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ABSTRACT 
Time series data is common in many settings including scientific 
and financial applications. In these applications, the amount of 
data is often very large. We seek to support prediction queries 
over time series data.  Prediction relies on model building which 
can be too expensive to be practical if it is based on a large 
number of data points. We propose to use statistical tests of 
hypotheses to choose a proper subset of data points to use for a 
given prediction query interval. This involves two steps: choosing 
a proper history length and choosing the number of data points to 
use within this history. Further, we use an I/O conscious skip list 
data structure to provide samples of the original data set. Based 
on the statistics collected for a query workload, which we model 
as a probability mass function (PMF) over query intervals, we 
devise a randomized algorithm that selects a set of pre-built 
models (PM’s) to construct, subject to some maintenance cost 
constraint when there are updates. Given this set of PM’s, we 
discuss interesting query processing strategies for not only point 
queries, but also range, aggregation, and JOIN queries. We 
conduct a comprehensive empirical study on real world datasets 
to verify the effectiveness of our approaches and algorithms. 

1. INTRODUCTION 
1.1 Motivation and Our Solution 
There has been recent interest in forecasting queries [10]. 
Scientific, financial, and business applications rely on time series 
data [30, 28]. Decision making often requires forecasting over 
time series data at different time scales. The following three 
example areas illustrate (1) short-, (2) medium-, and (3) long-term 
forecasting requirements respectively. 

(1) Scheduling: Forecasts of the level of demand for various 
products are an essential input to near-term scheduling of 
production, transportation, and personnel. 

(2) Acquiring resources: Forecasting is needed to determine 
future resource requirements in order to plan for acquisition 
lead times that could span several months. 

(3) Determining resource requirements: Forecasts of financial, 
human, and technological requirements are helpful for 
determining what resources an organization will need in the 
long-term. 

In these applications, the amount of data is often very large.  
Consider the time series of trades and quotes (called ticks). Stock 
quotes arrive every second. Financial analysts want to predict 
stock prices minutes ahead, hours ahead, days ahead, months 
ahead, or sometimes years ahead. Our goal is to use a moderate 
amount of data for any prediction interval (a term which we use 
to mean how far into the future we predict), so that we can 
explore a larger portion of the huge space of possible models to 
find a model that can serve as an accurate predictor. Note that we 
use the term “forecast” and “prediction” interchangeably in this 
paper. 

A simple example of a forecasting query is the following: 
SELECT * FROM ticks 
WHERE symbol = “IBM” and time = NOW + 1 day 
Clearly, excessive granularity of data is unnecessary and 
inefficient or even impractical for a given prediction interval. For 
example, to predict the stock price of some company one year 
from now, it is wise to use a history length of a certain number of 
years (say, 20 years). Too short a history may give a partial 
picture of the evolution of the stock data, thus making the 
prediction result inaccurate [15]. On the other hand, too long a 
history length may not offer more useful information for the 
prediction, and sometimes may even complicate and disturb the 
model building [31], thereby, also reducing accuracy. 

Forecasting requires a model of the time series that is a function 
of the form v = M(t) where t is time and v is the value at time t. 
For the types of models discussed in this paper, selection of 
model M is like curve fitting. A history length of 20 years with 
one tick per-second has 20*365*24*3600 = 630,720,000 values! 
A typical model selection and building process is expensive, and 
using this large number of data points is impractical. In fact, even 
for predicting 15 days from now (using, say, a 12-month history), 
the required history length would still be prohibitively large with 
over 30 million values. 

Thus, one might not want to use such a fine granularity as one 
value per second for predicting something one year or even 10 
days in the future. There have also been studies in the statistics 
and forecasting literature on the minimum number of data points 
required for forecasting (e.g., see [14, 16]). For the prediction of a 
specified interval, we choose a subsequence embedded within the 
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original time series as a “new” time series of a different “time 
granularity”. In summary, 
• We may use different “absolute history lengths” for different 

forecast intervals f. 
• Given a history length h(f), we determine the number of data 

points n to use for model building. 

We use a skip list data structure [24] to provide fast data access 
for different levels of granularity. In addition to supporting 
prediction, a skip list also supports searching (i.e., indexing). 
Each level of the skip list has a set of models (i.e., prediction 
functions) associated with it.  We can also build models at the leaf 
level of a skip list to interpolate missing data values in the past. 
Note that the searching and interpolation aspects are 
straightforward and the focus of this paper is on prediction of 
various future intervals using data at different levels of the skip 
list. 

The original skip list data structure is only meant to be in 
memory. To be scalable for large data sets, it needs to be stored 
on disk. We adopt it in our context and discuss its organization on 
the disk. 

Different levels of a skip list have different data densities. For a 
given query interval f, as we discussed earlier, we can determine a 
proper history length h(f) to use and the number of subsequence 
data points n to use within h(f) for model building. Thus, n/h(f) 
gives a data density which we use to select a level of the skip list 
that has the closest density. 

Throughout the paper, we use multiple regression models to 
illustrate our ideas for a couple of reasons: 
• Practice shows that it gives good results and is widely used 

[15]. There have been more than 35 surveys among 
forecasting users [29, 17] since 1970. Regression is the 
method that users have the highest level of satisfaction with 
among all time series forecasting methods. 

• It does not require data points to be equidistant, which makes 
it more flexible and more widely applicable to database 
applications in which data is not limited to time series data. 

We note that it is straightforward to extend the ideas in this paper 
to other forecasting models. 

If characteristics of the workload are known, we can pre-build a 
set of models for prediction queries using our skip list technique. 
If the workload is unknown, we can build the models on the fly.  
We must also consider the maintenance costs for updating the pre-
built models as new data comes in.  It is worth noting that on-line 
performance will be improved using our skip-lists when we must 
either dynamically build models or frequently maintain (rebuild) 
the models under update. 

We present a randomized algorithm called ChoosePMSet to select 
a set of models to pre-build subject to a maintenance cost 
constraint. This constraint is based on query interval workload 
information described as a PMF (Probability Mass Function). A 
prediction query is hence answered by picking the “closest” pre-
built model (PM) to use. We measure how well the set of PM’s 
“serves” the workload by computing the expected model distance 
(which we define in Section 4) of a prediction query. The PM for 
prediction queries are analogous to materialized views (MV) for 
traditional queries. The key difference is that an MV materializes 
the data tuples while a PM only “materializes” the parameters of a 

model (e.g., coefficients of a polynomial), which is highly 
compact. 

Using PM’s for query processing is more straightforward for 
point queries than for more complex query types. We discuss 
query processing techniques using PM’s for interesting query 
types, namely, range queries, aggregations, and join queries. We 
avoid materializing future data points for efficiency. Finally, we 
perform a comprehensive empirical study on two real world 
datasets to verify the algorithms and approaches set forth in the 
paper. 

To sum up, the contributions of this paper are: 
• A proposal for using the skip list data structure to build 

models that simultaneously provide search, interpolation, 
and prediction (SIP) capabilities. 

• A proposal of using PM (Pre-built Models) to efficiently 
process prediction queries. A randomized algorithm to 
effectively select a set of PM’s to build, subject to a 
maintenance cost constraint. We analyze how well the set of 
PM’s produced by the algorithm serves a given query load. 

• Query processing techniques using PM’s. 
• A comprehensive empirical study using real world data sets. 

1.2 Related Work 
In the context of online and streaming applications, there has 
been previous work (e.g., [7] and [21]) that addresses a similar 
problem to ours, namely, query processing when there is a large 
amount of historical data. Bulut and Singh (in [7]) develop a 
technique using Discrete Wavelet Transform that summarizes a 
dynamic stream incrementally at multiple resolutions. Palpanas et 
al. (in [21]) introduce the notion of general amnesic functions 
which describe the precision loss for queries on different periods 
in the past. 
The work in [7, 21] concerns online streaming in which large 
amounts of historical data must be discarded, while our work is 
aimed at stored data. Often, fine-granularity historical data is 
needed for queries. Also, in the case of stock ticks or medical 
databases, there is often a regulatory requirement to store all the 
data. These days, large amounts of data are being generated by 
measurement infrastructures that continuously monitor a variety 
of things like military object positions or environmental 
properties. In these examples, the data volume is huge. Searching, 
for existing values, interpolating missing values, and predicting 
future values are all important. The skip lists in our solution can 
be used for searching and interpolation in addition to prediction, 
making them more general than [7, 21]. 
Furthermore, [7, 21] addresses general queries on the past (point, 
range and "inner product" queries) while our work aims 
specifically at forecasting queries of various types: point, range, 
aggregations, and join. For forecasting queries, our skip list 
approach is simpler and more efficient in that (1) the database 
engine does not need to pay any computation overhead associated 
with maintaining and transforming data summaries; (2) the 
approach in [7, 21] has to discard some recent data points to build 
a model that uses data points (almost) equidistant in time in order 
to ensure that the least square error metric for optimization is fair 
for all time periods in the chosen history length. 
In fact, forecasting using data of higher sample frequency is a 
known problem in the literature [2]. In particular, the study in [2] 
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shows that the improvement of forecasting results using higher 
sampling frequency can be quite dramatic. The skip list approach 
provides a platform to explore data of different densities. 
The skip list data structure was invented in 1990 by Pugh [24]. Its 
elegance and simplicity have drawn a lot of attention. Munro et 
al. [19] proposed a deterministic version to guarantee logarithmic 
costs. Aspnes and Shah [4] proposed skip graphs,  which are a 
distributed structure based on skip lists, and provide the 
functionality of a balanced tree in a distributed system for fault 
tolerance. Abraham et al. proposed an improved version, so-called 
“skip B-trees”, that combines the advantages of skip graphs with 
features of B-trees. There is also a project called “skipDB” [33] 
which is a database implemented with a skip list instead of a B-
tree. It is claimed to be transactional, portable, fast and small. 
Time series is one of the primary special data types required 
within scientific databases [30]. There has been a lot of work, 
especially in data mining, on similarity and pattern matching in 
time series. To list but a few, work along these lines includes [12, 
23, 32, 22, and 13]. Time series forecasting has been a major 
focus for research in other fields. In particular, valuable tools for 
forecasting and time series processing appear in statistics and 
signal processing. [8] is a recent and comprehensive review of 
this research over the past 25 years. [6] and [11] present 
additional work in this area. 

In the context of databases, Yi et al. [31] developed a fast method 
to analyze co-evolving time sequences jointly to allow estimation 
or forecasting of missing/future values, quantitative data mining, 
and outlier detection. Tulone and Madden [27] presented a 
method for approximating the values of sensors in a wireless 
sensor network based on time series forecasting. Also in the 
context of sensor networks, Deshpande and Madden [9] 
developed view abstraction for the underlying interpolation and 
prediction models to support declarative queries. More recently, 
Duan and Babu [10] developed algorithms that can compose 
prediction operators into a good plan for a given query and 
dataset. 

Our work differs from earlier work in important ways. We focus 
on the data management aspects, specifically, the scalability issue 
for predictive query processing when the time series data set is 
large. This is crucial for query performance as well as prediction 
accuracy since typically model building is expensive. We target 
the issue of choosing the right subset of data to answer prediction 
queries on a given future interval. We also discuss interesting 
query processing strategies for handling complex query types, 
whereas in [10], for example, only point queries are supported, 
but not other query types such as range query, aggregation, and 
join. Last but not least, our skip list approach also simultaneously 
provides search and interpolation capabilities. 

The remainder of this paper is organized as follows. In Section 2, 
we give the background knowledge of this work. Section 3 shows 
the building blocks of how we use skip lists to provide SIP 
functionalities. We discuss how to use statistical tests of 
hypotheses to determine a proper history length and the number of 
data points within this history to use for building a model for a 
given query interval. We show how to select a set of models to 
pre-build in Section 4, query processing techniques in Section 5, 
and an extension to multiple independent variables in Section 6. 

Section 7 presents the experimental results. Finally, we conclude 
the paper in Section 8. 

2. BACKGROUND 
2.1 Skip Lists 
A skip list [24] is a randomized counterpart of a balanced tree 
structure, such as the B+ tree. As shown in Figure 1, the skip list 
structure supports levels, each of which is a linked list of sorted 
keys. It is quite simple: a key at level i also appears at level i+1 
with probability p. Thus, logically, insert and delete are rather 
simple: insert into leaf level first, and then toss a coin such that 
with probability p we also put it in the next higher level. The 
procedure stops when it fails to appear in some level. Deletion of 
a key k simply removes k from all levels. Probabilistically, it is 
equivalent to a tree of fan-out 1/p. The balance of the equivalent 
tree is automatically maintained by the magic of probability. 

 

 

 

 

We search for an element e by traversing pointers until we either 
find e or we overshoot the node containing e. When we overshoot 
e at the current level, the search moves down to the next level 
starting at the node with the largest found key less than e. For 
example, in Figure 1, suppose we want to search for the node with 
key 27. We start at the head of the top level, find the pointer to 30 
which overshoots 27.  Then we go down to the next level, follow 
a pointer to 15, then the pointer to 30 which again overshoots. 
Next, we begin at node 15 and go to the lower level, follow the 
pointer to 24, then the pointer to 30 which overshoots. Finally, 
starting at node 24, we descend to the bottom level and find 27. 

2.2 Forecasting Models 
As we discussed in Section 1, forecasting queries are useful for 
applications in many domains. One can extend SQL with 
additional constructs like a keyword NOW that can be used in a 
query such as “SELECT price FROM ibm_ticks WHERE time = 
now + 10 days” which would produce a prediction of IBM’s stock 
price ten days from now. 
To answer forecasting queries, people build mathematical models 
on the existing data, trying to find the trends that reflect the 
underlying governing factors. Using such a model one would 
expect to make a reasonable forecast of a value in the future. 
Forecasting has been closely related to time series data (a 
sequence of observations xt , each one being recorded at a specific 
time t), although it can be applied to variables other than time. 
Time series forecasting is a well-studied area in statistics. There 
are a rich set of models that statisticians have developed for this 
purpose. We refer readers to some excellent introductory books, 
e.g., [6, 11, 15]. Below, we briefly introduce multiple regression 
models as a forecasting method since we use it in this work, for 
the reasons we discussed in Section 1. 
Multiple regression (a.k.a. linear regression), a time-honored 
technique going back to Pearson’s use in 1908, is a regression 
method that models the relationship between a dependent variable 
Y, independent variables Xi, i = 1,…, p, and a random term ε. The 

Figure 1. Illustrating the skip list data structure. 
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model can be written as Y = β0 + β1X1 + β2X2 + … + βpXp + ε. 
Note that Y is called a "dependent" variable (i.e., dependent on 
Xi's) and Xi's are collectively called "independent" variables, even 
though they may not be independent among themselves. It is often 
erroneously thought that the reason the technique is also called 
"linear regression" is that the graph is a straight line or that Y is a 
linear function of the X variables. But if the model is, say, Y = β0 
+ β1x + β2x2 + ε, it is still a multiple (linear) regression, that is, 
linear in x and x2 respectively, even though the graph on x by 
itself is not a straight line. 

Thus, power terms can be added as independent variables to 
explore curvilinear effects and cross-product terms can be added 
as independent variables to explore interaction effects. In general, 
the function can be a polynomial of any degree. This is often 
called polynomial fit which is a specific type of multiple 
regression. Usually, least squares estimates are used to obtain the 
coefficients βi. For time series data, the function would be a 
polynomial on the time variable. We refer readers to any statistics 
textbook (e.g., [16]) for details. As mentioned in Section 1, 
surveys show that multiple regression, as a prediction tool, is 
widely used and the most satisfactory in practice [15]. 

2.3 Statistical Tests of Hypotheses 
In statistics, there are two general methods available for making 
inferences about parameters based on some population data. We 
can estimate the parameter values with confidence intervals or we 
can make decisions about the truth or falsity of some statement 
about the parameters by testing hypotheses (i.e., making 
decisions). A statistical test of hypothesis consists of four 
elements [16]: 
(1) Null hypothesis, H0, about one or more population 

parameters, 
(2) Alternative hypothesis, Ha, that we will accept if we decide 

to reject H0, 
(3) Test statistic, computed from sample data, and  
(4) Rejection region, indicating the values of the test statistic 

that will imply rejection of the null hypothesis. 

To see a simple example, suppose an investigator for the 
Environmental Protection Agency (EPA) wants to determine 
whether the mean level μ of a type of pollutant released into the 
air by a chemical company exceeds a limit in order to determine 
whether the company is violating the law. Testing by hypotheses 
is a method analogous to proof by contradiction. The theory the 
EPA wants to support (alternative hypothesis) is that, say, μ > 10. 
The theory contrary to that (called null hypothesis) is that μ is at 
most equal to 10. The EPA may use a sample of n = 30 daily 
pollution readings. If the sample mean y  (test statistic) is much 
larger than 10 (rejection region), the EPA would tend to reject the 
null hypothesis and conclude that μ > 10. Again, we refer readers 
to standard statistics textbooks (e.g., [16]) for details. 

3. ELEMENTS OF OUR APPROACH 
3.1 I/O Conscious Skip Lists 
We adopt the skip list data structure in our context, and make it 
I/O conscious. As stated earlier, time series databases can be too 
large to fit in memory. For example, 20 years of per second stock 
quotes have about 630M data points and reach gigabytes. Thus, 

for scalability, we need to consider the efficiency of query 
processing when storing a skip list on disk. 

The original skip list structure requires a large number of pointers, 
which is detrimental for I/O performance. In model building for 
prediction queries, we use a contiguous sequence of data at some 
level of the skip list. A search operation, as described in Section 
2.1, also accesses a contiguous sequence of data at each level. 
Thus, we replicate key values at each level and store them 
compactly and contiguously in disk pages, instead of using 
pointers (one for each level) on only one copy of keys as in the 
original skip list. Time series data associated with the keys are 
stored together on pages. For example, in our stock example, time 
is the key and the (time, stock price) pair is stored in the skip list. 
Clearly, for the search to proceed, we need to store, for each key 
value, a pointer to its copy in the level below. Figure 2 illustrates 
this. 

 
 

 

 

We can handle overflow and underflow of pages when there are 
updates using “open” and “closed” pages, in the same manner as 
in [1, 3]. We omit the details due to space limitations. The basic 
idea is to maintain an invariant that requires every page to be 
filled within a percentage range. Time series data updates are 
mostly “appends” [15], which makes merging and splitting of 
pages rare. For append only data sets, we simply keep adding 
pages at each level, and possibly removing pages at the other end 
of a level of skip list when the oldest data is no longer relevant. 

Note that unlike a B+ tree, whose fan-out is fixed by the database 
page size, the parameter p of a skip list is flexible, which we need 
for different sample data point densities. Furthermore, key values 
at each level of a skip list are chained together, unlike a B+ tree. 
We use these features of a skip list to efficiently retrieve samples 
with some needed probability from a level of the skip list to build 
forecasting models. 

3.2 Prediction Models 
As we mentioned in Section 1, searching and interpolation with a 
skip list are straightforward. For searching, a skip-list only helps 
predicates over the history based on its sort key (e.g., time=10). If 
the desired data points are missing, we have models for 
interpolation. Searching is the basic functionality provided by a 
skip list; interpolation occurs only at the base level of the skip list 
and is a well-studied problem. We refer readers to [20, 9] for 
some of this work in databases. Therefore, from now on, we only 
discuss prediction using the skip list approach. 

As we discussed in Section 1, for a given prediction interval, we 
pick a level of the skip list to build a model. We shall present the 

… … … 

… 

level i+1 

level i 

… … 

Figure 2. Illustrating the I/O conscious skip list structure. 
Each node in a linked list represents a disk page of keys 
and associated values. Dashed arrows (only four of them 

are drawn) represent pointers from a key to its appearance 
in the lower level, used for search. 
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method of how to pick a level and how many data points in that 
level to use in Section 3.3 and 3.4. Given that, since we always 
use data up to the most recent for answering prediction queries, 
we use a suffix of some level in building a model. Thus, a given 
level of a skip list can have 0 or more associated models, each of 
which is built with a different suffix sequence. 

3.3 Determining a Proper History Length 
In this section, we first study the issue of how to determine a 
proper history length h(f) to use for a given forecast interval f.  
The basic idea is that we use a small number of most recent data 
points as the target training set, and “go back in time”, starting 
from the earliest point in the training set, for an interval f 
(denoting that point in time as T-f). We then determine a proper 
history length h’ going further back (i.e., from T-f to T-f-h’) from 
which we can predict the target training set data well. We 
determine h’ using statistical tests of hypotheses. Figure 3 
illustrates this. The algorithm is shown in Figure 4. 

For multiple regressions, F = si-1
2 / si

2 has an F distribution with 
ni-1-ki-1-1 numerator degrees of freedom and ni-ki-1 denominator 
degrees of freedom [16]. Thus, each iteration of the loop conducts 
a statistical test of hypotheses with H0 being “use hi-1” and Ha 
being “use hi”. If Ha is true, then F is big. The rejection region is 
F > Fα. The stopping condition (line 8) is to stop the loop at a 
point in the final downward slope of the F distribution. 
Intuitively, the algorithm iteratively increases the history length 
and runs statistical tests of hypotheses, until it determines that any 
further increase in history length “is not worth it”. 

An implicit assumption here, of course, is that for a given forecast 
interval f, if we “went back” in time for a period of f, and could 
use some duration of history data points relative to that time to 
“predict” the “present” time data points (thus the forecast interval 
is also f), then we can use this data to predict accurately the “real 
interval f into the future” (illustrated in Figure 3). 

 

 

 

 

 

 

 
 

The following table summarizes the parameters of the algorithm: 

ct The number of data points in the training set T. 

c0 A parameter that determines the initial history length 
(c0f). 

c1 Multiplicative increment of history length (hi = c1hi-1). 

Fα Threshold that determines the rejection region of the 
testing of hypotheses: F > Fα. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Determining the Number of Data Points 
Note that in the above algorithm, we use all available data points 
within a trial history length to build a multiple regression model. 
We have shown in Section 1 that this is often too expensive for 
building and maintaining models, and the excessive granularity is 
actually unnecessary and wasted. Thus, a natural approach is to 
sample and use a subset of all the available data points. Studies in 
the statistics and forecasting literature are concerned with the 
minimum number of data point requirement for forecasting (e.g., 
see [14, 16]), which is just a lower bound and using it may still 
give bad prediction results. 

Therefore, the basic problem is: given f and h(f) (determined by 
the above algorithm), how do we determine the number of 
random points to use within h(f)? The idea is similar to the 
previously presented algorithm to determine the proper history 
length; thus we omit the details. Roughly, we iteratively increase 
the number of random points used in h(f) for building a trial 
model, and again we use statistical testing of hypotheses to 
determine a good choice of the number, within a reasonable 
computational cost constraint. 

Figure 3. Illustrating the determination of a proper history length. 

QueryNow

Time

Stock

fHistory 1History 2

Training seth1h2

T-f

Input: A forecast interval f of a query. 
Output: A proper history length h(f) to use for answering 
the query. 
(1) Set the most recent ct data points as the target training 

set T, whose values we use other data points to 
“forecast” (to be able to compare the “forecast” values 
with the actual ones). 

(2) Let the smallest time value in T be T0. Let T-f = T0 – f. 
(3) Set h0 = c0f. Use standard techniques [14] to build an 

optimal multiple regression model using data points in 
[T-f - h0, T-f] and compute its mean square error s0

2 = 
SSE0/(n0-k0-1), where SSE0 is the sum of squared error, 
n0 is the number of data points used, and k0 is the 
number of parameters in the model. Let i = 0. 

(4) Do 
(5)     i = i + 1; hi = c1hi-1. 
(6) Use standard techniques to build an optimal multiple 

regression model using data points in [T-f – hi, T-f] 
and compute its mean square error si

2 = SSEi /(ni-ki-
1). 

(7) F = si-1
2 / si

2. 

(8) While F > Fα. 
(9) Output hi-1 + f + |T|, where |T| is the time length of T. 

Figure 4. An algorithm that uses statistical tests of 
hypotheses to determine a proper history length. 
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4. SELECTION OF MODEL SET TO 
BUILD AND MAINTAIN 
4.1 Basic Working Model 
We organize the time series in question into a skip list. The skip 
list has a parameter p, which is the probability that an element in a 
lower level is also present in the next higher level. We choose a 
set of models to pre-build at various levels of the skip list (i.e., 
Pre-built Models, or PM’s). Query processing picks one or more 
closest PM’s to use, or could even build a model on the fly. The 
interesting aspects between PM’s and skip list levels are: 
• A PM uses a suffix sequence of the data points of some 

level. 
• A level can have 0 or more PM’s. 

We also maintain the set of PM’s we have chosen to pre-build 
when new data comes in or when updates happen. More 
specifically, a model is rebuilt whenever both θ (a threshold 
parameter) new data points have entered the model and the model 
is used by some query. Thus, it is a lazy maintenance strategy. 
There is a constraint on the total model rebuilding cost as 
described below. A model update involves using the same number 
of the most recent data points at the level of that model in the 
skip-list to rebuild the regression model. In addition, after a 
sufficient number of new data points enter the model, we choose 
the history length and the number of data points again. 

4.2 Quantifying Model Maintenance Cost 
We next quantify the maintenance cost of a set of models. We 
assume a set of models in a skip list that we have chosen to build 
and maintain. New tuples arrive at some rate. 

Theorem 1.  We organize time series data into a skip list with 
parameters p, θ and the lazy maintenance strategy as described in 
Section 4.1. New tuples come in at a rate of r (tuples/sec), and we 
consider the expected incoming rate for upper levels of the skip 
list. Let the set of models be M. For a model m M∈ , let l(m) be 
the skip list level at which the model is located and q(m) be the 
reference rate (times/sec) of the model by queries. Let CR denote 
the canonical rebuilding cost of a model. Then with the tuple 
incoming rate, the maintenance cost rate of M is 

( )

1
1max ,
( )

R
m M

l m

C

q m r p
θ∈

⋅
⎛ ⎞
⎜ ⎟⋅⎝ ⎠

∑
. 

Proof: For a model m located at level l(m) of the skip list, the 
arrival rate of new tuples for that level is ( )l mr p⋅ . The lazy 
maintenance strategy implies that a model is rebuilt either when 
every θ new data points come in, or when the model is used by 
some query, whichever happens later. Thus, a model is rebuilt 
every 

( )

1max ,
( ) l mq m r p

θ⎛ ⎞
⎜ ⎟⋅⎝ ⎠

  seconds. Then it is clear that the overall 

maintenance cost rate is 

( )

1
1max ,
( )

R
m M

l m

C

q m r p
θ∈

⋅
⎛ ⎞
⎜ ⎟⋅⎝ ⎠

∑
.              

Note that the optimal history length and the number of data points 
to use for a given prediction interval length may change as time 
progresses. We consider this as part of the model rebuilding (i.e., 

an ingredient of CR in Theorem 1). A system can choose these 
parameters again after a certain number of new data points enter 
the model. 

4.3 Choosing a Set of Models to Build 
We are only concerned with the set of forecast intervals of a 
query workload. Thus, we model the query workload as a discrete 
PMF w on forecast intervals (1 )i

iFf i n
n

= ≤ ≤
, with their associated 

probabilities (1 )ip i n≤ ≤ , respectively, where F is the maximal 
forecast interval. 

The optimization problem is that given a query workload, subject 
to a constraint on maximal maintenance cost, we want to find a 
set of intervals for which we build models so that the expected 
model distance (defined in Section 4.4) for a random query in the 
workload is minimized. Note that different models use different 
levels of the skip list and can have different maintenance cost 
(Theorem 1). This problem is similar in spirit to the knapsack 
problem (but with the extra complication that the value of an item 
is correlated with what items are being selected). Thus, an 
efficient optimal algorithm is unknown. Because randomized 
algorithms are known for their simplicity and efficiency [18], we 
devise such an algorithm, to provide a practical solution and to 
make theoretical analysis easier (Section 4.4). In fact, because of 
its efficiency, one can repeat the algorithm several times to 
choose the result with the smallest expected model distance. 
Figure 5 shows the algorithm (called ChoosePMSet). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm repeatedly samples a new forecast interval f from 
the workload PMF w using established weighted sampling 

Input: a query workload w as a discrete PMF; a constraint on 
maximal model maintenance cost rate CM. 
Output: A set of forecast intervals for which we build 
models. 
(1) Let M = Ф. 

(2) Repeat 
(3) Obtain a random sample of forecast interval f from 

query workload PMF w, using a standard method to 
sample from a discrete distribution. 

(4) M = M ∪  {f}. 

(5) From f, determine the proper history length h and the 
number of data points n to use within the history 
length using algorithms in Section 4. From h and n, 
we get the density of the data points. Thus, a model 
will be built using the skip list level that has the 
closest density. 

(6) Incrementally compute the maintenance cost rate C of 
the set M using Theorem 1. 

(7) Until C > CM or M contains all intervals. 
(8) If (C > CM) then M = M – {f}. 
(9) Output M. 

Figure 5. The ChoosePMSet algorithm that selects a set of PM’s 
to build, subject to some maintenance cost rate constraint. 
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methods from a discrete PMF. It continues this process until the 
maintenance cost rate of the models exceeds the constraint. 

Analogous to the database design problem for materialized views, 
this kind of pre-built structure often requires knowledge of the 
statistics of future requests. The statistics are collected through 
profiling at the database server, etc. Although PM’s can be robust 
against certain changes of the workload, a rebuild is unavoidable 
when dramatic changes occur. As an input of ChoosePMSet, 
distribution w can reflect how much knowledge of the workload is 
assumed. Less knowledge implies a “flatter” distribution while 
more knowledge renders a more specific distribution. 

4.4 Analysis of the ChoosePMSet Algorithm 
We next analyze “how well” the workload PMF w is satisfied 
after running the algorithm ChoosePMSet to produce a set of 
models to build and maintain within the cost budget. To be 
precise, we need the following definition. 

Definition 1.  Let the output M of ChoosePMSet have m forecast 
interval points out of a total of n points (1 )i

iFf i n
n

= ≤ ≤
 where i is 

called the index of a point. Then for an arbitrary query point 

(1 )i
iFf i n
n

= ≤ ≤
 define its model distance as the index distance 

between fi and the closest point in M.                          

For example, for query point f95, if the closest point in M is f99, 
then the model distance of f95 is 99 – 95 = 4. 

Theorem 2.  Let m and n be as described in Definition 1. Then 
the expected model distance of a query point in workload w is 

1

1 1
(1 )

n n i d
m

i j
i d j i d

p p
− +

= = = −

−∑∑ ∑  

Proof.  For a query point with index i, define random variable Di 
as its model distance. Then the probability that none of the m 
independent samples falls in a radius d of the query point i is, 

Pr[ ] 1 (1)
m

i d

i j
j i d

D d p
+

= −

⎛ ⎞
≥ = −⎜ ⎟

⎝ ⎠
∑  

As Di is a discrete random variable with non-negative values, we 
have (intuitively, for d from 1 upwards, cumulatively, Pr[Di ≥ d] 
is the probability that we add 1 to the expectation [18]), 

1

1 1
( ) Pr[ ] Pr[ ] (2)

n

i i i
d d

E D D d D d
∞ −

= =

= ≥ = ≥∑ ∑  

From (1) and (2), we have   1

1

( ) 1
m

n i d

i j
d j i d

E D p
− +

= = −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑  

Define random variable D as a random query point (in w)’s model 
distance. Thus, 

1

1 1 1 1
( ) ( ) ( ) (1 )

n n n n i d
m

i i i i i j
i i i d j i d

E D E p D p E D p p
− +

= = = = = −

= = = −∑ ∑ ∑∑ ∑  

where the second equality follows from the linearity of 
expectation.                                                                                 

As we shall show in Section 7.3 (Figure 11-b), we can write a 
simple program to compute the expected model distance for a 
specific instance of the problem. 

5. QUERY PROCESSING 
In this section, we discuss query processing techniques with a PM 
set. In general, for a query on future time series data, we pick the 

closet pre-built model to use. This is clearly straightforward for 
point queries. We discuss interesting query types, namely, range 
query, aggregations, and joins. 

5.1 Range Queries and Aggregations 
We discuss aggregation queries (in particular, SUM/AVG and 
MIN/MAX) with a range predicate, as that would include the 
treatment of both range queries and aggregations. 

5.1.1 SUM/AVG with a Range Predicate 
Let us start with an example query: 

Q1: SELECT AVG(price) FROM ibm_ticks WHERE time ≥ now + 
10 days AND time ≤ now + 30 days 

A trivial way to evaluate such a query is to “materialize” all 
future data points in the range of the predicate, and then compute 
the aggregate in the brute-force way. However, it turns out that 
there are much more efficient ways. For that, we first demonstrate 
an axiom called the monotonicity assumption. 

Monotonicity Assumption.  When the forecast interval f 
increases, we can assume that the optimal history length h(f) also 
increases or stays the same, and the data point density of the 
model used either decreases or stays the same.                       

Intuitively, the monotonicity assumption makes sense because to 
predict a longer interval, one wants to use a longer history length, 
with a sparser granularity of the data points. Since the data point 
density drops when the skip-list level increases, we have the 
following corollary. 

Corollary 1.  For a forecast interval f, let m(f) denote the pre-
built model we use to answer f, and accordingly, l(m(f)) denotes 
the skip-list level of the model. Then, when f increases, l(m(f)) 
either also increases or stays the same.                                   

As the prediction interval increases, the level (in a skip list) of the 
model used must either go up or stay the same (in which case the 
number of data points used does not drop). Thus, there is a total 
order of all the PM’s, consistent with the order of query intervals. 

From the corollary, we can see that a range query is answered by 
a set of contiguous models (in terms of their skip-list levels), each 
answering a sub-range of the predicate. We shall verify the 
validity of the monotonicity assumption empirically in Section 
7.3 and 7.4 (Figure 12 and 13). 

Theorem 3.  The result of a basic SUM query with a range 
predicate for a future time interval [t0, tk] as in Q1 can be 
computed as 

1 2

0 1 1

1 2
1 1

( ) ( ) ... ( )
k

k

tt t

k
t t t t t t

f t f t f t
−= = + = +

+ + +∑ ∑ ∑  

where 
0

( ) ( ), 1
id

j
i ij

j
f t c t i k

=

= ⋅ ≤ ≤∑  are a set of contiguous 

polynomial regression models in the skip list.                          

As the sum of powers of integers is a well-studied problem in 
mathematics [5, 25], we can compute the SUM/AVG with time 
complexity O(kd), where k is the number of models spanned by 
the range predicate, and d is the maximal degree of any of those 
models. Since typically both k and d are small constants, we 
achieve constant time complexity. This is in contrast to the naive 
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method of materializing every future data points, which requires a 
linear processing cost. 

Example 1. Suppose a range predicate like the one in Q1 spans 
three models and the sum can be represented by the following: 

15 22 30
2 3 2 2

10 16 23
(3 7 10) ( 0.1 11 9) (8 15 2)

t t t
t t t t t t t

= = =

− + + − + − + + − +∑ ∑ ∑  

It is known that 
2

1 2
1 1

2 2
3

3
1

( 1) ( 1)(2 1)( ) , ( ) ,
2 6
( 1)( )

4

n n

i i

n

i

n n n n ns n i s n i

n ns n i

= =

=

+ + +
= = = =

+
= =

∑ ∑

∑

 

Thus, the sum can be rewritten as 
2 2 1 1 3 3

2 2 1 1 2 2

1 1

3( (15) (9)) 7( (15) (9)) 60 0.1( (22) (15))
11( (22) (15)) ( (22) (15)) 63 8( (30) (22))
15( (30) (22)) 16

s s s s s s
s s s s s s
s s

− − − + − −
+ − − − + + −
− − +

 

and we obtain the result for sum.                                              

5.1.2 MIN/MAX with a Range Predicate 
We now look at the MIN/MAX aggregations in a range of a future 
time interval. Consider this example query: 

Q2: SELECT MAX(price), MIN(price) FROM ibm_ticks WHERE 
time ≥ now + 10 days AND time ≤ now + 30 days 

To answer a MAX aggregation over a future time range, consider 
the simple case that the time range is covered by only one model. 
Let f be the polynomial function of the multi-regression model. 
For a continuous function, to get the maximum [26], we want to 
find a time value t, such that 

2

2

0 (1)

0 (2)

d f
dt
d f
dt

=

<

 

Most functional relationships in nature seem to be smooth (except 
for random errors) – that is, they are not subject to irregular 
reversals in direction. So the degree of the polynomial is 
generally low [16], most often 1 to 3, rarely greater than 3. In 
fact, a high degree often indicates over-fitting and is not a good 
model. Skip-lists reduce the data points and avoid over-fitting. 
Thus, in practice, computing roots for (1) and (2) is easy and there 
are not many solutions. 

However, we actually have a set of discrete time values and a 
peak value we find from solving (1) and (2) may not fall in the 
set. In that case, we call the two closest time values in the set 
discrete peaks. For example, suppose a model spans the range 
[10, 20], but one of the solutions from (1) and (2) is t = 16.3, then 
t = 16 and t = 17 are the “discrete peaks”. We also note that the 
time range of the query can span multiple models. The following 
theorem determines the result for a MAX or MIN query. 

Theorem 4.  Let M = {f0(·), f1(·),…, fk-1(·)} be the set of k 
contiguous regression models spanned by the range predicate of a 
MAX query. Let the range of the predicate be [t0+1, tk] and each 
model fi(·) covers the sub-range of [ti+1, ti+1]. We call t0+1, t1, 
t1+1, t2, t2+1,…, tk the borders of M. Then for the MAX query, we 
only need to examine the discrete peaks (if any) of each of the k 
models and the borders of M. A MIN query can be answered 
analogously by changing the inequality in (2) to “>”. 

Proof.  Suppose that the MAX value were not a discrete peak or a 
border of M. Let the time of the MAX value be t and let it be in 
model f. It must be true that both t – 1 and t + 1 are also in f, since 
t is not a border. Because f is a continuous function and t is not a 
discrete peak, it must be true that either f(t – 1) ≥ f(t) or f(t + 1) ≥ 
f(t). Thus, we could use either t – 1 or t + 1 as the MAX. The 
same argument repeats until we reach either a border or a discrete 
peak.                                                                                         

5.2 JOIN Queries 
We now look at JOIN queries with JOIN predicates on values in a 
future time range. Consider this query: 

Q3: SELECT ibm.day, ibm.stock, sun.day, sun.stock FROM ibm, 
sun WHERE ibm.day BETWEEN (now, now+30days) AND 
sun.day BETWEEN (now, now+30days) AND ibm.stock > 
sun.stock 

A naive way to answer a JOIN query of a future time range is to 
generate all future data points in the range for both relations, and 
then determine a JOIN strategy using a classical optimizer. 
However, a much more efficient way is to do a “model JOIN”. 

 
 

 

As shown in Figure 6, for each model of one relation in the query 
range (f11 and f12 of ibm), we solve an inequality or equality 
(depending on the JOIN predicate). In this example, we solve 
f11(t) > v, i.e., say, 3t2 – 6t + 5 – v > 0. Likewise, we solve f12(t) > 
v, etc. Thus, for each value in the query range of the second 
relation, we use the solution of the inequalities/equalities (i.e., 
f11(t) > v and f12(t) > v, etc.) to get the matching tuples in the first 
relation. Clearly, this is just a linear cost overall, and is much 
more efficient than materializing the data points. 

6. MULTIPLE INDEPENDENT 
VARIABLES 
Instead of “time”, there can be multiple independent variables. 
For example, in a military application, the x coordinate and y 
coordinate of a tank’s position can be two variables, and the 
tank’s speed v is the dependent variable. Thus, we can build a 
multi-regression model for v, dependent on x and y. In terms of 
the organization of the skip list, the general idea is that we only 
create one set of samples for all the independent variables, but 
link the samples differently for each variable. 

In more detail, let the k independent variables be x1, x2, …, xk. Let 
the dependent variable be v. Thus, a multi-regression model is v = 
f(x1, …, xk), where f is a polynomial function. A data point can be 
represented as (x1, …, xk, v). Each level of the skip-list data 
structure is created by sampling as before. As in the single 
dimension case, there is a parameter p for the skip list which is 

Now 

f11 

f12 

f21 

f22 

f23 

sun ibm 
Figure 6. Illustrating the “model JOIN”. 
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the probability that a data point in a lower level also appears in 
the upper level. 

Moreover, we create a separate link-list at each level of the data 
structure for each of the k independent variables. Thus effectively, 
there is a separate skip-list structure for each variable, since in 
general each variable has a different sort order. Yet these skip 
lists share the same physical nodes; each of them just follows a 
different set of pointers. Note that typically, there are not many 
independent variables, and we cluster the data points on the first 
independent variable (hence no pointers needed for it), which is 
the most likely to be used in a search. 

The advantage of having an ordered list for each independent 
variable is that we can search on any of them. In case of searching 
on multiple independent variables (i.e., multiple predicates), we 
can perform parallel probes of the skip list according to each 
variable. Finally, at the base level, we do an “AND” to get the 
intersection, much like index AND’ing in traditional B+ tree 
indexes. It is worthwhile noting that searching on a non-clustered 
independent variable involves more I/O cost, but it is still O(logn) 
in expectation. 

It is easy to see that with straightforward extensions, the 
algorithms we discussed for the single variable case work for 
multiple variables too. 

7. EMPIRICAL STUDY 
In this section, we study empirically the following questions: 
1. How effective is the skip list approach? How does it 

compare with building models directly on original data in 
terms of speed and prediction accuracy? 

2. How effective is the set of PM’s (pre-built models) selected 
by the algorithm ChoosePMSet for answering prediction 
queries? How does it compare with building models on-the-
fly in terms of prediction accuracy and speed? 

3. What is the real tradeoff between prediction accuracy and 
different numbers of PM’s (for different PM maintenance 
cost constraints)? Does this match the model distance of 
queries as calculated by Theorem 2? 

4. Is the monotonicity assumption, which we use to process 
complex query types, valid for real data? 

5. How does the number of PM’s (chosen by ChoosePMSet) 
affect the result of complex queries such as aggregation with 
range predicates? 

7.1 Setup and Datasets 
We implemented the skip list approach, the algorithms and query 
processing techniques presented in this paper. The experiments 
were conducted on a 1.6GHz AMD Turion 64 machine with 1GB 
physical memory and a TOSHIBA MK8040GSX disk. The 
implementation is in Java. We performed the experiments on two 
sets of stock price data (from Commodity Systems, Inc.). 
1. IBM’s stock price history data from January 3rd, 1966 to 

October 10th, 2007. This per second tick dataset is over 1 
GB. 

2. McDonald’s stock price history data from January 2nd, 1970 
to October 10th, 2007. This dataset also has almost 1 GB of 
tick data. 

The data is already normalized through the adjusted price. In 
order to verify the accuracy of predictions of different length of 

future time intervals, we go back one year in history and pretend 
it is now October 10th, 2006. We use data up to this date to build 
models and predict stock ticks at different “future” time intervals 
relative to October 10th 2006, for up to one year. Then we can use 
the actual stock prices from October 10th 2006 to the same day in 
2007 to verify the accuracy of predictions using various methods. 

7.2 Effectiveness of the Skip List Approach 
In the first experiment, we examine the effectiveness of the skip 
list approach for answering prediction queries. 
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We issue queries of the form “SELECT stock_price FROM 
IBM_ticks WHERE time = NOW + ?”. Figure 7 shows the 
prediction accuracy with and without the skip list approach for 
seven prediction intervals. The figure shows the results for both 
datasets. Without using the skip list (the third bar), we directly 
build models on the original dataset and apply a limit (500,000) 
on the maximum number of data points that can be used, which 
we will explain next. Figure 8 compares the query execution time 
with and without the skip list approach. 

From Figure 7, we can see that as prediction interval increases, 
the quality of prediction without the skip list approach drops 
rapidly. The reason is as follows. We showed in Section 1 that the 
“proper” history length increases with the prediction interval. 
Because a skip-list supports efficient retrieval of samples at 
different granularities, model building and, thus, model 

Figure 8. Comparison of query execution time with and 
without the skip list approach. 

Figure 7. Comparison of actual value and prediction 
results with and without the skip list approach for 

different prediction intervals. 
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maintenance as well, only reads the necessary data as opposed to 
reading all the raw data within the same history length. 
Furthermore, accessing a level in the skip-list is a sequential scan 
requiring no additional seeks. Figure 8 shows that even for a short 
prediction interval of 4 hours, the query execution time without 
the skip list is already a few times longer since we are building 
models on the fly. We apply a limit (500,000) on the maximum 
number of data points used because (1) when beyond this limit, 
the model building takes so much memory and CPU that it runs 
too slowly on our test machine; and (2) at this limit it is already 
more than 300 times slower than using a skip list.  Figure 8 
indicates that when the prediction interval is one month or longer 
we already reach this limit. Figure 7 also shows when the query 
interval is one year, the history length available (subject to the 
limit on maximum number of data points) without using skip lists 
is too short to make a meaningful prediction. 

We use p = 0.05 for the skip lists (p is described in Section 2.1) in 
the experiments of this section. For two p values (say, between 
0.01 and 0.5) p1 and p2, the ratio of their space costs is 
approximately 1+ p1 + p1

2 + p1
3 over 1+ p2 + p2

2 + p2
3. This is 

because if the base level raw data takes space S, then the second 
level takes space approximately S*p, the third level takes S*p2, 
and so on. High order (above 3) terms can be ignored from the 
ratio. In our experiments, as we vary p between 0.01 and 0.5, the 
query performance did not change much. This is because the 
server always accesses the level of the skip list closest to the 
desired density to build a model. Prediction accuracy, however, 
can be affected because the distance between the desired data 
density and the actual data density used in the skip-list is affected 
by p. This is analogous to how expected model distance affects 
accuracy. In Section 7.3 we study the correlation between model 
distance and accuracy. 

7.3 Effectiveness of the PM’s 
In the second experiment, we examine the effectiveness of 
answering prediction queries using a set of PM’s chosen by the 
ChoosePMSet algorithm subject to different levels of maintenance 
cost constraints. Typically, we assume that through profiling at 
the database server, for example, we can collect some statistics on 
the query workload, a PMF over a set of query intervals. In the 
experiment, we pick 27 intervals in the one-year window, ranging 
from 5 minutes to 1 year. We test with an arbitrary PMF, shown 
in Figure 9. Again we look at accuracy and speed. 
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Figure 10, 11 and 12 show the results for the McDonald’s dataset 
(Due to space constraints, we omit the figures for the IBM dataset 
in which we see similar trends). Each group of Figure 10 has five 
bars. They are the actual value, predicted on-the-fly, using the 
first 20 models selected by the ChoosePMSet algorithm, using the 
first 10 models, and using the first 4 models, respectively. For 

Figure 10. Prediction accuracy using different number 
of PM’s. 

Figure 12. Query execution time comparison between 
building models on-the-fly and using PM’s. 

Figure 11. Expected prediction error (a) and expected 
model distance metric computed using Theorem 2 (b) of 

using different number of PM’s. 

(a) (b) 

Figure 9. Probability mass function (PMF) of future 
time intervals as the workload. 
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clarity, we only show the even number intervals (the other half 
shows similar information). Using 20 models is about as good as 
building models on the fly. Using 10 models is in fact also very 
close to this “best-we-can-do” result, and using 4 models is 
sometimes quite inaccurate compared to others. 

Figure 11(a) summarizes the expected relative error of Figure 10 
(but all 27 intervals) according to the workload PMF. The first bar 
is for building models on-the-fly to answer a query, and the other 
three bars are for answering with 20 PM’s, 10 PM’s and 4 PM’s, 
respectively. We can see that the error of using 20 PM’s is about 
the same as building models on the fly. Using 10 PM’s is nearly 
as good, but using 4 PM’s has significantly more error. Figure 
11(b) simply plots the result from our theoretical analysis in 
Theorem 2 of the expected model distance of an incoming query. 
The model distance with 10 PM’s is close to 20 PM’s, while using 
4 PM’s has significantly bigger model distance. This is consistent 
with the result of Figure 11(a) on prediction errors. 

Figure 12 compares the execution time of answering queries (for 
different intervals) by building models on the fly versus using 
PM’s. Since the running time of using PM’s, regardless of how 
many of them, is about the same, we only show one of them. Here 
we observe that the query processing time using PM’s is 
negligible compared to building models on-the-fly. For both bars 
to be visible, we use log base 2 for the y axis. From the running 
time of building models on-the-fly, we can also observe that there 
are five groups (intervals 1 to 3, 4 to 11, 12 to 17, 18 to 23, and 24 
to 27), within each of which the on-the-fly running time 
monotonically goes up (or stays about the same). Each of the five 
groups corresponds to the usage of a different level of the skip 
list, and within each level, as the query interval goes up, the 
history length, hence the number of data points used also goes up, 
which causes model building time to go up. This partially verifies 
the monotonicity assumption (Section 5.1). We further verify the 
skip list level part of the monotonicity assumption in Section 7.4. 

7.4 Monotonicity Assumption and Query 
Processing 
In the third experiment, we verify the monotonicity assumption 
we made in Section 5 for query processing, and examine the 
prediction accuracy, as well as the stability (variance) of result, of 
an aggregation query using 10 PM’s and 4 PM’s. 
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Figure 13 shows that using our statistical testing of hypotheses 
algorithms for determining a proper history length and number of 
data points to use, we determine a skip list level to use which is 
monotonically increasing as interval goes up. We can narrow 
down the exact transition intervals that make a jump of the skip 
list level. 

We next look at the processing result of an average query 
“SELECT AVG(stock_price) FROM IBM_ticks WHERE time 
BETWEEN NOW AND NOW + ?” using 10 and 4 PM’s. Figure 
14 shows the result for the IBM dataset. Due to space constraints, 
we omit the figure for the McDonald’s dataset, as it leads us to 
the same conclusions. We have three runs using 10 PM’s and 
three runs using 4 PM’s. In each run, we start from ChoosePMSet, 
which is a randomized algorithm. Thus the result of query 
processing is also a random variable. The first bar in each group 
of Figure 14 shows the actual average value, and the next three 
bars are the results of three runs of using 10 PM’s, and the last 
three bars are those of using 4PM’s. We can see that using 10 
PM’s predicts the aggregation result pretty well, and the results of 
the three runs are close to each other, which indicates that the 
query processing result from 10 models is quite stable. On the 
other hand, using 4PM’s, the result is about the same as 10 PM’s 
in expectation. The 4 PM case, though, has a much larger 
variance, and hence the prediction result can be far off. 
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8. CONCLUSIONS AND FUTURE WORK 
In this paper, we address the scalability issue on processing 
prediction queries on large time series data sets, which are often 
seen in financial and scientific databases. We propose statistical 
tests of hypotheses to determine a proper subset of data points to 
use for a given query interval. We adopt the skip list data 
structure, make it I/O conscious, and use it as samples for our 
query purpose, in addition to the search capability that a skip list 
already provides. We further present an algorithm ChoosePMSet 
to choose a set of models to pre-build (PM), subject to some 
maintenance cost constraint. We discuss query processing 
strategies using the PM’s. Experiments on real world datasets 
demonstrate the effectiveness of our approaches and algorithms. 

In the future, we plan to investigate query processing strategies 
with other prediction models. We also wish to investigate whether 

Figure 13. Monotonicity of skip list level used for 
different query intervals. 

Figure 14. Comparison of the prediction accuracy of 
average stock prices in different future time intervals 

under different number of PM’s. 
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our techniques apply to multiple time series. Finally, developing 
visualization tools for users to “see the data” and to interact with 
the database system when exploring the model space is also an 
interesting research direction. 
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