the parameter values with confidence intervals or we
can make decisions about the truth or falsity of some statement
about the parameters by testing hypotheses (i.e., making
decisions). A statistical test of hypothesis consists of four
elements [16]:
(1) Null hypothesis, H0, about one or more population

parameters,
(2) Alternative hypothesis, Ha, that we will accept if we decide

to reject H0,
(3) Test statistic, computed from sample data, and
(4) Rejection region, indicating the values of the test statistic

that will imply rejection of the null hypothesis.

To see a simple example, suppose an investigator for the
Environmental Protection Agency (EPA) wants to determine
whether the mean level μ of a type of pollutant released into the
air by a chemical company exceeds a limit in order to determine
whether the company is violating the law. Testing by hypotheses
is a method analogous to proof by contradiction. The theory the
EPA wants to support (alternative hypothesis) is that, say, μ > 10.
The theory contrary to that (called null hypothesis) is that μ is at
most equal to 10. The EPA may use a sample of n = 30 daily
pollution readings. If the sample mean y (test statistic) is much
larger than 10 (rejection region), the EPA would tend to reject the
null hypothesis and conclude that μ > 10. Again, we refer readers
to standard statistics textbooks (e.g., [16]) for details.

3. ELEMENTS OF OUR APPROACH
3.1 I/O Conscious Skip Lists
We adopt the skip list data structure in our context, and make it
I/O conscious. As stated earlier, time series databases can be too
large to fit in memory. For example, 20 years of per second stock
quotes have about 630M data points and reach gigabytes. Thus,

for scalability, we need to consider the efficiency of query
processing when storing a skip list on disk.

The original skip list structure requires a large number of pointers,
which is detrimental for I/O performance. In model building for
prediction queries, we use a contiguous sequence of data at some
level of the skip list. A search operation, as described in Section
2.1, also accesses a contiguous sequence of data at each level.
Thus, we replicate key values at each level and store them
compactly and contiguously in disk pages, instead of using
pointers (one for each level) on only one copy of keys as in the
original skip list. Time series data associated with the keys are
stored together on pages. For example, in our stock example, time
is the key and the (time, stock price) pair is stored in the skip list.
Clearly, for the search to proceed, we need to store, for each key
value, a pointer to its copy in the level below. Figure 2 illustrates
this.

We can handle overflow and underflow of pages when there are
updates using “open” and “closed” pages, in the same manner as
in [1, 3]. We omit the details due to space limitations. The basic
idea is to maintain an invariant that requires every page to be
filled within a percentage range. Time series data updates are
mostly “appends” [15], which makes merging and splitting of
pages rare. For append only data sets, we simply keep adding
pages at each level, and possibly removing pages at the other end
of a level of skip list when the oldest data is no longer relevant.

Note that unlike a B+ tree, whose fan-out is fixed by the database
page size, the parameter p of a skip list is flexible, which we need
for different sample data point densities. Furthermore, key values
at each level of a skip list are chained together, unlike a B+ tree.
We use these features of a skip list to efficiently retrieve samples
with some needed probability from a level of the skip list to build
forecasting models.

3.2 Prediction Models
As we mentioned in Section 1, searching and interpolation with a
skip list are straightforward. For searching, a skip-list only helps
predicates over the history based on its sort key (e.g., time=10). If
the desired data points are missing, we have models for
interpolation. Searching is the basic functionality provided by a
skip list; interpolation occurs only at the base level of the skip list
and is a well-studied problem. We refer readers to [20, 9] for
some of this work in databases. Therefore, from now on, we only
discuss prediction using the skip list approach.

As we discussed in Section 1, for a given prediction interval, we
pick a level of the skip list to build a model. We shall present the

… … …

…

level i+1

level i

… …

Figure 2. Illustrating the I/O conscious skip list structure.
Each node in a linked list represents a disk page of keys
and associated values. Dashed arrows (only four of them

are drawn) represent pointers from a key to its appearance
in the lower level, used for search.

987

method of how to pick a level and how many data points in that
level to use in Section 3.3 and 3.4. Given that, since we always
use data up to the most recent for answering prediction queries,
we use a suffix of some level in building a model. Thus, a given
level of a skip list can have 0 or more associated models, each of
which is built with a different suffix sequence.

3.3 Determining a Proper History Length
In this section, we first study the issue of how to determine a
proper history length h(f) to use for a given forecast interval f.
The basic idea is that we use a small number of most recent data
points as the target training set, and “go back in time”, starting
from the earliest point in the training set, for an interval f
(denoting that point in time as T-f). We then determine a proper
history length h’ going further back (i.e., from T-f to T-f-h’) from
which we can predict the target training set data well. We
determine h’ using statistical tests of hypotheses. Figure 3
illustrates this. The algorithm is shown in Figure 4.

For multiple regressions, F = si-1
2 / si

2 has an F distribution with
ni-1-ki-1-1 numerator degrees of freedom and ni-ki-1 denominator
degrees of freedom [16]. Thus, each iteration of the loop conducts
a statistical test of hypotheses with H0 being “use hi-1” and Ha
being “use hi”. If Ha is true, then F is big. The rejection region is
F > Fα. The stopping condition (line 8) is to stop the loop at a
point in the final downward slope of the F distribution.
Intuitively, the algorithm iteratively increases the history length
and runs statistical tests of hypotheses, until it determines that any
further increase in history length “is not worth it”.

An implicit assumption here, of course, is that for a given forecast
interval f, if we “went back” in time for a period of f, and could
use some duration of history data points relative to that time to
“predict” the “present” time data points (thus the forecast interval
is also f), then we can use this data to predict accurately the “real
interval f into the future” (illustrated in Figure 3).

The following table summarizes the parameters of the algorithm:

ct The number of data points in the training set T.

c0 A parameter that determines the initial history length
(c0f).

c1 Multiplicative increment of history length (hi = c1hi-1).

Fα Threshold that determines the rejection region of the
testing of hypotheses: F > Fα.

3.4 Determining the Number of Data Points
Note that in the above algorithm, we use all available data points
within a trial history length to build a multiple regression model.
We have shown in Section 1 that this is often too expensive for
building and maintaining models, and the excessive granularity is
actually unnecessary and wasted. Thus, a natural approach is to
sample and use a subset of all the available data points. Studies in
the statistics and forecasting literature are concerned with the
minimum number of data point requirement for forecasting (e.g.,
see [14, 16]), which is just a lower bound and using it may still
give bad prediction results.

Therefore, the basic problem is: given f and h(f) (determined by
the above algorithm), how do we determine the number of
random points to use within h(f)? The idea is similar to the
previously presented algorithm to determine the proper history
length; thus we omit the details. Roughly, we iteratively increase
the number of random points used in h(f) for building a trial
model, and again we use statistical testing of hypotheses to
determine a good choice of the number, within a reasonable
computational cost constraint.

Figure 3. Illustrating the determination of a proper history length.

QueryNow

Time

Stock

fHistory 1History 2

Training seth1h2

T-f

Input: A forecast interval f of a query.
Output: A proper history length h(f) to use for answering
the query.
(1) Set the most recent ct data points as the target training

set T, whose values we use other data points to
“forecast” (to be able to compare the “forecast” values
with the actual ones).

(2) Let the smallest time value in T be T0. Let T-f = T0 – f.
(3) Set h0 = c0f. Use standard techniques [14] to build an

optimal multiple regression model using data points in
[T-f - h0, T-f] and compute its mean square error s0

2 =
SSE0/(n0-k0-1), where SSE0 is the sum of squared error,
n0 is the number of data points used, and k0 is the
number of parameters in the model. Let i = 0.

(4) Do
(5) i = i + 1; hi = c1hi-1.
(6) Use standard techniques to build an optimal multiple

regression model using data points in [T-f – hi, T-f]
and compute its mean square error si

2 = SSEi /(ni-ki-
1).

(7) F = si-1
2 / si

2.

(8) While F > Fα.
(9) Output hi-1 + f + |T|, where |T| is the time length of T.

Figure 4. An algorithm that uses statistical tests of
hypotheses to determine a proper history length.

988

4. SELECTION OF MODEL SET TO
BUILD AND MAINTAIN
4.1 Basic Working Model
We organize the time series in question into a skip list. The skip
list has a parameter p, which is the probability that an element in a
lower level is also present in the next higher level. We choose a
set of models to pre-build at various levels of the skip list (i.e.,
Pre-built Models, or PM’s). Query processing picks one or more
closest PM’s to use, or could even build a model on the fly. The
interesting aspects between PM’s and skip list levels are:
• A PM uses a suffix sequence of the data points of some

level.
• A level can have 0 or more PM’s.

We also maintain the set of PM’s we have chosen to pre-build
when new data comes in or when updates happen. More
specifically, a model is rebuilt whenever both θ (a threshold
parameter) new data points have entered the model and the model
is used by some query. Thus, it is a lazy maintenance strategy.
There is a constraint on the total model rebuilding cost as
described below. A model update involves using the same number
of the most recent data points at the level of that model in the
skip-list to rebuild the regression model. In addition, after a
sufficient number of new data points enter the model, we choose
the history length and the number of data points again.

4.2 Quantifying Model Maintenance Cost
We next quantify the maintenance cost of a set of models. We
assume a set of models in a skip list that we have chosen to build
and maintain. New tuples arrive at some rate.

Theorem 1. We organize time series data into a skip list with
parameters p, θ and the lazy maintenance strategy as described in
Section 4.1. New tuples come in at a rate of r (tuples/sec), and we
consider the expected incoming rate for upper levels of the skip
list. Let the set of models be M. For a model m M∈ , let l(m) be
the skip list level at which the model is located and q(m) be the
reference rate (times/sec) of the model by queries. Let CR denote
the canonical rebuilding cost of a model. Then with the tuple
incoming rate, the maintenance cost rate of M is

()

1
1max ,
()

R
m M

l m

C

q m r p
θ∈

⋅
⎛ ⎞
⎜ ⎟⋅⎝ ⎠

∑
.

Proof: For a model m located at level l(m) of the skip list, the
arrival rate of new tuples for that level is ()l mr p⋅ . The lazy
maintenance strategy implies that a model is rebuilt either when
every θ new data points come in, or when the model is used by
some query, whichever happens later. Thus, a model is rebuilt
every

()

1max ,
() l mq m r p

θ⎛ ⎞
⎜ ⎟⋅⎝ ⎠

 seconds. Then it is clear that the overall

maintenance cost rate is

()

1
1max ,
()

R
m M

l m

C

q m r p
θ∈

⋅
⎛ ⎞
⎜ ⎟⋅⎝ ⎠

∑
. 

Note that the optimal history length and the number of data points
to use for a given prediction interval length may change as time
progresses. We consider this as part of the model rebuilding (i.e.,

an ingredient of CR in Theorem 1). A system can choose these
parameters again after a certain number of new data points enter
the model.

4.3 Choosing a Set of Models to Build
We are only concerned with the set of forecast intervals of a
query workload. Thus, we model the query workload as a discrete
PMF w on forecast intervals (1)i

iFf i n
n

= ≤ ≤
, with their associated

probabilities (1)ip i n≤ ≤ , respectively, where F is the maximal
forecast interval.

The optimization problem is that given a query workload, subject
to a constraint on maximal maintenance cost, we want to find a
set of intervals for which we build models so that the expected
model distance (defined in Section 4.4) for a random query in the
workload is minimized. Note that different models use different
levels of the skip list and can have different maintenance cost
(Theorem 1). This problem is similar in spirit to the knapsack
problem (but with the extra complication that the value of an item
is correlated with what items are being selected). Thus, an
efficient optimal algorithm is unknown. Because randomized
algorithms are known for their simplicity and efficiency [18], we
devise such an algorithm, to provide a practical solution and to
make theoretical analysis easier (Section 4.4). In fact, because of
its efficiency, one can repeat the algorithm several times to
choose the result with the smallest expected model distance.
Figure 5 shows the algorithm (called ChoosePMSet).

The algorithm repeatedly samples a new forecast interval f from
the workload PMF w using established weighted sampling

Input: a query workload w as a discrete PMF; a constraint on
maximal model maintenance cost rate CM.
Output: A set of forecast intervals for which we build
models.
(1) Let M = Ф.

(2) Repeat
(3) Obtain a random sample of forecast interval f from

query workload PMF w, using a standard method to
sample from a discrete distribution.

(4) M = M ∪ {f}.

(5) From f, determine the proper history length h and the
number of data points n to use within the history
length using algorithms in Section 4. From h and n,
we get the density of the data points. Thus, a model
will be built using the skip list level that has the
closest density.

(6) Incrementally compute the maintenance cost rate C of
the set M using Theorem 1.

(7) Until C > CM or M contains all intervals.
(8) If (C > CM) then M = M – {f}.
(9) Output M.

Figure 5. The ChoosePMSet algorithm that selects a set of PM’s
to build, subject to some maintenance cost rate constraint.

989

methods from a discrete PMF. It continues this process until the
maintenance cost rate of the models exceeds the constraint.

Analogous to the database design problem for materialized views,
this kind of pre-built structure often requires knowledge of the
statistics of future requests. The statistics are collected through
profiling at the database server, etc. Although PM’s can be robust
against certain changes of the workload, a rebuild is unavoidable
when dramatic changes occur. As an input of ChoosePMSet,
distribution w can reflect how much knowledge of the workload is
assumed. Less knowledge implies a “flatter” distribution while
more knowledge renders a more specific distribution.

4.4 Analysis of the ChoosePMSet Algorithm
We next analyze “how well” the workload PMF w is satisfied
after running the algorithm ChoosePMSet to produce a set of
models to build and maintain within the cost budget. To be
precise, we need the following definition.

Definition 1. Let the output M of ChoosePMSet have m forecast
interval points out of a total of n points (1)i

iFf i n
n

= ≤ ≤
 where i is

called the index of a point. Then for an arbitrary query point

(1)i
iFf i n
n

= ≤ ≤
 define its model distance as the index distance

between fi and the closest point in M. 

For example, for query point f95, if the closest point in M is f99,
then the model distance of f95 is 99 – 95 = 4.

Theorem 2. Let m and n be as described in Definition 1. Then
the expected model distance of a query point in workload w is

1

1 1
(1)

n n i d
m

i j
i d j i d

p p
− +

= = = −

−∑∑ ∑

Proof. For a query point with index i, define random variable Di
as its model distance. Then the probability that none of the m
independent samples falls in a radius d of the query point i is,

Pr[] 1 (1)
m

i d

i j
j i d

D d p
+

= −

⎛ ⎞
≥ = −⎜ ⎟

⎝ ⎠
∑

As Di is a discrete random variable with non-negative values, we
have (intuitively, for d from 1 upwards, cumulatively, Pr[Di ≥ d]
is the probability that we add 1 to the expectation [18]),

1

1 1
() Pr[] Pr[] (2)

n

i i i
d d

E D D d D d
∞ −

= =

= ≥ = ≥∑ ∑

From (1) and (2), we have 1

1

() 1
m

n i d

i j
d j i d

E D p
− +

= = −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑

Define random variable D as a random query point (in w)’s model
distance. Thus,

1

1 1 1 1
() () () (1)

n n n n i d
m

i i i i i j
i i i d j i d

E D E p D p E D p p
− +

= = = = = −

= = = −∑ ∑ ∑∑ ∑

where the second equality follows from the linearity of
expectation. 

As we shall show in Section 7.3 (Figure 11-b), we can write a
simple program to compute the expected model distance for a
specific instance of the problem.

5. QUERY PROCESSING
In this section, we discuss query processing techniques with a PM
set. In general, for a query on future time series data, we pick the

closet pre-built model to use. This is clearly straightforward for
point queries. We discuss interesting query types, namely, range
query, aggregations, and joins.

5.1 Range Queries and Aggregations
We discuss aggregation queries (in particular, SUM/AVG and
MIN/MAX) with a range predicate, as that would include the
treatment of both range queries and aggregations.

5.1.1 SUM/AVG with a Range Predicate
Let us start with an example query:

Q1: SELECT AVG(price) FROM ibm_ticks WHERE time ≥ now +
10 days AND time ≤ now + 30 days

A trivial way to evaluate such a query is to “materialize” all
future data points in the range of the predicate, and then compute
the aggregate in the brute-force way. However, it turns out that
there are much more efficient ways. For that, we first demonstrate
an axiom called the monotonicity assumption.

Monotonicity Assumption. When the forecast interval f
increases, we can assume that the optimal history length h(f) also
increases or stays the same, and the data point density of the
model used either decreases or stays the same. 

Intuitively, the monotonicity assumption makes sense because to
predict a longer interval, one wants to use a longer history length,
with a sparser granularity of the data points. Since the data point
density drops when the skip-list level increases, we have the
following corollary.

Corollary 1. For a forecast interval f, let m(f) denote the pre-
built model we use to answer f, and accordingly, l(m(f)) denotes
the skip-list level of the model. Then, when f increases, l(m(f))
either also increases or stays the same. 

As the prediction interval increases, the level (in a skip list) of the
model used must either go up or stay the same (in which case the
number of data points used does not drop). Thus, there is a total
order of all the PM’s, consistent with the order of query intervals.

From the corollary, we can see that a range query is answered by
a set of contiguous models (in terms of their skip-list levels), each
answering a sub-range of the predicate. We shall verify the
validity of the monotonicity assumption empirically in Section
7.3 and 7.4 (Figure 12 and 13).

Theorem 3. The result of a basic SUM query with a range
predicate for a future time interval [t0, tk] as in Q1 can be
computed as

1 2

0 1 1

1 2
1 1

() () ... ()
k

k

tt t

k
t t t t t t

f t f t f t
−= = + = +

+ + +∑ ∑ ∑

where
0

() (), 1
id

j
i ij

j
f t c t i k

=

= ⋅ ≤ ≤∑ are a set of contiguous

polynomial regression models in the skip list. 

As the sum of powers of integers is a well-studied problem in
mathematics [5, 25], we can compute the SUM/AVG with time
complexity O(kd), where k is the number of models spanned by
the range predicate, and d is the maximal degree of any of those
models. Since typically both k and d are small constants, we
achieve constant time complexity. This is in contrast to the naive

990

method of materializing every future data points, which requires a
linear processing cost.

Example 1. Suppose a range predicate like the one in Q1 spans
three models and the sum can be represented by the following:

15 22 30
2 3 2 2

10 16 23
(3 7 10) (0.1 11 9) (8 15 2)

t t t
t t t t t t t

= = =

− + + − + − + + − +∑ ∑ ∑

It is known that
2

1 2
1 1

2 2
3

3
1

(1) (1)(2 1)() , () ,
2 6
(1)()

4

n n

i i

n

i

n n n n ns n i s n i

n ns n i

= =

=

+ + +
= = = =

+
= =

∑ ∑

∑

Thus, the sum can be rewritten as
2 2 1 1 3 3

2 2 1 1 2 2

1 1

3((15) (9)) 7((15) (9)) 60 0.1((22) (15))
11((22) (15)) ((22) (15)) 63 8((30) (22))
15((30) (22)) 16

s s s s s s
s s s s s s
s s

− − − + − −
+ − − − + + −
− − +

and we obtain the result for sum. 

5.1.2 MIN/MAX with a Range Predicate
We now look at the MIN/MAX aggregations in a range of a future
time interval. Consider this example query:

Q2: SELECT MAX(price), MIN(price) FROM ibm_ticks WHERE
time ≥ now + 10 days AND time ≤ now + 30 days

To answer a MAX aggregation over a future time range, consider
the simple case that the time range is covered by only one model.
Let f be the polynomial function of the multi-regression model.
For a continuous function, to get the maximum [26], we want to
find a time value t, such that

2

2

0 (1)

0 (2)

d f
dt
d f
dt

=

<

Most functional relationships in nature seem to be smooth (except
for random errors) – that is, they are not subject to irregular
reversals in direction. So the degree of the polynomial is
generally low [16], most often 1 to 3, rarely greater than 3. In
fact, a high degree often indicates over-fitting and is not a good
model. Skip-lists reduce the data points and avoid over-fitting.
Thus, in practice, computing roots for (1) and (2) is easy and there
are not many solutions.

However, we actually have a set of discrete time values and a
peak value we find from solving (1) and (2) may not fall in the
set. In that case, we call the two closest time values in the set
discrete peaks. For example, suppose a model spans the range
[10, 20], but one of the solutions from (1) and (2) is t = 16.3, then
t = 16 and t = 17 are the “discrete peaks”. We also note that the
time range of the query can span multiple models. The following
theorem determines the result for a MAX or MIN query.

Theorem 4. Let M = {f0(·), f1(·),…, fk-1(·)} be the set of k
contiguous regression models spanned by the range predicate of a
MAX query. Let the range of the predicate be [t0+1, tk] and each
model fi(·) covers the sub-range of [ti+1, ti+1]. We call t0+1, t1,
t1+1, t2, t2+1,…, tk the borders of M. Then for the MAX query, we
only need to examine the discrete peaks (if any) of each of the k
models and the borders of M. A MIN query can be answered
analogously by changing the inequality in (2) to “>”.

Proof. Suppose that the MAX value were not a discrete peak or a
border of M. Let the time of the MAX value be t and let it be in
model f. It must be true that both t – 1 and t + 1 are also in f, since
t is not a border. Because f is a continuous function and t is not a
discrete peak, it must be true that either f(t – 1) ≥ f(t) or f(t + 1) ≥
f(t). Thus, we could use either t – 1 or t + 1 as the MAX. The
same argument repeats until we reach either a border or a discrete
peak. 

5.2 JOIN Queries
We now look at JOIN queries with JOIN predicates on values in a
future time range. Consider this query:

Q3: SELECT ibm.day, ibm.stock, sun.day, sun.stock FROM ibm,
sun WHERE ibm.day BETWEEN (now, now+30days) AND
sun.day BETWEEN (now, now+30days) AND ibm.stock >
sun.stock

A naive way to answer a JOIN query of a future time range is to
generate all future data points in the range for both relations, and
then determine a JOIN strategy using a classical optimizer.
However, a much more efficient way is to do a “model JOIN”.

As shown in Figure 6, for each model of one relation in the query
range (f11 and f12 of ibm), we solve an inequality or equality
(depending on the JOIN predicate). In this example, we solve
f11(t) > v, i.e., say, 3t2 – 6t + 5 – v > 0. Likewise, we solve f12(t) >
v, etc. Thus, for each value in the query range of the second
relation, we use the solution of the inequalities/equalities (i.e.,
f11(t) > v and f12(t) > v, etc.) to get the matching tuples in the first
relation. Clearly, this is just a linear cost overall, and is much
more efficient than materializing the data points.

6. MULTIPLE INDEPENDENT
VARIABLES
Instead of “time”, there can be multiple independent variables.
For example, in a military application, the x coordinate and y
coordinate of a tank’s position can be two variables, and the
tank’s speed v is the dependent variable. Thus, we can build a
multi-regression model for v, dependent on x and y. In terms of
the organization of the skip list, the general idea is that we only
create one set of samples for all the independent variables, but
link the samples differently for each variable.

In more detail, let the k independent variables be x1, x2, …, xk. Let
the dependent variable be v. Thus, a multi-regression model is v =
f(x1, …, xk), where f is a polynomial function. A data point can be
represented as (x1, …, xk, v). Each level of the skip-list data
structure is created by sampling as before. As in the single
dimension case, there is a parameter p for the skip list which is

Now

f11

f12

f21

f22

f23

sun ibm
Figure 6. Illustrating the “model JOIN”.

991

the probability that a data point in a lower level also appears in
the upper level.

Moreover, we create a separate link-list at each level of the data
structure for each of the k independent variables. Thus effectively,
there is a separate skip-list structure for each variable, since in
general each variable has a different sort order. Yet these skip
lists share the same physical nodes; each of them just follows a
different set of pointers. Note that typically, there are not many
independent variables, and we cluster the data points on the first
independent variable (hence no pointers needed for it), which is
the most likely to be used in a search.

The advantage of having an ordered list for each independent
variable is that we can search on any of them. In case of searching
on multiple independent variables (i.e., multiple predicates), we
can perform parallel probes of the skip list according to each
variable. Finally, at the base level, we do an “AND” to get the
intersection, much like index AND’ing in traditional B+ tree
indexes. It is worthwhile noting that searching on a non-clustered
independent variable involves more I/O cost, but it is still O(logn)
in expectation.

It is easy to see that with straightforward extensions, the
algorithms we discussed for the single variable case work for
multiple variables too.

7. EMPIRICAL STUDY
In this section, we study empirically the following questions:
1. How effective is the skip list approach? How does it

compare with building models directly on original data in
terms of speed and prediction accuracy?

2. How effective is the set of PM’s (pre-built models) selected
by the algorithm ChoosePMSet for answering prediction
queries? How does it compare with building models on-the-
fly in terms of prediction accuracy and speed?

3. What is the real tradeoff between prediction accuracy and
different numbers of PM’s (for different PM maintenance
cost constraints)? Does this match the model distance of
queries as calculated by Theorem 2?

4. Is the monotonicity assumption, which we use to process
complex query types, valid for real data?

5. How does the number of PM’s (chosen by ChoosePMSet)
affect the result of complex queries such as aggregation with
range predicates?

7.1 Setup and Datasets
We implemented the skip list approach, the algorithms and query
processing techniques presented in this paper. The experiments
were conducted on a 1.6GHz AMD Turion 64 machine with 1GB
physical memory and a TOSHIBA MK8040GSX disk. The
implementation is in Java. We performed the experiments on two
sets of stock price data (from Commodity Systems, Inc.).
1. IBM’s stock price history data from January 3rd, 1966 to

October 10th, 2007. This per second tick dataset is over 1
GB.

2. McDonald’s stock price history data from January 2nd, 1970
to October 10th, 2007. This dataset also has almost 1 GB of
tick data.

The data is already normalized through the adjusted price. In
order to verify the accuracy of predictions of different length of

future time intervals, we go back one year in history and pretend
it is now October 10th, 2006. We use data up to this date to build
models and predict stock ticks at different “future” time intervals
relative to October 10th 2006, for up to one year. Then we can use
the actual stock prices from October 10th 2006 to the same day in
2007 to verify the accuracy of predictions using various methods.

7.2 Effectiveness of the Skip List Approach
In the first experiment, we examine the effectiveness of the skip
list approach for answering prediction queries.

5m 30m 4h 1d 7d 1mo6mo 1y
0

50

100

150

200

250

300

350

400

450

500

Future time interval
IB

M
 s

to
ck

 p
ric

e

5m 30m 4h 1d 7d 1mo 6mo 1y
0

20

40

60

80

100

120

140

160

Future time interval

M
cD

on
al

ds
 s

to
ck

 p
ric

e

actual value

predicted w ith skip-list

predicted w ithout skip list

actual value

predicted w ith skip-list

predicted w ithout skip-list

5 min 30 min 4 hrs 1 day 7 days 1 mon 6 mon 1 year
0

0.5

1

1.5

2

2.5
x 10

4

Future time interval

E
xe

cu
tio

n
tim

e
fo

r
pr

ed
ic

tio
n

(m
ill

is
ec

on
ds

)

prediction with skip list

prediction without skip list

We issue queries of the form “SELECT stock_price FROM
IBM_ticks WHERE time = NOW + ?”. Figure 7 shows the
prediction accuracy with and without the skip list approach for
seven prediction intervals. The figure shows the results for both
datasets. Without using the skip list (the third bar), we directly
build models on the original dataset and apply a limit (500,000)
on the maximum number of data points that can be used, which
we will explain next. Figure 8 compares the query execution time
with and without the skip list approach.

From Figure 7, we can see that as prediction interval increases,
the quality of prediction without the skip list approach drops
rapidly. The reason is as follows. We showed in Section 1 that the
“proper” history length increases with the prediction interval.
Because a skip-list supports efficient retrieval of samples at
different granularities, model building and, thus, model

Figure 8. Comparison of query execution time with and
without the skip list approach.

Figure 7. Comparison of actual value and prediction
results with and without the skip list approach for

different prediction intervals.

992

maintenance as well, only reads the necessary data as opposed to
reading all the raw data within the same history length.
Furthermore, accessing a level in the skip-list is a sequential scan
requiring no additional seeks. Figure 8 shows that even for a short
prediction interval of 4 hours, the query execution time without
the skip list is already a few times longer since we are building
models on the fly. We apply a limit (500,000) on the maximum
number of data points used because (1) when beyond this limit,
the model building takes so much memory and CPU that it runs
too slowly on our test machine; and (2) at this limit it is already
more than 300 times slower than using a skip list. Figure 8
indicates that when the prediction interval is one month or longer
we already reach this limit. Figure 7 also shows when the query
interval is one year, the history length available (subject to the
limit on maximum number of data points) without using skip lists
is too short to make a meaningful prediction.

We use p = 0.05 for the skip lists (p is described in Section 2.1) in
the experiments of this section. For two p values (say, between
0.01 and 0.5) p1 and p2, the ratio of their space costs is
approximately 1+ p1 + p1

2 + p1
3 over 1+ p2 + p2

2 + p2
3. This is

because if the base level raw data takes space S, then the second
level takes space approximately S*p, the third level takes S*p2,
and so on. High order (above 3) terms can be ignored from the
ratio. In our experiments, as we vary p between 0.01 and 0.5, the
query performance did not change much. This is because the
server always accesses the level of the skip list closest to the
desired density to build a model. Prediction accuracy, however,
can be affected because the distance between the desired data
density and the actual data density used in the skip-list is affected
by p. This is analogous to how expected model distance affects
accuracy. In Section 7.3 we study the correlation between model
distance and accuracy.

7.3 Effectiveness of the PM’s
In the second experiment, we examine the effectiveness of
answering prediction queries using a set of PM’s chosen by the
ChoosePMSet algorithm subject to different levels of maintenance
cost constraints. Typically, we assume that through profiling at
the database server, for example, we can collect some statistics on
the query workload, a PMF over a set of query intervals. In the
experiment, we pick 27 intervals in the one-year window, ranging
from 5 minutes to 1 year. We test with an arbitrary PMF, shown
in Figure 9. Again we look at accuracy and speed.

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Future time interval

P
ro

ba
bi

lit
y

2 4 6 8 10 12 14 16 18 20 22 24 26
0

10

20

30

40

50

60

Future time interval

M
cD

on
al

d'
s

st
oc

k
pr

ic
e

actual v alue

predicted on-the-f ly

using 20 models

using 10 models

using 4 models

fly 20m 10m 4m
0

0.02

0.04

0.06

0.08

0.1

0.12

Computation method

E
xp

ec
te

d
re

la
tiv

e
er

ro
r

20m 10m 4m
0

0.5

1

1.5

2

2.5

Computation method

E
xp

ec
te

d
m

od
el

 d
is

ta
nc

e

0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

6

8

Future time interval

lo
g

(r
un

tim
e

in
 m

ill
is

ec
on

ds
)

Build on-the-fly

using PMs

Figure 10, 11 and 12 show the results for the McDonald’s dataset
(Due to space constraints, we omit the figures for the IBM dataset
in which we see similar trends). Each group of Figure 10 has five
bars. They are the actual value, predicted on-the-fly, using the
first 20 models selected by the ChoosePMSet algorithm, using the
first 10 models, and using the first 4 models, respectively. For

Figure 10. Prediction accuracy using different number
of PM’s.

Figure 12. Query execution time comparison between
building models on-the-fly and using PM’s.

Figure 11. Expected prediction error (a) and expected
model distance metric computed using Theorem 2 (b) of

using different number of PM’s.

(a) (b)

Figure 9. Probability mass function (PMF) of future
time intervals as the workload.

993

clarity, we only show the even number intervals (the other half
shows similar information). Using 20 models is about as good as
building models on the fly. Using 10 models is in fact also very
close to this “best-we-can-do” result, and using 4 models is
sometimes quite inaccurate compared to others.

Figure 11(a) summarizes the expected relative error of Figure 10
(but all 27 intervals) according to the workload PMF. The first bar
is for building models on-the-fly to answer a query, and the other
three bars are for answering with 20 PM’s, 10 PM’s and 4 PM’s,
respectively. We can see that the error of using 20 PM’s is about
the same as building models on the fly. Using 10 PM’s is nearly
as good, but using 4 PM’s has significantly more error. Figure
11(b) simply plots the result from our theoretical analysis in
Theorem 2 of the expected model distance of an incoming query.
The model distance with 10 PM’s is close to 20 PM’s, while using
4 PM’s has significantly bigger model distance. This is consistent
with the result of Figure 11(a) on prediction errors.

Figure 12 compares the execution time of answering queries (for
different intervals) by building models on the fly versus using
PM’s. Since the running time of using PM’s, regardless of how
many of them, is about the same, we only show one of them. Here
we observe that the query processing time using PM’s is
negligible compared to building models on-the-fly. For both bars
to be visible, we use log base 2 for the y axis. From the running
time of building models on-the-fly, we can also observe that there
are five groups (intervals 1 to 3, 4 to 11, 12 to 17, 18 to 23, and 24
to 27), within each of which the on-the-fly running time
monotonically goes up (or stays about the same). Each of the five
groups corresponds to the usage of a different level of the skip
list, and within each level, as the query interval goes up, the
history length, hence the number of data points used also goes up,
which causes model building time to go up. This partially verifies
the monotonicity assumption (Section 5.1). We further verify the
skip list level part of the monotonicity assumption in Section 7.4.

7.4 Monotonicity Assumption and Query
Processing
In the third experiment, we verify the monotonicity assumption
we made in Section 5 for query processing, and examine the
prediction accuracy, as well as the stability (variance) of result, of
an aggregation query using 10 PM’s and 4 PM’s.

5m 10m15m 1h 2h 3h 1d 2d 3d 20d 21d 1mo2mo3mo6mo7mo8mo
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Future time interval

S
ki

p
lis

t
le

ve
l t

o
us

e

Figure 13 shows that using our statistical testing of hypotheses
algorithms for determining a proper history length and number of
data points to use, we determine a skip list level to use which is
monotonically increasing as interval goes up. We can narrow
down the exact transition intervals that make a jump of the skip
list level.

We next look at the processing result of an average query
“SELECT AVG(stock_price) FROM IBM_ticks WHERE time
BETWEEN NOW AND NOW + ?” using 10 and 4 PM’s. Figure
14 shows the result for the IBM dataset. Due to space constraints,
we omit the figure for the McDonald’s dataset, as it leads us to
the same conclusions. We have three runs using 10 PM’s and
three runs using 4 PM’s. In each run, we start from ChoosePMSet,
which is a randomized algorithm. Thus the result of query
processing is also a random variable. The first bar in each group
of Figure 14 shows the actual average value, and the next three
bars are the results of three runs of using 10 PM’s, and the last
three bars are those of using 4PM’s. We can see that using 10
PM’s predicts the aggregation result pretty well, and the results of
the three runs are close to each other, which indicates that the
query processing result from 10 models is quite stable. On the
other hand, using 4PM’s, the result is about the same as 10 PM’s
in expectation. The 4 PM case, though, has a much larger
variance, and hence the prediction result can be far off.

1 month 2 months 4 months 6 months 8 months 10 months 1 year
0

50

100

150

Future time interval

A
ve

ra
ge

 I
B

M
 s

to
ck

 p
ric

e

actual average value

using 10 models - run 1

using 10 models - run 2

using 10 models - run 3

using 4 models - run 1

using 4 models - run 2

using 4 models - run 3

8. CONCLUSIONS AND FUTURE WORK
In this paper, we address the scalability issue on processing
prediction queries on large time series data sets, which are often
seen in financial and scientific databases. We propose statistical
tests of hypotheses to determine a proper subset of data points to
use for a given query interval. We adopt the skip list data
structure, make it I/O conscious, and use it as samples for our
query purpose, in addition to the search capability that a skip list
already provides. We further present an algorithm ChoosePMSet
to choose a set of models to pre-build (PM), subject to some
maintenance cost constraint. We discuss query processing
strategies using the PM’s. Experiments on real world datasets
demonstrate the effectiveness of our approaches and algorithms.

In the future, we plan to investigate query processing strategies
with other prediction models. We also wish to investigate whether

Figure 13. Monotonicity of skip list level used for
different query intervals.

Figure 14. Comparison of the prediction accuracy of
average stock prices in different future time intervals

under different number of PM’s.

994

our techniques apply to multiple time series. Finally, developing
visualization tools for users to “see the data” and to interact with
the database system when exploring the model space is also an
interesting research direction.

9. ACKNOWLEDGMENTS &
REFERENCES
This work was supported by the NSF, under the grant IIS-
0325838. We wish to thank the anonymous referees for several
comments and suggestions that have improved the paper.
[1] Abraham, I., Aspnes, J., and Yuan, J. Skip B-trees. In

Proceedings of the 9th International Conference on
Principles of Distributed Systems (OPODIS 2005).

[2] T. Andersen, T. Bollerslev, and S. Lange. Forecasting
financial market volatility: Sample frequency vis-à-vis
forecast horizon. In Journal of Empirical Finance, Dec 1999,
pages 457-477.

[3] James Aspnes, Jonathan Kirsch, and Arvind Krishnamurthy.
Load Balancing and Locality in Range-Queriable Data
Structures. In Twenty-Third ACM Symposium on Principles
of Distributed Computing, pages 115–124, July 2004.

[4] James Aspnes and Gauri Shah. Skip Graphs. In Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 384–393, January 2002.

[5] Boyer, C. B. Pascal's Formula for the Sums of Powers of the
Integers. In Scripta Math. 9, 237-244, 1943.

[6] Brockwell, P., and Davis, R. Introduction to Time Series and
Forecasting. 2nd Edition. Springer Texts in Statistics. 2002.

[7] Bulut, A. and Singh, A.K. SWAT: Hierarchical Stream
Summarization in Large Networks. In ICDE, 2003.

[8] J. G. De Gooijer and R. J. Hyndman. 25 Years of IIF Time
Series Forecasting: A Selective Review. June 2005.
Tinbergen Institute Discussion Papers No. TI 05-068/4.

[9] A. Deshpande and S. Madden. MauveDB: Supporting
model-based user views in database systems. In SIGMOD
2006.

[10] Duan S., and Babu, S. Processing Forecasting Queries. In
VLDB, 2007.

[11] Eubank, R.L. A Kalman Filter Primer. Chapman &
Hall/CRC, 2006.

[12] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In SIGMOD,
1994.

[13] D. Goldin and P. Kanellakis. On similarity queries for time-
series data: Constraint specification and implementation. In
CP’95, Sep 1995.

[14] Hyndman, R.J., Kostenko, A.V. Minimum Sample Size
Requirements for Seasonal Forecasting Models. In
Foresight, Issue 6, Spring 2007.

[15] Makridakis, S., Wheelwright S., and Hyndman, R.
Forecasting Methods and Applications. Third Edition. John
Wiley & Sons, Inc. 1998.

[16] Mendenhall, W., and Sincich, T. Statistics for Engineering
and the Sciences. Fourth Edition. Prentice-Hall, Inc. 1994.

[17] Mentzer, J.T., and J.E. Cox Jr. Familiarity, Application and
Performance of Sales Forecasting Techniques. In Journal of
Forecasting, 3, 1984, 27-36.

[18] M. Mitzenmacher, E. Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis.
Cambridge University Press, 2005.

[19] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick.
Deterministic Skip Lists. In Proceedings of the third annual
ACM-SIAM symposium on Discrete algorithms (SODA’92).
Orlando, Florida, United States. pp. 367-375.

[20] Leonore Neugebauer. Optimization and Evaluation of
Database Queries Including Embedded Interpolation
Procedures. In SIGMOD, 1991.

[21] Palpanas, T., Vlachos, M., Keogh, E., Gunopulos, D., and
Truppel, W. Online amnesic approximation of streaming
time series. In ICDE, 2004.

[22] Papadimitriou, S., Sun, J., and Yu, P. Local Correlation
Tracking in Time Series. In ICDM, 2006.

[23] Papadimitriou, S., and Yu, P. Optimal Multi-scale Patterns in
Time Series Streams. In SIGMOD, 2006.

[24] Pugh, W. Skip lists: a probabilistic alternative to balanced
trees. In Communications of the ACM, June 1990, 33(6) 668-
676.

[25] Schultz, H. J. The Sums of the k’th Powers of the First n
Integers. In Amer. Math. Monthly 87, 478-481, 1980.

[26] J. Stewart. Calculus: Concepts and Contexts (2nd ed.).
Thomson Learning, Inc. 2001.

[27] D. Tulone and S. Madden. PAQ: Time series forecasting for
approximate query answering in sensor networks. In EWSN,
2006.

[28] Whitney, A., and Shasha, D. Lots o’ Ticks: Real-time High
Performance Time Series Queries on Billions of Trades and
Quotes. In SIGMOD, 2001.

[29] Winklhofer, H., A. Diamantopoulos, and S.F. Witt.
Forecasting Practice: A Review of the Empirical Literature
and an Agenda for Future Research. In International Journal
of Forecasting, 12, June 1996, 193-221.

[30] Wolniewicz, R., and Graefe, G. Algebraic Optimization of
Computations over Scientific Databases. In VLDB, 1993.

[31] B. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C.
Faloutsos, and A. Biliris. Online Data Mining for Co-
evolving Time Sequences. In ICDE, 2000.

[32] Zhu, Y., and Shasha, D. Query by Humming: a Time Series
Database Approach. In SIGMOD, 2003.

[33] http://dekorte.com/projects/opensource/SkipDB/.

995

