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ABSTRACT
Trajectory classification, i.e., model construction for predict-
ing the class labels of moving objects based on their trajecto-
ries and other features, has many important, real-world ap-
plications. A number of methods have been reported in the
literature, but due to using the shapes of whole trajectories
for classification, they have limited classification capability
when discriminative features appear at parts of trajectories
or are not relevant to the shapes of trajectories. These situ-
ations are often observed in long trajectories spreading over
large geographic areas.

Since an essential task for effective classification is gen-
erating discriminative features, a feature generation frame-
work TraClass for trajectory data is proposed in this pa-
per, which generates a hierarchy of features by partition-
ing trajectories and exploring two types of clustering: (1)
region-based and (2) trajectory-based. The former captures
the higher-level region-based features without using move-
ment patterns, whereas the latter captures the lower-level
trajectory-based features using movement patterns. The
proposed framework overcomes the limitations of the previ-
ous studies because trajectory partitioning makes discrimi-
native parts of trajectories identifiable, and the two types
of clustering collaborate to find features of both regions
and sub-trajectories. Experimental results demonstrate that
TraClass generates high-quality features and achieves high
classification accuracy from real trajectory data.

1. INTRODUCTION
Trajectory data are ubiquitous in the real world. Recent

progress on satellite, sensor, RFID, video, and wireless tech-
nologies has made it possible to systematically track object
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movements and collect huge amounts of trajectory data, e.g.,
animal movement data, vessel positioning data, and hurri-
cane tracking data. Accordingly, there is an ever-increasing
interest in performing data analysis over trajectory data [11,
12, 14]. Since classification has played a crucial role in data
analysis [9], an effective classification method for trajectory
data is needed urgently.

Trajectory classification is defined as the process of pre-
dicting the class labels of moving objects based on their
trajectories and other features. There are many important,
real-world applications driven by real need. We present two
application scenarios.

1. Vessel classification from satellite images [7]

Vessel detection and classification from satellite imaging
sensors is or could be used for a number of applications:
fishery control, pollution control, border control includ-
ing illegal immigration and smuggling, maritime safety,
control of off-shore activities, search and rescue, security
of maritime trade routes, and anti-terrorism. Accord-
ing to the report published in 2006, vessel detection in
synthetic aperture radar (SAR) images is fairly accurate,
but it is beyond today’s capability to derive a vessel type
from its SAR signature [7]. Most systems use a size es-
timate for classifying vessels, so small vessels are very
hard to classify. Although the trajectories of vessels can
be extracted accurately, researchers in this field do not
even use them for classification.

2. Classification of trace gas measurements [2]

Trace gas (e.g., ozone) concentration is closely related
to the immediate history of the air before arriving at
the sampling point. Thus, trace gas concentration can
be estimated using wind trajectories. This is actually a
classification problem, where the class label is a range of
trace gas concentrations. Such classification is useful for
sites where air-mass back trajectories are available, but
no trace gas concentration has been measured [2]. Mete-
orologists use a straightforward classification technique
based on Euclidean distance between trajectories.

A number of trajectory classification methods have been
proposed mainly in the fields of pattern recognition [1], bio-
engineering [16], and video surveillance [6, 15]. Besides, simi-
lar problems exist in the field of time-series classification [20,
21]. A common characteristic of earlier methods is that they
use the shapes of whole trajectories to do classification, e.g.,
by modeling a whole trajectory with a single mathemati-
cal function such as the hidden Markov model (HMM). Al-
though a few methods partition trajectories, the purpose of
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their partitioning is just to approximate or smooth trajec-
tories before using the HMM[1, 6].

Since an essential task for effective classification is gen-
erating discriminative features, attention is focused in this
paper on feature generation for trajectories. Our frame-
work is motivated by two observations. First, discrimina-
tive features are likely to appear at parts of trajectories, not
at whole trajectories. Second, discriminative features ap-
pear not only as common movement patterns, but also as
regions. These situations are often observed in long trajec-
tories spreading over large geographical areas.

Example 1. Let’s consider vessel trajectories that move
from port A to port B in Figure 1. Container ships stop at
a container port to load cargos, tankers stop at a refinery to
load petrochemicals, and fishing boats sail freely in a fishery.
Assume that container ships and tankers cannot cross the
fishery since water is too shallow.

Typical examples of our observations are shown in Fig-
ure 1. (1) Parts of trajectories near the container port and
near the refinery enable us to distinguish between container
ships and tankers even if they share common long paths.
(2) Those in the fishery enable us to recognize fishing boats
even if they have no common path there. Notice that such
discriminative features are represented by regions and sub-
trajectories. Our framework aims at discovering both of
them. On the other hand, earlier methods might not achieve
high classification accuracy due to lack of ability to discover
them since the overall shapes of whole trajectories are sim-
ilar to each other.

Refinery

Fishery

Port A Port B

Container Port

Container Ships Tankers Fishing Boats

Figure 1: Two types of discriminative features for
trajectories.

A feature generation framework TraClass for trajectories
of free moving objects is proposed in this paper, which per-
forms hierarchical region-based and trajectory-based cluster-
ing after trajectory partitioning. Each feature type in Ex-
ample 1 is discovered by each clustering. An overview will
be provided in Section 2.2.

(1) Region-based clustering discovers regions that have tra-
jectories mostly of one class regardless of their movement
patterns.

(2) Trajectory-based clustering discovers sub-trajectories
that indicate common movement patterns of each class.

The collaboration between the two types of clustering
leads to discovery of both types of discriminative features,
boosting classification accuracy significantly. Since trajec-
tory partitioning precedes clustering, discriminative parts of
trajectories become identifiable. Furthermore, TraClass is

more powerful than earlier methods since it can also discover
whole-trajectory features by linking sub-trajectory features
as will be explained in Section 5.4.

In summary, the contributions of this paper are as follows:

• We propose a feature generation framework TraClass for
trajectories, which explores two types of clustering. To
the best of our knowledge, this is the most comprehensive
framework reported in the literature.

• We propose the notion and algorithm of region-based
clustering. The problem of region-based clustering is for-
malized using the minimum description length (MDL) [8]
principle, and an efficient approximate algorithm is de-
veloped to find the near-optimal clustering.

• We propose the notion and algorithm of trajectory-based
clustering. The procedure of trajectory-based clustering
is based on the partition-and-group framework proposed
by Lee et al. [12]. The partition-and-group framework is
extended for classification purposes such that the class
labels are incorporated into clustering.

• We demonstrate, by using three real data sets, that clas-
sification using the features generated by TraClass is
very accurate.

The rest of the paper is organized as follows. Section 2
gives an overview of our feature generation framework. Sec-
tion 3 presents a trajectory partitioning algorithm. Section
4 proposes a region-based clustering algorithm. Section 5
proposes a trajectory-based clustering algorithm. Section 6
explains our classification strategy. Section 7 presents the
results of experimental evaluation. Section 8 discusses re-
lated work. Finally, Section 9 concludes the study.

2. TRAJECTORY FEATURE GENERATION

2.1 A Working Example
Let us begin by presenting a working example shown in

Figures 2 and 3. Suppose there is a set of trajectories from
two classes c1 and c2, where the trajectories of c1 are repre-
sented by solid lines, and those of c2 by dashed lines.

1. Region-based clustering (Figure 2): First, regions having
one major (dominating) class are discovered as in (1).
The regions B, F, and H are said to be homogeneous
in the sense that they contain trajectories mostly of the
same class. Second, the non-homogeneous regions D and
E are recursively quantized to find more of homogeneous
regions. The region J is found to be homogeneous within
E as in (2). These homogeneous regions are used as
region-based clusters. Then, parts of trajectories in non-
homogeneous regions are passed to the next step.

2. Trajectory-based clustering (Figure 3): Third, common
movement patterns of each class are discovered from non-
homogeneous regions as in (3). The patterns 3, 4, 5,
and 6 are said to be discriminative in the sense that
they are different from those of the other class. Fourth,
the non-discriminative patterns 1 and 2 are repeatedly
investigated in finer granularity to find more of discrimi-
native patterns. The horizontal movements are now rep-
resented by two patterns for each class rather than one.
The patterns 7, 8, 9, and 10 newly discovered are dis-
criminative as in (4). These discriminative patterns are
used as trajectory-based clusters.
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Figure 2: An example of region-based clustering.

1 3 4

5
6

7

8

9
102

(4)(3)

Figure 3: An example of trajectory-based clustering.

2.2 Overall Framework
Figure 4 outlines the feature generation framework Tra-

Class. Prior to clustering, each trajectory is partitioned into
a set of trajectory partitions. First, region-based clustering
is performed recursively as long as homogeneous regions of
reasonable size are found. The trajectory partitions that
are not covered by homogeneous regions are passed to the
next step. Second, trajectory-based clustering is performed
repeatedly as long as discriminative clusters are found. Ob-
viously, this collaborative hierarchical clustering enables us
to detect more of high-quality features.

Region-Based Clustering

Trajectory-Based Clustering

Recursively quantize 
non-homogeneous 
regions

Repeatedly find 
finer-granularity 
clusters

Trajectory partitions in 
non-homogeneous regions

Region-based and 
trajectory-based clusters

Trajectory partitions

Figure 4: The procedure of hierarchical region-
based and trajectory-based clustering.

It is worthwhile to note that exploring the two types of
clustering generates a hierarchy of features because region-
based clustering discovers higher-level (more general) fea-
tures than trajectory-based clustering due to not using move-
ment patterns. In addition, within each clustering, there ex-
ists a hierarchy from larger clusters to smaller ones. Over-
all, we generate features in a top-down fashion: higher-level
features are preferred to lower-level ones since the former
are more effective for classification and, at the same time,
cheaper to use than the latter [19].

2.3 Problem Statement
We develop a feature generation framework for trajec-

tories of free moving objects. Given a set of trajectories
I = {TR1, . . . , TRnumtra}, with each trajectory associated
with a class ci ∈ C = {c1, . . . , cnumcla}, our framework gen-
erates a set of features for trajectory classification, where
the trajectory and feature are defined as follows.

A trajectory is a sequence of 2-dimensional points and is
denoted as TRi = p1p2p3 · · · pj · · · pleni (1 ≤ i ≤ numtra).
A trajectory pν1pν2 · · · pνk (1 ≤ ν1 < ν2 < · · · < νk ≤ leni)
is called a sub-trajectory of TRi. A trajectory partition is
a sub-trajectory pipj (i < j) of length 2. The whole trajec-
tory belongs to the same one class, so does every trajectory

partition from the trajectory. Figure 5 shows an example of
a trajectory and its trajectory partitions.

1p

2p3p
4p

6p
8p

1νp2νp

3νp 4νp

iTR
5p

7p

−→: a trajectory, =⇒: trajectory partitions

Figure 5: An example of a trajectory and its trajec-
tory partitions.

A feature is either a region-based cluster or a trajectory-
based cluster. Informally, a region-based cluster is a set of
trajectory partitions of the same class within a rectangular
region regardless of their movement patterns; a trajectory-
based cluster is a set of trajectory partitions of the same
class which share a common movement pattern. Formal
definitions will be given in Sections 4.1 and 5.1, respectively.
These features, generated by two types of clustering, are
provided to a classifier.

3. TRAJECTORY PARTITIONING

3.1 Preliminaries
Trajectory partitioning as well as trajectory-based clus-

tering are based on the partition-and-group framework [12],
which consists of the following two phases:

(1) The partitioning phase: Each trajectory is partitioned
into a set of line segments (i.e., trajectory partitions)
whenever its moving direction changes rapidly. The
problem of finding the optimal set of such partitioning
points is formulated by the MDL principle. An O(n)
approximate algorithm is proposed to efficiently find the
near-optimal partitioning. See Appendix A for details.

(2) The grouping phase: Similar line segments are grouped
into a cluster using a density-based clustering method
analogous to DBSCAN [5]. A distance function for line
segments dist(Li, Lj) is designed to define the density.
The basic notions of density-based clustering for points
are changed to those for line segments as follows. Two
parameters ε and MinLns are introduced.

• The ε-neighborhood of a line segment Li is Nε(Li) =
{Lj ∈ L | dist(Li, Lj) ≤ ε}, where L is the set of trajec-
tory partitions.

• Li is a core line segment if |Nε(Li)| ≥ MinLns.

• Li is directly density-reachable from Lj if Li ∈ Nε(Lj)
and Lj is a core line segment.

1083



• Density-reachability is the transitive closure of directly
density-reachability.

• Li is density-connected to Lj if both Li and Lj are
density-reachable from a third line segment. A density-
connected set is considered as a cluster.

At the final stage of the grouping phase, a model called a
representative trajectory, which is a sequence of points just
like an ordinary trajectory, is generated for each cluster. It is
an imaginary trajectory that indicates the major movement
pattern of the trajectory partitions belonging to the cluster
and is obtained by calculating the average coordinates of
those trajectory partitions. The overall procedure explained
above is summarized in Figure 6.

TR5

TR1

TR2

TR3

TR4 TR5

TR1

TR2

TR3

TR4

A set of trajectories

A set of line segments
A cluster

(1) Partition

(2) Group

A representative trajectory

Figure 6: An overall procedure of trajectory clus-
tering in the partition-and-group framework.

The original partition-and-group framework is extended
for classification purposes so that the class labels are incor-
porated into partitioning and clustering. Notice that the
partition-and-group framework is adapted just as a compo-
nent of TraClass. The extension for trajectory partitioning
is explained in Section 3.2, and that for trajectory-based
clustering in Section 5.2.

3.2 Class-Conscious Partitioning
After each trajectory is partitioned by its movement pat-

tern, some trajectory partitions need to be further parti-
tioned by the class labels. The real interest here is to guar-
antee that trajectory partitions do not span the class bound-
aries as illustrated in Figure 7.

Additional partitioning points

Non-discriminative      Discriminative

→: trajectories of c1, 99K: trajectories of c2

Figure 7: Trajectory partitions that require further
partitioning.

Example 2. Figure 7 shows a bunch of trajectory parti-
tions from two classes c1 and c2. The trajectory partitions of
c1 overlap those of c2. As a result, the non-overlapping part
is discriminative, whereas the overlapping part is not. Ob-
viously, it is preferable to separate the discriminative part

from the non-discriminative part. By virtue of this class-
conscious partitioning, the discriminative part can be iden-
tified as a cluster.

The basic idea of class-conscious partitioning is to further
partition a trajectory partition if the segments between two
endpoints have very different class distributions. It ensures
that the class distribution is kept uniform along a trajec-
tory partition. To achieve this class-conscious partitioning,
a heterogeneous trajectory partition is defined through Def-
initions 1 and 2.

Definition 1. The class affinity of a point p is a vector
CA(p) = 〈f1, f2, . . . , fnumcla〉, where fi is the frequency of
trajectory partitions whose class label is equal to i and whose
at least one endpoint is within Euclidean distance σ from
p. Here, σ is the standard deviation of pairwise distances
between all partitioning points.

Basically, if the most prevalent class around one endpoint
is different from that around the other endpoint, the tra-
jectory partition is determined to be heterogeneous and is
partitioned at between two endpoints.

Definition 2. A trajectory partition L = pspe is hetero-
geneous if argmaxk[CA(ps)]k 6= argmaxk[CA(pe)]k. Here,
[CA(·)]k denotes the frequency of trajectory partitions whose
class label is equal to k, and argmaxk[CA(·)]k means the
class label with the maximum frequency in CA(·).

Figure 8 shows the algorithm Class-Conscious Trajectory
Partitioning. The algorithm first partitions each trajectory
by its movement pattern as done by Lee et al. [12] (lines 1∼3)
and then finds heterogeneous trajectory partitions by Defi-
nition 2 (lines 4∼6). The heterogeneous ones are examined
to find proper partitioning points (lines 7∼11). Recall that
a trajectory partition encloses multiple points of a raw tra-
jectory as in Figure 5. Thus, the concept of heterogeneity
is applied again to each atomic line segment within the het-
erogeneous trajectory partition. If a line segment pkpk+1 is
heterogeneous, its enclosing trajectory partition is divided
into two parts before and after pk+1 (lines 8∼10).

4. REGION-BASED CLUSTERING

4.1 Definition of Region-Based Clusters
A region-based cluster is formally defined through Defini-

tions 3 and 4. This definition is very intuitive: a region-
based cluster contains many of trajectory partitions of one
major class, but very few (hopefully, none) of trajectory
partitions of other minor classes. Examples are depicted as
thick rectangles in Figure 2.

Definition 3. A region in a 2-dimensional space is homo-
geneous if only one class cmajor has trajectory partitions
from ≥ ψ trajectories within the region, but all other classes
do not. The class cmajor is called the major class of the re-
gion, and other classes are called minor classes.

In the definition above, ψ designates the minimum popu-
lation of the major class in a homogeneous region. ψ typi-
cally shares the parameter value with MinLns to reduce the
number of parameters to optimize. The two parameters, in
fact, play the same role in region-based and trajectory-based
clustering.
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Algorithm Class-Conscious Trajectory Partitioning

Input: A set I of trajectories
Output: A set L of trajectory partitions
Algorithm:
01: for each TR ∈ I do
02: Partition TR by its movement pattern;
03: Accumulate trajectory partitions into a set L;

/* Find heterogeneous trajectory partitions */
04: for each L ∈ L do
05: if L is heterogeneous by Definition 2 then
06: Add L into a set H;

/* Further partition the heterogeneous ones */
07: for each L ∈ H do

/* Suppose L encloses pνipνi+1pνi+2 · · · pνi+1 */
08: for each k ∈ [νi, νi+1 − 1] do
09: if pkpk+1 is heterogeneous by Definition 2 then
10: Partition L at the point pk+1;
11: Replace L with new trajectory partitions;

Figure 8: A class-conscious algorithm for partition-
ing trajectories.

Definition 4. A region-based cluster is a set of trajectory
partitions of the major class within a homogeneous rectan-
gular region.

A rectangular region that encloses trajectory partitions
is used to represent the region-based cluster. For ease of
computation, we regard that a region encloses a trajectory
partition if its center point is located inside the region.

4.2 Construction of the Grid Structure
To find homogeneous regions as much as possible, Tra-

Class uses a multi-resolution grid structure, which quantizes
the domain space into a finite number of cells. The X and Y
axes are partitioned separately, and then, cells are generated
by crossing the partitions of the X and Y axes. After quan-
tization, each region (i.e., cell) is examined to determine if
it is homogeneous.

A good quantization of the domain space should possess
two desirable properties: homogeneity and conciseness. Ho-
mogeneity means that the class distribution in each region
should be as homogeneous as possible; it is required for de-
riving more region-based clusters. Conciseness means that
the number of regions should be as small as possible; it is
required for generating larger region-based clusters.

Homogeneity and conciseness are rivalry measures. If the
entire domain space is quantized into one region as in Fig-
ure 9 (a), homogeneity may become lowest, but conciseness
becomes highest. In contrast, if the domain space is quan-
tized into many small regions so that they enclose at most
one trajectory partition as in Figure 9 (c), homogeneity be-
comes highest, but conciseness becomes lowest. Thus, it is
necessary to find a good tradeoff between the two properties
as in Figure 9 (b).

4.2.1 Formalization Using the MDL Principle
The MDL cost consists of two components [8]: L(H) and

L(D|H). Here, H means the hypothesis, and D the data.
The two components are informally stated as follows [8]:
“L(H) is the length, in bits, of the description of the hypoth-

(a) Lowest/Highest. (b) High/High. (c) Highest/Lowest.
(Homogeneity/Conciseness)

Figure 9: Comparison of homogeneity and concise-
ness between two extreme cases.

esis; and L(D|H) is the length, in bits, of the description of
the data when encoded with the help of the hypothesis.”
The best hypothesis H to explain D is the one which mini-
mizes the sum of L(H) and L(D|H).

In our quantization problem, H corresponds to the par-
titions of the X and Y axes, and D to the class labels of
trajectory partitions. As a result, finding a good quantiza-
tion translates to finding the best hypothesis using the MDL
principle. Before proceeding, the notation for region-based
clustering is summarized in Table 1.

Table 1: The notation for region-based clustering.
Symbol Definition

numX the number of partitions of the X axis
numY the number of partitions of the Y axis
sizeX,i the size of the i-th partition of the X axis
sizeY,j the size of the j-th partition of the Y axis

Ri,j
the region obtained by crossing the i-th X-
axis partition and the j-th Y-axis partition

N(Ri,j)
the total number of trajectory partitions lo-
cated inside Ri,j

Nk(Ri,j)
the number of trajectory partitions with the
class label k inside Ri,j

C(Ri,j) the code cost of Ri,j

1. L(H) is formulated by Eq. (1). The first and second
terms are required to describe the number of partitions of
the X and Y axes, respectively. Here, log∗ is the universal
code length for integers.1 The third and fourth terms are
required to describe the size of each partition of the X
and Y axes, respectively.

2. L(D|H) is formulated by Eq. (2). The first term en-
codes the number of trajectory partitions within Ri,j .
The second term C(Ri,j), called the code cost, represents
the number of bits required to transmit the class labels
of trajectory partitions within Ri,j .

2 If only one class
exists in Ri,j (i.e., Ri,j is purely homogeneous), C(Ri,j)
becomes zero, but if many classes are mixed up in Ri,j ,
C(Ri,j) becomes high. Finally, L(D|H) is obtained by
summing up the two values of every Ri,j .

1It can be shown that log∗(n) = log2 c+log2 n+log2 log2 n+
· · · , where the sum only includes positive terms and c ≈
2.865 [13]. If n is large, log∗(n) ≈ log2 n.
2Recall information entropy theory. Suppose X can have
one of m values {v1, v2, . . . , vm} with probability P (X =
vi) = pi. Then, the smallest number of bits, on average per
symbol, needed to transmit a stream of symbols drawn from
X’s distribution is H(X) = −∑m

j=1 pj log2 pj [17].
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L(H) = log∗(numX) + log∗(numY)+
numX∑
i=1

dlog2 sizeX,ie+

numY∑
j=1

dlog2 sizeY,je (1)

L(D|H) =

numX∑
i=1

numY∑
j=1

{dlog2(N(Ri,j) + 1)e+ C(Ri,j)},

where C(Ri,j) = −N(Ri,j)

numcla∑

k=1

Nk(Ri,j)

N(Ri,j)
log2

Nk(Ri,j)

N(Ri,j)

(2)

Finding the quantization that minimizes L(H) + L(D|H)
is exactly the tradeoff between homogeneity and conciseness
in the sense that L(H) measures the degree of conciseness,
and L(D|H) that of homogeneity. Although theoretically
pleasing, our problem is computationally expensive: since
even the optimal numX and numY are unknown, it is re-
quired to find the best quantization for every possible pair
of them. Thus, an approximate algorithm is developed in
the next section.

4.2.2 An Approximate Algorithm
Figure 10 shows the algorithm Region-Based Clustering.

At the beginning, one big partition enclosing the entire range
is assumed to exist for each axis. The algorithm progres-
sively finds a better partitioning alternately for the X axis
and for the Y axis as long as the MDL cost decreases. Among
the current set of partitions of the X axis, the algorithm se-
lects the one that has the maximum code cost (line 4) and
divides it into two parts in order to decrease the MDL cost
as much as possible (line 5). Consequently, a new partition-
ing point is determined so as to minimize the sum of the
code costs of two new partitions. Then, if this new parti-
tioning makes the MDL cost decrease, the set of partitions
and the minimum MDL cost are updated accordingly (lines
6∼9). The same procedure is applied to the Y axis. These
procedures are repeated until there is no decrease in both X
and Y axes (lines 11∼12). Finally, all homogeneous regions
are retrieved according to Definition 3.

Lemma 1. The time complexity of the algorithm in Fig-
ure 10 is O((numX+numY) ·n), where n is the total number
of trajectory partitions in a database.

Proof: The algorithm exits the loop after executing lines
4∼9 by (numX + numY) times because numX (or numY) is
always increased by one. At every execution, the algorithm
scans the set of trajectory partitions to calculate the code
cost of each region Ri,j under the current quantization. This
calculation requires accessing n trajectory partitions.

Example 3. Figure 11 shows a step-by-step procedure of
generating region-based clusters from the set of trajectories
in Figure 2. In each figure, the shaded rectangle indicates
the worst partition that has the maximum code cost, and the
arrow a new partitioning point of the worst partition. These
selection and partition are performed alternately for the X
axis and for the Y axis. After the fourth partitioning, the
current quantization is determined to be optimal because
further partitioning increases the MDL cost.

4.3 Recursive Quantization and Merging
TraClass recursively quantizes the regions that are not ho-

mogeneous. This recursive quantization enables us to find

Algorithm Region-Based Clustering

Input: A set L of trajectory partitions
Output: A set R of region-based clusters
Algorithm:
/* X (or Y) is a set of partitions of the X (or Y) axis */
01: X := {[minX, maxX]}, Y := {[minY, maxY]};
02: minCost := MDL(X ,Y); /* L(H) + L(D|H) */
03: while true do

/* [xm
start, x

m
end] denotes the m-th partition */

04: Choose the m-th partition from X , where

m := argmax
1≤i≤numX

numY∑
j=1

C(Ri,j);

05: Find a new partitioning point xm
new, where

xm
new := argmin

xm
start<p<xm

end

numY∑
j=1

{C(R[xm
start,p],j) + C(R[p,xm

end
],j)};

/* Divide the worst partition into two */
06: X ′ := X − {[xm

start, x
m
end]}

∪ {[xm
start, x

m
new], [xm

new, xm
end]};

07: newCostX := MDL(X ′,Y);
/* Check if the MDL cost decreases */

08: if newCostX < minCost then
09: X := X ′, minCost := newCostX;
10: Repeat (4)∼(9) for the Y axis;
11: if there is no decrease in both X and Y axes then
12: Stop repetition; /* break */
13: Construct Ri,j ’s (1 ≤ i ≤ numX, 1 ≤ j ≤ numY);
14: Output homogeneous Ri,j ’s by Definition 3;

Figure 10: An approximate algorithm for region-
based clustering.

(1) (2)

(3) (4)

Figure 11: A step-by-step procedure of generating
region-based clusters.

more (small-sized) region-based clusters. In more detail, the
regions where two or more classes have trajectory partitions
from ≥ ψ trajectories (e.g., D and E in Figure 2) are qual-
ified for recursive quantization. If regions contain very few
or none of trajectories (e.g., A, C, G, and I in Figure 2),
such regions are not investigated anymore since they do not
provide meaningful information for classification.

Recursive quantization over non-homogeneous regions can
be done by the same algorithm, except that initial X and
Y are generated using the range of the target region. This
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algorithm is recursively executed over non-homogeneous re-
gions as long as a homogeneous region has been found after
recursive quantization.

After all possible homogeneous regions are discovered, ad-
jacent regions can be merged to form larger regions. Ap-
parently, larger regions are more intuitive to humans and
more effective for classification than smaller regions. Sup-
pose there are two homogeneous regions RHi and RHj . The
two regions are merged if (i) RHi and RHj are adjacent to
each other; (ii) RHi and RHj share the same major class;
and (iii) the merger of RHi and RHj still forms a rectangle.
The first and second conditions are very natural, and the
third condition is necessary for easy maintenance.

5. TRAJECTORY-BASED CLUSTERING

5.1 Definition of Trajectory-Based Clusters
A trajectory-based cluster is formally defined in Definition

5. This definition is essentially the same as the original
definition of a trajectory cluster except the class constraint.
Examples are depicted as thick arrow lines in Figure 3.

Definition 5. A trajectory-based cluster is a density-con-
nected set of trajectory partitions of the same class.

A representative trajectory is generated to represent the
trajectory-based cluster. This representative trajectory is
also used in defining the distance between two trajectory-
based clusters.

5.2 Class-Conscious Grouping
By definition, a trajectory-based cluster should grow using

trajectory partitions of the same class. The real interest
here is to guarantee that a cluster is derived from only one
class. It is obvious that common sub-trajectories composed
of different classes are of no use for classification.

5.2.1 Distance Function for Line Segments
The distance function that we use is composed of three

components [11, 12]: (i) the perpendicular distance (d⊥), (ii)
the parallel distance (d‖), and (iii) the angle distance (dθ).
They are intuitively illustrated in Figure 12.

θ

iL

jL

is ie

je

js
1⊥l

2⊥l
θd

1||l 2||l
)sin(

),(MIN 2||1||||

21

2
2

2
1

θθ ×=
=

+
+=

⊥⊥

⊥⊥
⊥

jLd

lld

ll

ll
d

Figure 12: Three components of the distance func-
tion for line segments.

The distance function is defined as the weighted sum of
the three components: dist(Li, Lj) = w⊥ · d⊥(Li, Lj) + w‖ ·
d‖(Li, Lj)+wθ ·dθ(Li, Lj). The weights w⊥, w‖, and wθ are
determined depending on applications. We set these weights
equally to 1 in default. This default value generally works
well in many applications.

5.2.2 Homogeneity of an ε-Neighborhood
To achieve this class-conscious grouping, a homogeneous

ε-neighborhood is defined through Definitions 6 and 7.

Definition 6. The class distribution of an ε-neighborhood
Nε(L) is a vector CD(Nε(L)) = 〈f1, f2, . . . , fnumcla〉, where
fi is the frequency of trajectory partitions whose class label
is equal to i within Nε(L).

Definition 7. An ε-neighborhood Nε(L) is homogeneous
if the condition below is satisfied. The class whose label is
equal to argmaxk[CD(Nε(L))]k is called the major class of
Nε(L), and other classes are called minor classes.

(i) the class label of L = argmaxk[CD(Nε(L))]k ∧
(ii) max[CD(Nε(L))]k ≥ MinLns ∧
(iii) ∀l 6= argmaxk[CD(Nε(L))]k, [CD(Nε(L))]l < MinLns

After an ε-neighborhood is computed, it is checked to
determine if it is homogeneous by Definition 7. If the ε-
neighborhood is homogeneous, it is used for trajectory-based
clustering. Otherwise, it is immediately discarded.

Example 4. Reconsider the bunch of trajectory partitions
in Figure 7. Owing to class-conscious partitioning, the tra-
jectory partitions of c1 (solid line segments) have been fur-
ther partitioned as in Figure 13. Let MinLns be 5. We can
easily see that Nε(L1) is non-homogeneous since trajectory
partitions of two classes are mixed up. In contrast, Nε(L2)
is clearly homogeneous. Thus, only the trajectory partitions
in Nε(L2) are used for trajectory-based clustering.

Non-homogeneous          Homogeneous
ε-neighborhood           ε-neighborhood      

L1 L2

X O

→: trajectories of c1, 99K: trajectories of c2

Figure 13: Homogeneity of an ε-neighborhood.

Figure 14 shows the algorithm Class-Conscious Trajec-
tory Grouping. The algorithm selects an unmarked trajec-
tory partition L (line 2) and checks if its ε-neighborhood
Nε(L) is homogeneous by Definition 7 (lines 3∼4). A set of
parameter values is maintained for each class, and the ap-
propriate set is dynamically chosen by the class label of L. If
Nε(L) is homogeneous, the algorithm computes a density-
connected set from the trajectory partitions of the major
class in Nε(L). This density-connected set C constitutes a
cluster (lines 5∼8). Otherwise, L is marked as a noise (lines
9∼10). This process is repeated until all trajectory parti-
tions are marked as either a cluster or a noise.

Lemma 2. The time complexity of the algorithm in Fig-
ure 14 is O(n2) if a spatial index is not used, where n is the
total number of trajectory partitions in a database.

Proof: The algorithm has the same time complexity as
DBSCAN [5] because both algorithms compute a density-
connected set to derive a cluster.

5.2.3 Analysis of Discriminative Power
After trajectory-based clusters are found, TraClass selects

those whose discriminative power is high enough for use in
classification. However, existing measures of discriminative
power, such as the information gain [9], are not adequate
since they are originally designed for discrete data on the
assumption that the degree of difference between data items
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Algorithm Class-Conscious Trajectory Grouping

Input: (1) A set L of trajectory partitions,
(2) Two parameters ε and MinLns for each class

Output: A set T of trajectory-based clusters
Algorithm:
01: Initially unmark ∀L ∈ L;
02: while unmarked L ∈ L exists do

/* Choose ε and MinLns for the class of L */
03: Compute Nε(L);

/* Examine if Nε(L) is homogeneous */
04: if Nε(L) is homogeneous by Definition 7 then
05: Remove ∀X ∈ Nε(L) of minor classes;

/* Construct a cluster growing from Nε(L) */
06: Compute a density-connected set C from Nε(L);
07: Mark ∀M ∈ C as a cluster ;
08: Add C into a set T ;
09: else
10: Mark L as a noise;

Figure 14: A class-conscious algorithm for grouping
trajectory partitions.

is not important. Obviously, this assumption is not true in
our task: far-away located clusters of different classes are
more discriminative than closely located clusters. Thus, a
new measure is necessary for our task.

The new measure relies on the distance among clusters,
which is defined by the formal concept of the Hausdorff
distance [4] that measures how far two compact non-empty
subsets of a metric space are from each other. A cluster
is represented by its representative trajectory, i.e., a se-
quence of line segments. Thus, the distance between two
clusters is calculated using two sets of line segments. The
perpendicular and angle distances for clusters are formu-
lated by Eqs. (3) and (4), respectively.3 Here, ‖Li‖ de-
notes the length of a line segment, and ‖Ci‖ the sum of the
length of every line segment in Ci’s representative trajec-
tory. The weighted sum is used as follows: dist(Ci, Cj) =
w⊥ · d⊥(Ci, Cj) + wθ · dθ(Ci, Cj).

d⊥(Ci, Cj) =
∑

Li∈Ci

‖Li‖
‖Ci‖





∑
Lj∈Cj

‖Lj‖
‖Cj‖ · d⊥(Li, Lj)



 (3)

dθ(Ci, Cj) =
∑

Li∈Ci

∑
Lj∈Cj

dθ(Li, Lj) (4)

The discriminative power of a cluster is called the sepa-
ration gain and defined in Definition 8. Basically, it is the
average distance from a specific cluster to other clusters of
different classes. The larger the separation gain of a cluster
is, the more likely the cluster is discriminative.

Definition 8. The separation gain of a cluster Ci is de-
fined as Eq. (5). Here, T denotes the set of all clusters, and
CL(·) the class label of a cluster.

sep gain(Ci) =
1

|Υ(Ci)|
∑

Cj∈Υ(Ci)

dist(Ci, Cj),

where Υ(Ci) = {Cj | Cj ∈ T ∧ CL(Ci) 6= CL(Cj)}
(5)

3We do not consider the parallel distance here to ignore the
positional difference of line segments within a cluster.

Our criterion for selecting discriminative clusters is pro-
vided in Lemma 3. A cluster is regarded as discriminative
if it is well separated from those of different classes by more
than the overall separability ξ, which is the median of pair-
wise distances between all clusters.

Lemma 3. If sep gain(Ci) > ξ, at least one cluster of
different classes is far from Ci by more than ξ.

Proof: We use proof by contradiction. Assume that the
distances from Ci to clusters of different classes are all less
than or equal to ξ. Then, sep gain(Ci) ≤ ξ by Definition 8,
contradicting our assumption.

Notice that the median is chosen instead of the average
to quantify the overall separability. The reason is that the
average is found to be less robust to outliers than the me-
dian since some extremely large distances could make the
threshold too high.

5.3 Repeated Execution and Parameter Value
Selection

Once a trajectory-based cluster is selected by Lemma 3,
the trajectory partitions in the cluster are not considered
in subsequent clustering since they are already covered by a
discriminative cluster. Thus, TraClass repeatedly performs
clustering over only uncovered trajectory partitions in order
to generate a larger number of smaller clusters by adjusting
parameter values. This repetitive clustering enables us to
find more (probably discriminative) clusters. Since it is re-
quired to have a reasonable interval of parameter values, we
provide a heuristic on how to determine initial parameter
values and how to adjust them.

The heuristic is based on the following observations. In
the worst clustering, |Nε(L)| tends to be uniform. More
specifically, for too small an ε, |Nε(L)| becomes 1 for almost
all trajectory partitions; for too large an ε, it becomes numtp

for almost all trajectory partitions, where numtp is the total
number of trajectory partitions. Thus, the entropy becomes
maximum. In contrast, in a good clustering, |Nε(L)| tends
to be skewed. Thus, the entropy becomes smaller.

The entropy formula is defined as Eq. (6). The value of
ε that minimizes H(X), εmin, is efficiently obtained by a
simulated annealing [10] technique. Then, the heuristic con-
structs an interval [εvbegin, εvend] centered at εmin, where
the difference of the entropy from the minimum is very
small (< 1%). This interval can be easily derived because
the entropy plot usually forms a valley at εmin.

H(X) =

n∑
i=1

p(xi) log2

1

p(xi)
= −

n∑
i=1

p(xi) log2 p(xi),

where p(xi) =
|Nε(xi)|∑n

j=1 |Nε(xj)| and n = numtp

(6)

The initial value for the parameter ε is set to be εvend. In
addition, the initial value for the parameter MinLns is set
to be (avg|Nε(L)|+1 ∼ 3), where avg|Nε(L)| is the average of
|Nε(L)| at ε = εvend. This is natural since MinLns should
be greater than avg|Nε(L)| to discover meaningful clusters.
Computing avg|Nε(L)| induces no additional cost since it can
be done while computing H(X).

During the subsequent iterations, the value of ε is de-
creased with the value of MinLns fixed. As the value of ε
is decreased, a larger number of smaller clusters are discov-
ered. The value at the i-th iteration εi (i ≥ 1) is determined
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by Eq. (7), where nummax iter is the maximum number of
iterations to be performed. In all tests we conducted, the
number of clusters is shown to decrease rapidly after the sec-
ond iteration. Thus, it is expected that nummax iter = 3 ∼ 4
is a reasonable setting for many real situations.

εi = εvend − (εvend − εvbegin)

nummax iter
× (i− 1) (7)

Notice that parameter values are derived separately for
each class. In the process of class-conscious grouping, the
appropriate set of parameter values is dynamically chosen
based on the class label of the current trajectory partition.

5.4 Cluster Link Generation
In addition to deriving highly discriminative trajectory-

based clusters, we develop a technique to further improve
classification accuracy. Due to the sequential nature of tra-
jectory data, a sequence of clusters is likely to hold impor-
tant information for use in classification.

To take advantage of the sequential nature, combined fea-
tures are generated from a set of clusters. A combined fea-
ture is defined as a sequence of connectable clusters or con-
nectable combined-features. Definition 9 presents the con-
dition that needs to be satisfied to be connectable.

Definition 9. Two clusters Ci and Cj are connectable if
Ineq. (8) is satisfied. Here, TR(C) denotes the set of trajec-
tories from which trajectory partitions in the cluster C have
been extracted.

|TR(Ci) ∩ TR(Cj)|
MIN(|TR(Ci)|, |TR(Cj)|) ≥ χ (8)

Let Fi be 〈CFi,1 , . . . , CFi,k 〉 and Fj be 〈CFj,1 , . . . , CFj,k 〉.
Then, two combined features Fi and Fj are connectable if
∀l ∈ [1, k − 1], CFi,l+1 = CFj,l and Ineq. (9) is satisfied.

|(⋂k
l=1 TR(CFi,l)) ∩ (

⋂k
l=1 TR(CFj,l))|

MIN(|⋃k
l=1 TR(CFi,l)|, |

⋃k
l=1 TR(CFj,l)|)

≥ χ (9)

In the definition above, χ designates the minimum com-
monness between two clusters or between two combined fea-
tures. Finding the correct value for χ is complicated since it
heavily depends on the data set. Our experience indicates
that χ ≥ 50% works well in most cases.

Combined features are generated using an Apriori-like al-
gorithm. That is, length-(k+1) features are generated from
length-k features by checking the condition in Definition 9.
The detailed algorithm is omitted due to lack of space.

6. A CLASSIFICATION STRATEGY
Now, a possible classification strategy is presented to use

the features generated by TraClass. Here, we do not claim
that this strategy is the best among all others, but it is just
a reasonable strategy.

Our feature generation framework has good usability for
the following reasons. First, it is neutral to classifiers. That
is, it can be used for any classifiers, including decision trees,
rule-based classifiers, and support vector machines. Second,
it can team up with other feature generation frameworks.
Trajectories may have multiple numerical attributes in ad-
dition to a sequence of locations. Examples include date,
time-of-day, and speed. Such numerical attributes are rep-
resented as a single value, an interval, or a sequence of val-
ues per trajectory. We can use an existing framework [14]

for numerical attributes together with our framework for
the trajectorial attribute. Handling numerical attributes is
beyond the scope of this paper.

After features are generated from a trajectory database,
each trajectory is mapped into a feature vector in the fea-
ture space. Notice that this mapping should be performed
for both the training set and the test set although features
are discovered using only the training set. Each entry of
a feature vector corresponds to a feature—a region-based
cluster, a trajectory-based cluster, or a numerical feature.
The i-th entry of a feature vector is equal to the frequency
that the i-th feature occurs in the trajectory. When part
of a trajectory is contained in a region-based cluster or is
close to a trajectory-based one, the corresponding entry of
the feature vector is increased by one.

In our study, a classifier is built using the support vector
machine (SVM) [18]. This design decision stems from two
characteristics of the feature vectors generated. First, they
are high-dimensional since many features are generated from
a trajectory database. Second, they are sparse since each
trajectory has only a few of these features. The SVM is
well-suited for such high-dimensional and sparse data [9].

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setting
We use three real trajectory data sets: the animal move-

ment data set4, the vessel navigation data set5, and the
hurricane track data set6.

The animal movement data set has been generated by the
Starkey project. The x and y coordinates are extracted for
experiments. We use the animal movements observed in
June 1995. This data set is divided into three classes by
species: elk, deer, and cattle, as shown in Figure 15. The
numbers of trajectories (points) are 38 (7117), 30 (4333), and
34 (3540), respectively. 20% of trajectories are randomly
selected for the test set.

Elk

Cattle

Deer

Figure 15: Three classes in the animal data.

The vessel navigation data set has been generated by the
MUSE project. The latitude and longitude are extracted
for experiments. This data set is divided into two classes by
vessel: Point Lobos and Point Sur. A larger data set is gen-
erated by perturbing the original data set: every trajectory
is duplicated with a small (≤ ±5%) random value added to
the original value. The numbers of trajectories (points) are
600 (65500) and 550 (125750), respectively. 20% of trajecto-
ries are randomly selected for the test set.

4http://www.fs.fed.us/pnw/starkey/data/tables/
5http://www.mbari.org/MUSE/platforms/ships.htm
6http://weather.unisys.com/hurricane/atlantic/
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Table 2: The summary of the classification results.
Data Set Animal Vessel Hurricane
Version TB-ONLY RB-TB TB-ONLY RB-TB TB-ONLY RB-TB

Accuracy (%) 50.0 83.3 84.4 98.2 65.4 73.1
Training Time (msec) 3542 2406 44683 22902 331 317

Prediction Time (msec) 104 98 722 608 48 46

The hurricane track data set is called Best Track. The
latitude and longitude are extracted for experiments. We
use the Atlantic hurricanes for the years 1950 through 2006.
The Saffir-Simpson scale classifies hurricanes into categories
1∼5 by intensity. A high category number indicates a high
intensity. Categories 2 and 3 are chosen for two classes. The
numbers of trajectories (points) are 61 (2459) and 72 (3126),
respectively. 20% of trajectories are randomly selected for
the test set.

Classification accuracy, training time, and prediction time
are measured for the three data sets. Classification accuracy
is the ratio of the number of test trajectories correctly clas-
sified to the total number of test trajectories. To show the
effect of region-based clustering, we test a simple version
that performs only trajectory-based clustering. TB-ONLY
means the simple version, and RB-TB the full version that
performs the two types of clustering. TB-ONLY is expected
to be no worse than earlier methods since it discovers not
only sub-trajectory features but also whole-trajectory fea-
tures by cluster-link generation.

All experiments are conducted on a Pentium-4 3.0GHz
PC with 1GBytes of main memory, running on Windows
XP. Everything is implemented in C++ using Microsoft Vi-
sual Studio 2005. Besides, LIBSVM [3] with a linear kernel
is used to build a classifier, and the parameters of LIBSVM
are set to the default values.

7.2 Results for Real Data
Table 2 summarizes the classification results for the three

data sets. In the snapshot images, thin gray lines represent
trajectories, thick color lines trajectory-based clusters, and
thick color rectangles region-based clusters. Here, a color
represents a class.

7.2.1 Results for Animal Movement Data
Figure 16 shows the features generated using ε = [29, 39],

MinLns = 5 for elk; ε = [44, 54], MinLns = 4 for deer;
and ε = [19, 29], MinLns = 5 for cattle. Ten region-based
and 37 trajectory-based clusters are discovered. This result
coincides with Figure 15. Many region-based clusters of elk
are found along the elk’s movements, except where the elk’s
movements overlap the deer’s or the cattle’s, i.e., the center
and upper-right regions. Trajectory-based clusters of deer
are located in the lower-middle and middle-right regions,
and those of cattle in the upper-right region.

In Table 2, the accuracy of RB-TB is shown to be much
higher than that of TB-ONLY. This indeed demonstrates
the advantage of performing the two types of clustering,
which we propose in this paper. Moreover, a detailed ex-
amination discloses that the test trajectories misclassified
are all located in the regions where two classes overlap.

Another interesting observation is that the training time
of RB-TB is shorter than that of TB-ONLY, which means
region-based clustering can improve efficiency. In Figure
16, many trajectory partitions are covered by region-based

Figure 16: Features for the animal data (Red: Elk,
Blue: Deer, and Black: Cattle).

Figure 17: Features for the vessel data (Red: Point
Lobos and Blue: Point Sur).

clusters and are not provided to the next step of finding
trajectory-based clusters. Notice that trajectory-based clus-
tering is more expensive than region-based clustering since
the former takes account of movement patterns. Thus, the
more trajectory partitions are covered by region-based clus-
ters, the shorter the training time becomes.

7.2.2 Results for Vessel Navigation Data
Figure 17 shows the features generated using ε = [24, 34],

MinLns = 73 for Point Lobos and ε = [27, 37], MinLns =
76 for Point Sur. Twelve region-based and three trajectory-
based clusters are discovered. RB-TB achieves high accu-
racy and efficiency since a large proportion of trajectory
partitions are covered by region-based clusters. In Table
2, the accuracy of RB-TB is 98.2%, and the training time
of RB-TB is only a half of that of TB-ONLY. Besides, see
Appendix B for the result of sensitivity analysis.
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7.2.3 Results for Hurricane Track Data
Figure 18 shows the features generated using ε = [38, 48],

MinLns = 3 for category 2 and ε = [42, 52], MinLns = 4
for category 3. One region-based and 15 trajectory-based
clusters are discovered. Classification accuracy for the hur-
ricane track data set is relatively low (TB-ONLY = 65.4%
and RB-TB = 73.1%) in comparison with the previous two
experiments, because the trajectory of a hurricane is not
strongly correlated with its intensity. Nevertheless, two in-
teresting observations can be made from Figure 18. First, a
region-based cluster of category 3 appears in far seas, which
is natural because stronger hurricanes tend to go further
than weaker ones. Second, an obvious trajectory-based clus-
ter of category 3 appears in the lower region. The hurricanes
forming the cluster are those that entered the Gulf of Mex-
ico and thus stayed longer at sea before landfall than others.
They are likely to get strong because hurricanes gain energy
from the evaporation of warm ocean water.

Gulf of Mexico

Figure 18: Features for the hurricane data (Red:
Category 2 and Blue: Category 3).

7.3 Results for Synthetic Data
Due to space limitations, on classification with synthetic

data sets we present only two figures: one for accuracy and
one for efficiency.

Figure 19 shows classification accuracy as the ratio of
region-based clusters is varied when the numbers of training
and test trajectories are each 1000. To achieve this, the ra-
tio of the trajectories that are located within homogeneous
regions is varied from 0.1 to 0.6. Those trajectories are ran-
domly generated so that common movement patterns do not
exist. The result is exactly what we expect. The accuracy
of RB-TB is kept very high above 95% regardless of the
ratio, whereas that of TB-ONLY deteriorates as the ratio
increases. The high accuracy of RB-TB is achieved by the
collaboration between the two types of clustering.

Figure 20 shows training time as the number of trajecto-
ries is varied when the ratio of region-based clusters is 0.2.
Each trajectory has 100 points on average. RB-TB is shown
to be scalable since its training time increases almost lin-
early. The training time of TB-ONLY grows more rapidly
than that of RB-TB since trajectory-based clustering is more
expensive than region-based clustering. This result indicates
another benefit of the collaborative clustering.
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8. RELATED WORK
Trajectory classification has been widely used in the field

of pattern recognition such as speech, handwriting, signa-
ture, and gesture recognition. Most of proposed methods
employ the hidden Markov model (HMM) and use whole tra-
jectories for classification. Bashir et al. [1] have presented a
framework of classifying human motion trajectories, which
uses the HMM with a mixture of Gaussians. A few methods
partition trajectories, but the purpose of their partitioning is
just to approximate or smooth trajectories before using the
HMM[1, 6]. That is, sub-trajectories are not used as sepa-
rate features. Even though the HMM has been successfully
used for modeling this kind of trajectories, it is not suit-
able for modeling the trajectories in our applications since
the Markov property may not hold. For example, in a vessel
monitoring application, a certain class may be characterized
by whether vessels visit specific two harbors, and the paths
between them are not relevant. In this case, the probability
of a state between the two harbors is not dependent on that
of its immediately previous state.

Trajectory classification has been an active research topic
in the fields of bioengineering and video surveillance. Many
of proposed methods employ the neural network such as the
self-organizing map (SOM) and use whole trajectories for
classification. Sbalzarini et al. [16] have compared various
machine learning techniques used for classifying biological
motion trajectories. Owens and Hunter [15] have proposed
a method of detecting suspicious behaviors of pedestrians.
Here, each trajectory is encoded to a feature vector using
its summary information (e.g., the maximum speed). If a
trajectory is very complicated, some valuable information
could be lost due to this encoding.

Time-series classification is also related to trajectory clas-
sification. Time series, however, are very different from tra-
jectories in our applications: they are typically sequences of
real values rather than (x, y) points. Besides, time series are
compared as a whole for classification. The 1-nearest neigh-
bor classifier using dynamic time warping (DTW) is known
to be the best method [20, 21]. Many techniques have been

1091



developed to reduce the overhead of calculating the DTW
distance between two time series [21].

Moving-object anomaly detection is more closely related
to trajectory classification. Li et al. [14] have proposed an
anomaly detection method based on motifs (i.e., trajectory
features). Their method of extracting motifs, however, is
somewhat straightforward. A sliding window of length ω is
used to process trajectories, and then, all bounding boxes
are clustered to k representative patterns by the k-means
algorithm. In fact, their work is focused on incorporat-
ing other attributes of trajectories (e.g., date, time-of-day,
speed, or proximity to other objects such as landmarks)
into classification rather than just extracting motifs. Such
attributes are added to the feature space based on their dis-
criminative power. On the other hand, our work is focused
on extracting effective trajectory features. Their technique
can be adopted in our framework to integrate our trajectory
features with other kinds of features.

9. CONCLUSIONS
A novel and comprehensive feature generation framework

for trajectories has been proposed in this paper, which per-
forms hierarchical region-based and trajectory-based clus-
tering after trajectory partitioning. Its primary advantage
is the high classification accuracy owing to the collaboration
between the two types of clustering.

Extensive experiments have been conducted using real
and synthetic data sets. Our framework, by visual inspec-
tion, has been verified to generate high-quality region-based
and trajectory-based clusters. Most importantly, the clas-
sification results have demonstrated that performing both
types of clustering improves classification accuracy as well
as classification efficiency.

Overall, we believe that we have provided a new paradigm
in trajectory classification. Various real-world applications,
e.g., vessel classification, can benefit from our framework.
There are many challenging issues such as integration with
numerical-feature generation frameworks, and we are cur-
rently investigating into detailed issues as a further study.
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APPENDIX
A. TRAJECTORY PARTITIONING

The trajectory partitioning algorithm in the partition-
and-group framework [12] relies on the minimum descrip-
tion length (MDL) principle. A set of trajectory partitions
corresponds to H, and a trajectory to D. Thus, finding a
good partitioning translates to finding the best hypothesis
using the MDL principle. Figure 21 shows our formula-
tion of L(H) and L(D|H). L(H) is formulated by Eq. (10),
which represents the sum of the length of a trajectory par-
tition. L(D|H) is formulated by Eq. (11), which represents
the sum of the difference between a trajectory and its tra-
jectory partition. Only two components d⊥ and dθ of the
distance function in Section 5.2.1 are considered to measure
the difference.

L(H) =

pari−1∑
j=1

log2(len(pcj pcj+1)) (10)

L(D|H) =

pari−1∑
j=1

cj+1−1∑

k=cj

{ log2(d⊥(pcj pcj+1 , pkpk+1))+

log2(dθ(pcj pcj+1 , pkpk+1))}
(11)
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Figure 21: Formulation of the MDL cost.

The selected partitioning is the one that minimizes L(H)+
L(D|H). An approximate algorithm has been developed
since the cost of finding the exact solution is prohibitive.
The key idea of our approximation is to regard the set of
local optima as the global optimum. Let MDLpar(pi, pj)
denote the MDL cost (= L(H) + L(D|H)) of a trajectory
between pi and pj (i < j) when assuming that pi and pj are
only partitioning points. Let MDLnopar(pi, pj) denote the
MDL cost when assuming that there is no partitioning point
between pi and pj , i.e., when preserving the original trajec-
tory. Then, a local optimum is the longest trajectory parti-
tion pipj that satisfies MDLpar(pi, pk) ≤ MDLnopar(pi, pk)
for every k such that i < k ≤ j. The algorithm based on
this idea is shown in Figure 22.

B. SENSITIVITY ANALYSIS
Classification accuracy is measured for the vessel naviga-

tion data set while varying two parameter values: εvend (the
largest value in the ε-interval) and MinLns. Region-based
clustering is related to only MinLns, and trajectory-based
clustering to both parameters.

Figure 23 shows the results of RB-TB, and Figure 24 those
of TB-ONLY. In Figures 23(a) and 24(a), the parameter val-
ues for the former class are varied, with those for the latter
fixed to the values estimated by the heuristic. In Figures
23(b) and 24(b), the parameter values for the latter class
are varied, with those for the former fixed. The estimated
value of εvend is placed in the middle of the X-axis.

Algorithm ApproximateTrajectoryPartitioning

Input: A trajectory TRi = p1p2p3 · · · pj · · · pleni

Output: A set Pi of partitioning points
Algorithm:
01: Add p1 into the set Pi; /* the starting point */
02: startIndex := 1, length := 1;
03: while startIndex + length ≤ leni do
04: currIndex := startIndex + length;
05: costpar := MDLpar(pstartIndex, pcurrIndex);
06: costnopar := MDLnopar(pstartIndex, pcurrIndex);

/* Check if partitioning at the current point makes
the MDL cost larger than not partitioning */

07: if costpar > costnopar then
/* Partition at the previous point */

08: Add pcurrIndex−1 into the set Pi;
09: startIndex := currIndex− 1, length := 1;
10: else
11: length := length + 1;
12: Add pleni into the set Pi; /* the ending point */

Figure 22: An approximate algorithm for partition-
ing a trajectory [12].

A good sign from Figure 23 is that the classification ac-
curacy of RB-TB is shown to not be sensitive to parame-
ter values when region-based clusters cover a large propor-
tion of trajectory partitions as in Figure 17. Moreover, the
estimated value achieves the maximum accuracy. There-
fore, we expect that the region-based and trajectory-based
dual framework can reduce the burden of parameter tuning,
which is a very desirable property.
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Figure 23: Parameter sensitivity of RB-TB for the
vessel data.

In contrast, the classification accuracy of TB-ONLY is
shown to be rather sensitive to parameter values. However,
a reasonably large range of parameter values around the
estimated one provide classification accuracy very close to
the maximum. These results clearly show the effectiveness
of our heuristic.
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Figure 24: Parameter sensitivity of TB-ONLY for
the vessel data.

C. SEQUENCE CLASSIFICATION
One might argue that sequence classification can be ap-

plied after converting each trajectory into a sequence. More
specifically, the domain space is partitioned into a set of
grids, and a trajectory is represented using the labels of the
grids traversed by the trajectory. The sequence-conversion
method is intuitive and simple, but if a 2-dimensional trajec-
tory were converted into a sequence, the exact information
of location and direction could be lost. Furthermore, it is
hard to determine the optimal granularity of a grid.

In fact, the method proposed by Fraile and Maybank [6] is
based on sequence classification. A trajectory is first divided
into overlapping segments. For each segment, the trajectory
of a vehicle is approximated by a smooth function and then
assigned to one of four categories: ahead, left, right, or stop.
In this way, the list of segments is reduced to a string of
symbols drawn from the set {a, l, r, s}. The string of sym-
bols is classified using the HMM. As discussed in Section
1, their method might not be able to discover region and
sub-trajectory features, whereas TraClass can.
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