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ABSTRACT tary and conceptually different approach, which we consider in this

Estimates of predicate selectivities by database query optimizerspapﬁr' isl to _id_entifyobust plansth?]t zlalre re“Ia_tiv?Iy Iess_ sensitive tﬁ
often differ significantly from those actually encountered during S#C se e?tl\éltygrro.rs.. In alnuts he 0 gl(;n or re5|stapc|e, rat gr
query execution, leading to poor plan choices and inflated responset an cure”, by identifying plans that provi e_c_omparatlvey goo
times. In this paper, we investigate mitigating this problem by perf_ormance over '?‘rge regions of the.selectlylty space. Such plan
replacing selectivity error-sensitive plan choices with alternative crom?s ar_el_ especially |rr]nportant for |n|dust|r|al _worllfloads where
plans that provide robust performance. Our approach is based on9 obal stability is as much a concemn as joca optimality [18].
the recent observation that even the complex and dense “plan di- Qver.the last decade, avariety of strategies have been proposed
agrams” associated with industrial-strength optimizers can be ef- to identify ro_bus_t plans_, mc_:ludlng the L_east Expected Cost [6, 8],
ficiently reduced to “anorexic” equivalents featuring only a few Robu_st Cardlnal_lty Estimation [2] and Rio [3, 4]_approaches. '_I'hes_e
plans, without materially impacting query processing quality. techmques provide novel and elegant formulat_lon_s (summarized in
Extensive experimentation with a rich set of TPC-H and TPC- Sec_tlon 6), but haye to _contend_ \.N'th the folk_)wmg ISSUes. .
DS-based query templates in a variety of database environments Elrstly, they arantrusiverequiring, to varying degre.es,. modlfl-
indicate that plan diagram reduction typically retains plans that are cations to the optimizer engine. Secondly, they regsjrecialized

substantially resistant to selectivity errors on the base relations. Information about the workload and/or the system which may not
However, it can sometimes also be severely counter-productive,

always be easy to obtain or model. Thirdly, their query capabili-
with the replacements performing much worse. We address this

ties may bdimited compared to the original optimizer — e.g., only
problem through a generalized mathematical characterization of ShPJ quehrles with _keyl-based joins werel considered in [2, 3]. FUT_I
plan cost behavior over the parameter space, which lends itself toth€" [3] has been implemented and evaluated on a non-commercia
efficient criteria of when it is safe to reduce. Our strategies are fully

optimizer. Finally and most importantly, as explained in Section 6,
non-invasive and have been implemented in the Picasso optimizer’0N€ Of them provide, on an individugliery basis, quantitative
visualization tool.

guaranteeson the quality of their final plan choice relative to the
original (unmodified) optimizer’s selection. That is, they “cater to
1. INTRODUCTION the crowd, not individuals”.

The query execution plan choices made by database engines of-The SEER AI_gonthm. In t_h's paper, we presenSEER .
ten turn out to be poor in practice because the optimizer's selec- (S_eIect|V|ty-Est|mate-Error-Res_lstance), a new strate_gy for identi-
tivity estimates are significantly in error with respect to the actual fy'“g robust plans that can be dlr_e ctly used on operational database
values encountered during query execution. Such errors, which can€"Vironments. More concretely, it
even be in orders of magnitude in real database environments [19],
arise due to a variety of reasons [24], including outdated statistics,
attribute-value independence assumptions and coarse summaries.

e Treats the optimizer as a black-box and therefore is inher-
ently (a) completely non-intrusive, and (b) capable of han-
dling whatever SQL is supported by the system. Further, it

Robust Plans.To address this problem, an obvious approach is to does not expect to have any additional information beyond

improve the quality of the statistical meta-data, for which several that provided by the engine interface.

techniques have been presented in the literature ranging from im-

proved summary structures [1] to feedback-based adjustments [24]

to on-the-fly reoptimization of queries [16, 19, 3]. A complemen-

e Provides plan performance guarantees thatiraatvidually
applicable to queries in the selectivity space.

e Considers only theparametric optimal set of plans
(POSP) [13] as replacement candidates and therefore deliv-
ers, for errors that lie within the replacement plan’s optimal-
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select ayear, sum(case when nation = 'BRAZIL' then volume else 0 end) / runtim(_e tum_OUt to be Signiﬁcan_ﬂy different, say (50%,40%)7
sum(volume) _ _ executing withP70, whose cost increases steeply with selec-
from (select YEAR(mrderdate)_asgear, Lextendedprice * (1 -_biscount) ag tivity, would be disastrous. In contrast, this error would have
volume, n2.oname as nation . . . .
o had no impact with the reduced plan diagram of Figure 2(b),
from part, supplier, lineitem, orders, customer, . h | | hoi 0% 10 .
nation n1, nation n2, region sinceP1, the replacement plan choice at (14%,1%), remains
where ppartgey; lpartdkey antli( suppkey =lkSUDpkeg andfbrtli(erkey the preferred plan for a large range of higher values, includ-
= o0-orderkey an aust| ey = ccustl ey an mation ey = H 0, 0, H H _ti :
nl.nnationkey and nl.megionkey = rregionkey and sationkey| ing (50%,40%). Quantlta’.“velyj atthe run tlm.e location, plan
= n2.nnationkey andname = 'AMERICA and ptype = 'ECON- P1 has a cost of 135, while70’s cost of 402 is abouhree
OMY ANODIZED STEEL and timesmore expensive.
s_acctbal :variesand |_extendedprice :varies
) as allnations . .
group by ayear It is easy to see, as in the above example, that the replacement
order by ayear plan will, by definition, be a robust choice for errors that lie within
its optimality region, i.e. itSendo-optimal” region. This is the ad-
Figure 1: Example Query Template: QT8 vantage, mentioned earlier, of considering replacements only from

the POSP set of plans. The obvious question then is whether the
sizes of these regions are typically large enough to materially im-
prove the system performance.
base relationssimilar to [1]. However, since these base errors are A second, and even more important question, is: What if the er-
often the source of poor plan choices due to the multiplier effect as rors are such that the run-time locations &®ro-optimal” w.r.t.
they progress up the plan-tree [15], minimizing their impact could the replacement plan? For example, if the run-time location hap-
be of significant value in practical environments. Further, since pens to be at (80%,90%), which is outside the optimality region of
SEERis a purely compile-time approach, it can be used in conjunc- p1? In this situation, nothing can be said upfront — the replacement
tion with run-time techniques such as adaptive query processing [9] could be much better, similar or much worse than the original plan.
for addressing selectivity errors in the higher nodes of the plan tree. Therefore, ideally speaking, we would like to have a mechanism

Anorexic Reduction of Plan Diagrams. SEER is based on the ~ through which one could assess whether a replacemefabislly
anorexic reduction of plan diagrams notion that was recently ~ Safeover the entire parameter space.

presented and analyzed in [11]. Specifically, a “plan diagram” [22] Contributions. In this paper, we address the above issues from
is a color-coded pictorial enumeration of the plan choices of the hoth theoretical and empirical perspectives. We have conducted
optimizer for a parametrized query template over the relational se- extensive experimentation on a leading commercial optimizer with
lectivity space. That s, it visually captures the POSP geometry. 3 rich suite of multi-dimensional TPC-H and TPC-DS based query
For example, consider QT8, the parametrized 2D query tem- templates operating on a variety of logical and physical database
plate shown in Figure 1, based on Query 8 of TPC-H. Selectivity designs. Our results demonstrate thiain diagram reduction typi-
variations on thesUPPLIERanNdLINEITEM relations are specified  cally produces plan choices that substantially curtail the adverse
through thes_acctbal :varies and |- extendedprice :varies pred- effects of selectivity estimation errorsTherefore, it clearly has
icates, respectively. The associated plan diagram for QT8 is shownpotential to improve performance in general, for both the endo-
in Figure 2(a), produced with the Picasso optimizer visualization optimal and exo-optimal regions.
tool [21] on a popular commercial database engine. However, we have also encountered occasional situations where
As evident from Figure 2(2) plan diagrams can be extremely  a replacement plan performs much worse in its exo-optimal region
complex and dense, with a large number of plans covering the than the original optimizer choice, highlighting the need to estab-
space — several such instances spanning a representative set gfsh an efficient criterion of when a specific swallowing is globally
benchmark-based query templates on industrial-strength optimiz-safe. To achieve this objective, we present a generalized mathe-
ers are available at [21]. However, these dense diagrams can typi-matical model of the behavior of plan cost functions over the se-
cally be “reduced” to much simpler pictures featuring significantly |ectivity space. The model, although simple, is sufficient to capture
fewer plans,without materially degrading the processing quality the cost behavior of all plans that have arisen from our query tem-
of any individual query. For example in Figure 2(a), if users are plates. Using this model, we then prove that checks on only the
willing to tolerate a minor cost increasg)(of at most 10% forany  perimeterof the selectivity space are sufficient to decide the safety
query point in the diagram, relative to its original cost, the picture of reduction over the entire space. These checks involve the cost-
could be reduced to Figure 2(b), where only 7 plans remain — that ing of “foreign plans”, that is, of costing plans in their exo-optimal
is, most of the original plans have been “completely swallowed” by regions, a feature that has become available in the current versions
their siblings, leading to a highly reduced plan cardinality. of several industrial-strength optimizers, including DB2[28] (Op-

A detailed study of the plan diagram reduction problem was pre- timization Profile), SQL Server[29] (XML Plan) and Sybase[30]
sented in [11], and it was shown that a cost increase threshold of (Apstract Plan).

only 20 percents usually amply sufficient to bring down the abso-  Apart from providing reduction safety, foreign-plan costing is
lute number of plans in the final reduced picturevithin or around additionally leveraged to both (a) enhance the reduction levels of
ten. In short, that complex plan diagrams can be made “anorexic” the plan diagram, and (b) improve the complexity characteristics of
while retaining acceptable query processing performance. the reduction process, as compared to our earlier CostGreedy re-

duction algorithm [11]. Note that the increased diagram reduction
automatically impliesarger within-\-of-optimal region$or the re-
tained plans, upfront guaranteeing more robustness.

In summary, we present in this paper SEER, an efficient, effec-
tive and safe mechanism for identifying robust plans that are resis-
1The figures in this paper should ideally be viewed from a color tant, as compared to the optimizer’s original choices, to errors in
copy, as the grayscale version may not clearly register the featuresthe base relation selectivity estimates. Through a detailed study

Example. We now show an example of how anorexic reduction
helps to identify selectivity-error-resistant plans: In Fig-
ure 2(a), estimated selectivities of around (14%,1%) lead to
a choice of plarP70. However, if the actual selectivities at
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Figure 2: Sample Plan Diagram and Reduced Plan Diagram (QT8)

of benchmark-based query templates on commercial optimizers,follows [11]: Given an input plan diagram, and a maximum-
we empirically demonstrate that SEER provides robust good per- cost-increase threshokl(A > 0), find a reduced plan diagra®
formance for industrial-strength database environments. We alsowith minimum cardinalitysuch that for every pla#; in P,
present LiteSEER, a (complexity-wise) optimally efficient heuris- 1. EitherP; € R, or
tic algorithm, which delivers comparable robustness to that offered
by SEER. Both SEER and LiteSEER have been implementedinthe 2. V ¢ € P, the assigned replacement plBn € R guarantees
freely-available Picasso optimizer visualization tool [21]. ci(q) <(1+N)

ci(q) ~
That is, find the maximum possible subset of the planB ihat
can be completely “swallowed” by their sibling plans in the POSP

Organization. The remainder of this paper is organized as follows:
In Section 2, we present the overall problem background, frame-
work and motivation. The plan cost models and the checks for . o .
replacement safety are discussed in Section 3. The design of the>el: A point worth reemphasizing here is that the threshold con-
SEER reduction algorithm and its analysis are presented in Sec-Straint applies on amdividual querybasis. For example, setting
tion 4. The LiteSEER variant is introduced in Section 4.3. Our A = 10% stipulates that the cost ehchquery point in the reduced
experimental framework and performance results are highlighted di2gram is withinl. 1 times its original value.

in Section 5. Related work is overviewed in Section 6. Finally, _ It was proved in [11] that the above problem is NP-Hard.
in Section 7, we summarize our conclusions and outline future re- | nerefore, an efficient heuristic-based online algorithm, called
search avenues. CostGreedy, was proposed and shown to deliver near-optimal
“anorexic” levels of reduction, wherein the plan cardinality of the
reduced diagram usually came down to around 10 or less fer a
2. PROBLEM _F_RAM EWOR_K o ~ threshold of only 20%. In a nutshell, complex plan diagrams can
For ease of exposition, we assume in the following discussion pe easily made very simple without materially affecting the query
that the SQL query template is 2-dimensional in its selectivity vari- processing quality.

ations — the extension to higher dimensions is straightforward. L. . .
2.2 Selectivity Estimation Errors

2.1 Plan and Reduced Plan Dlagrams Consider a specific query poigt, whose optimizer-estimated

From a query templat®, a plan diagranP is produced on a  |ocation inS is (z.,y.). Denote the optimizers optimal plan
2-dimensional0, 1] selectivity spaces by making repeated calls  choice at point. by P,.. Due to errors in the selectivity estimates,
to the optimizer. The selectivity space is represented by a grid of theactuallocation ofg. could be different at execution-time — de-
points where each poig{x, y) corresponds to a unique query with  note this location by, (., v.), and the optimizer's optimal plan
selectivitiesz, y in the X and Y dimensions, respectively. Eagch choice afg, by P,.. Assume thaP,. has been swallowed by a sib-
is associated with an optimal (as determined by the optimizer) plan |ing plan during the reduction process and denote the replacement
P;, and a cost;(q) representing the estimated effort to exeagte  plan assigned tq. in R by P... Finally, extend the definition of
with plan P;. Corresponding to each plaf is a unique colot;, query cost (which applied to the optimal plan) to hayg) denote
which is used to color all the query points that are assigndd to the cost of an arbitrary POSP pla&h at an arbitrary query poirtt
As mentioned earlier, the plan diagram is essentially a visual char-in S.
acterization of the parametric optimal set of plans (POSP) [13]. We  with respect taR, the actual query poing, will be located in
useP andS interchangeably in the remainder of the paper based one of the following disjoint regions aP,.. that together coves:

on the context. . . . . .
Endo-optimal region of P,.: Here,q, is located in the optimal-

Plan Diagram Reduction Problem. This problem is defined as ity region of the replacement plaR.., which also implies
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Figure 3: Beneficial Impact of Plan Replacement Figure 4: Adverse Impact of Plan Replacement
that Pre = Poe. Sincecre(qa) = coa(qa), it follows that the error since the performancef. is close to that of théocally
the cost ofPre at g, cre(qa) < coe(qa) (by definition of optimal planP,, throughout the space, although the endo-optimal
a cost-based optimizer). Therefore, improved resistance to region of P.. constitutes only a very small fraction of this space.
selectivity errors is alwayguaranteedn this region. To demonstrate that the benefits anticipated from the compile-

) ) . ) time analysis do translate to corresponding improvemantsin-
Swallow-region of P..: Here, g, is located in the region “swal-  {ime we show in Figure 3(b) the query response times (again mea-
lowed” by P, durlng the reduction process. Due to the ¢ red on dog scale) ofP,. (P45), P, (P17) andP,, at the same

A-threshold constraint, we are assured that(q.) < ga locations. It is vividly clear in this picture that huge savings in
(1 4+ A)coa(ga), and by implication that:.(q.) < (1 + processing time are obtained by using the replacement plan instead
A)coc(ga). Now, there are two possibilities: H.c(q.) < of the optimizer's original choice, and that the replacement’s per-
coe(ga), then the replacement plan is again guaranteed to im- ¢ormance is virtually indistinguishable from the optimal choices.
prove the resistance to selectivity errors. On the other hand, While performance improvements are usually the order of the
if Coe(ga) < cre(ga) < (1 + A)coe(qa), the replacementis  gay there are occasional situations wherBin performs worse
guaranteed to not cause any real harm, given the small valuesnan p,. atq,. A particularly egregious example, arising from the
of A that we consider in this paper. sameplan diagram described above, is shown in Figure 4(a) for
ge = (0.03,0.14) — we see here that it is now the replacement plan
P, (P34), which isorders-of-magnitudevorse thanP,. (P26) in
the presence of selectivity errors. This compile-time assessment is
corroborated in Figure 4(b) which shows the corresponding query
response times.

Exo-optimal region of P,..: Here, q, is located outside both the
endo-optimal and swallow-regions Bf.. At such locations,
we cannot apriori predicP,.’s behavior, and therefore the
replacement may not always be a good choice — in principle,
it could bearbitrarily worse. Therefore, we would like to
ensure that even if the replacement does not provide any im- 2.4 Robust Reduction

provement, it is at least guaranteed to not do any harm. That E he ab di ion. itis cl h d h
is, theexo-optimal region should have the same performance rom the above discussion, it IS c eart .at we need to ensure that
only safe replacements are permitted. This means that replacement

guarantees as the swallow-region. We show in Section 3 how ) . A -
this objective can be efficiently achieved through simple but should be permitted only if th& threshold criterion is satisfied not

powerful checks to decide when replacement is advisable. just at the estimated point, bat all locationsin the selectivity
space. At the same time, it is important to ensure that the safety

2.3 Motivational Scenarios check is not unnecessarily conservative, preventing most plan re-
placements, and in the process losing all the error-resistance ben-
efits. Therefore, the overall goal is to maximize plan diagram re-
duction without violating safety considerations. More formally, our
problem formulation is:

Given the above framework, we now present example scenarios
to motivate (a) the error-resistance utility of plan diagram reduc-
tion, and (b) the need for safety in this process.

Ouir first scenario, typical of that seen in most of our experiments,
demonstrates how the replacement pfap can provide extremely  Robust Reduction Problem.Given an input plan diagram, and
substantial improvementiroughout the selectivity space. Specif- a maximum cost-increase-threshol@\ > 0), find a reduced plan
ically, on a vanilla PC with a popular commercial optimizer, we diagramR with minimum plan cardinalituch that for every plan
generated a plan diagram for a query template based on TPC-H Q5,P; in P,
with selectivity variations on theusTOMER and SUPPLIERrela-
tions, and carried out reduction with= 10%. On this diagram, 1. PeR,or
considerg. = (0.36,0.05) and a sample set of actual locations

¢ o> _ ' 2. VY q € P;, the assigned replacement plBn € R guarantees
(¢.) — for instance, along the principal diagonal®fFor this sce- a g P il g

/
nario, the costs of,. (P45),P.. (P17) andP,, (the optimal plan V query points;’ € P, @ <(1+X
at eachy, location) are shown in Figure 3(a) — note that the costs ci(q')
are measured onlag scale. Thatis, find the minimum-sized error-resistant “cover” of plans that
It is clear from Figure 3(a) that the replacement plan pro- reduces the plan diagramwithout increasing the cost of any reas-
vides orders-of-magnitudédenefit w.r.t. P,.. In fact, the error- signed query point by more than the cost increase threshimd,

resistance is to the extent that it virtually provides “immunity” to  spective of the actual location of the query at run-time.
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It is easy to see that the Robust Reduction problem is NP-Hard, Independent Nodes: These are all the remaining nodes in the tree
just like the standard Plan Diagram Reduction problem, and there- that do not belong to either of the above two categories.
fore we present a heuristic-based algorithm later in Section 4. But,
prior to that, we show in the following section how replacement 3 2 Node Cost Models

safety can be checked efficiently. We now enumerate the cost models that can be associated with

the above node categories on the 2-D selectivity sgacaur for-
3. ENSURING ROBUST REDUCTION mulation is based on detailed observations of cost behavior of in-
To find an error-resistant cover of the plan diagram, we need to Id'v'.dual (r)]peratprzlon concwjmermal da:iabaze optlmlhzersf. In.the |f0|'
evaluate the behavior of each replacement gtan w.r.t. its swal- owing, .t. € variables: andy are used to denote the (fractional)
lowing targetP,., atall pointsin S. This requires, in principle, selectivities on the respecive dimensions.
finding the costs oP,. and all potentialP,.. at every point in the
diagram. Of course?,. and ... need not be costed in their respec-  Independent Nodes: Since these nodes do not have a Selectivity

tive endo-optimalregions, since these values are already known Node in their sub-tree, variations inandy do not change
through the plan diagram production process. The remaieog their inputs, and consequently their outputs. Therefore, for a
optimalcosts can be obtained using tRereign-Plan-Costindea- given plan, the costs at these nodes remain the same through-
ture, hereafter referred to &°C, that is now supported in several outS.

industrial-strength optimizers, as mentioned in the Introduction.
While the above solution is conceptually feasible, it is prac- Selectivity Nodes: The input cardinalities for these nodes will be

tically unviable due to its enormous computational overheads. constant (equal to the corresponding base relation’s cardi-
Plan-costing is certainly cheaper than the optimizer’s standard nality n) while the output cardinality is directly dependent
optimal-plan-searching process [14], but the overall overhead is on the selectivity value. Therefore, the cost behavior can be
still O(nm) wheren andm are the number of plans and the num- captured by the simple linear model involving coefficients
ber of points, respectively, iR. Typical values of. range from the andas, shown in Table 1. For exampl&ble-Scanwvill have
several tens to several hundreds, whilds at least in thousands, a1 = 0, while Index-Scanare likely to have non-zero values
making an exhaustive approach impractical. for both constants.

The above situation motivates us to study whether it is possible,
based on using FPC at onlyfew select locationgo infer the be-  pependent Unary Nodes:The input cardinalities for these nodes
havior in the rest of the space. In the remainder of this section, will be a function ofz and/ory, and the associated fam-
we describe our strategy for making such an inference. We begin ily of cost models is as shown in Table 1. For operators
by designing a parametrized mathematical model for characterizing such asAggregates Arithmetic ExpressionsScalar func-
plan cost behavior. Our model is grossly simplified in comparison tions, etc. the simple linear model will apply, whereas the
to those used in real optimizers, which are much more complex [20, logarithmic model would apply to operators suctsastand
19]. However, what we have found in practice (with several hun- Group Bythat require multiple passes over the data.

dred distinct plans arising out of TPC-H and TPC-DS-based query
templates on industrial optimizers) is that with appropriate settings
of the parameters, our simple model is quite accurate, both behav-
iorally and quantitatively. The reasons are that (a) in our prob-
lem space all parameters, barring the selectivitiescanstant, re-
sulting in complex models degenerating to comparatively simple

Dependent Binary Nodes: These are the nodes that represent bi-
nary set operators such asin, Union, Minus, etc. The
different types of input possibilities and the associated cost
models are shown in Table 1.

equivalents; (b) we arétting the model to the observed cost be- Note that we deliberately do not consider the case whetle
haviors, rather than trying tpredict them; and (c) our modeling the inputs to the binary node are functionsedfor y or zy).

is at the level of entire plans, aggregating the effects of several in- This is because it is easy to prove [12] that such a situation is
dividual operators, thereby reducing the variability. Moreover, the not possible unless operators h#ieary outputs- we have
quantitative accuracy is a bonus — it is not really required since only not encountered any such operators in our study.

behavioralaccuracy is necessary for our scheme to work.
3.2.1 Cost Model of a Complete Plan

The cost function of the entire plan is the aggregate sum of the
costs of the individual nodes. Considering all possible cost models

a node can have, we can conclude that the overall cost model of a
plan for a 2D selectivity space is of the form

3.1 Modeling Plan Cost Functions

For ease of presentation, we will initially assume that our objec-
tive is to model the cost behavior of plans with respect to a 2-D se-
lectivity space (e.g. Figure 2(a)) corresponding to distinct relations
R, andR,. The extension to higher dimensions is straightforward
and given in Appendix B. Cost(z,y) =a1x + a2y + aszy + aszlogz + asylogy+

In current optimizers, the operators in the execution plan are all
typically eitherunary or binary with regard to their inputs. There-
fore, given a specific plan operator tree we can define the following whereay, az, as, a4, as, as, ar are coefficients, and, y represent
types of nodes: the selectivities o, and R, respectively.

Modeling a specific plan requires suitably choosing the seven
Selectivity Nodes: These are the unary nodes that implement the coefficients, and this is achieved through standard surface-fitting
selection operations on relatiofs. andR,,. techniques, described in Section 5. The extension of Equation 1 to
a generatl-dimensional space is straightforward (Appendix B.1),
Dependent Nodes:These are the nodes in the tree that have at with the number of parameters in the cost model béifg* — 1)
least one Selectivity Node in the sub-tree below them. — for example, 3D cost functions are modeled using 15 parameters.

agzrylogxy + ar (1)
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| Node Type [ Input Cardinalities | Cost Model |
| Selectivity Node (o= =) | n [ ainx + as |
ainix + as
nix

ainizlognix + az

D ndant Unary N
ependant Unary Node arniry + az

nic
1Ty ainixylognizy + az
nT N2 a1m1x + aznz + aznineT + aq
Dependant Binary Nodeg nixy no a1niTy + az2ne + asninery + aq
nix N2y a1MN1T + a2N2yY + a3NiN2TY + a4

Table 1: Cost Models for Various Node Types

3.3 Replacement Safety Conditions Left Right Top Bottom
) ) . Boundary | Boundary Boundary | Boundary
For the 2D scenario, using the abaioefficient cost model, SC1 Safe Safe 7 (2) >0 | 7 (z) >0
our goal now is to come up with an efficient mechanism to assess,"SC2 || f7(z1) < 0 Safe 77 (z) <0 7 (z) <0
given an optimal plarP,., candidate replacement pldh. and a “& Safe - ot
cost-increase threshold whether it would be safe from global SC3 Safe folxa) >0 | fir(@x) <0 ] f (z) <0
perspective to have,. swallow P,.. & Safe
Let the cost functions foP,. andP,. be SCA| fi,w>0] fi,(y) >0 Safe Safe
fre(z,y) = a1x+asy+aszytaszlog z+asy log y+aszy log zy+ar SC5 1/0/1 (y) <0 gz (y) <0 fﬂ,vé‘y%)a% 0 Safe
2
and ¥ ISC| W <0 [ FLm <0 | Sale | A{) <0
& Safe

Joe(,y) = biz+bay+bszy+bazlogxz+bsylogy+berylog zy+br

. . - @) Table 2: Safety Satisfaction Conditions
respectively. Now consider thfsafety function

f(:r:,y) = fre = (L4 A) foe (4)

which captures the differences between the costB.efand a\-
inflated version ofP,. in the selectivity space. All points where
f(z,y) < 0 are referred to aSafePointsvhereas points that have
f(z,y) > 0 are calledVviolatingPoints For a replacement to be
globally safe, there should be no ViolatingPoint anywhere in the
selectivity space. The test criteria of Theorem 1 are utilized for determining reduc-

In the following, we will use LR-Boundaries to collectively de-  tion safety in the SafetyCheck algorithm, described next. A related
note the left and right boundaries of the selectivity space, and TB- point to note here is that these checks @raservativen that it is
Boundaries to collectively denote the top and bottom boundaries of Possible to have global safety even if none of the conditions are met
the space. —i.e. the test is sufficient, but not necessary.

For a specific value of;, the safety functionf(z,y) can be
rewritten as

LEMMA 2 (SLOPEBEHAVIOR). If the slope of the safety
function, f, (z), is non-decreasing (resp. decreasing) along the
line-segmentgy = y1 andy = -, then it is non-decreasing (resp.
decreasing) for all line segments in the interyal , y2). A similar
result holds forf,,(y).

4. THE SEER ALGORITHM

In this section, we first describe the safety checking procedure,
) o o ) which given a plan-pair (&£, P;..), responds whether the replace-
for appropriate coefficientg:, g2, gs. Similarly, we can define  entofp,, by P,. is globally safe throughout the selectivity space
f=(y). With this terminology, the following theorem provides Us g e then present and analyze the SEER algorithm which uses this
with condltlons_ for checkln_g whether the selectivity space is safe procedure to perform error-resistant plan diagram reduction.
for the plan-pair (£, P:c) with regard to replacement. In the following, we will assume that the selectivity spakes
represented by a grié, with m = r x r points, i.e. the grid
resolution in each dimensionis

4.1 Safety Checking

To implement safe reduction in a 2-D plan diagram, we need to
The proof of the above theorem uses the following two lemmas be able to check for the satisfaction of any of the conditions (SC1
— the first provides us with a condition that is sufficient to ensure through SC6) stipulated in Theorem 1. A straightforward way to
safety of all points on the straight line segment joining a pair of achieve this is the followin@erimeter Tesprocedure:
safe points, while the second describes the behavior of the slope of
the safety function. We defer the proofs to Appendix A.

fu(@)=g1 xx+ g2 xxzlogx + g3

THEOREM 1. For a plan-pair (R.,P-.) and a selectivity space
S with corners[(z1, y1), (z1,y2), (z2,y2), (z2,y1)], the replace-
ment is safe (i.e., within-threshold) inS if any one of the condi-
tions, SC1 through SC6, given in Table 2 is satisfied.

Perimeter Test. First compute the safety function at all points
on theperimeterof G — this is obtained through the foreign-plan-
costing (FPC) feature. Then, compute the slope behavior (non-
of safe points(z1,y.) and (z2,y.) with z2 > z1, the straight decreasing or decreasing) along all the grid lines — this is achieved
line joining the two points is safe if the slogie (x) is either (i) by evaluating the slopes at the matching end-points on the perime-
monotonically non-decreasing, OR (ii) monotonically decreasing ter and comparing the values. The slope at a perimeter point is
with f,_(z1) < 0or f,; (w2) > 0. A similar result holds whem approximated by computing the value of the safety function at its
is fixed. immediate internal neighbor —i.e., along the “inner perimeter”, and

LEMMA 1 (LINE SAFETY). Given afixed; = y,, and a pair
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evaluating the slope of the line segment joining these two points.
Finally, use these results to verify whether any of the 6 safety con-
ditions are satisfied.

In the Perimeter test, the number of FPC operatiofsd§r—1)
for the perimeter (the is due to having to compute botfi..
and f,.), while the computation of the slopes takes an additional
2 % 4(r — 3) costings of the inner perimeter, leading to a total of
approximatelyl6r. Note that this is much less than the? FPC
operations required by a brute-force approach of costing both plans|
at all points in the diagram. For example, with= 100, the over-
head is brought down by over an order of magnitude.

An obvious minor improvement that could be carried out on the

167 overhead is to perform the inner perimeter costings only when

SEER (Plan DiagramP, Threshold \)
1.

Create a Set-Cover Instande = (U,S), where S
{S1,52,...,5n}, U = {1,2,...,,n}, corresponding to the
plans in the original plan diagrafm

. Seteactp; = {i},Vi=1..n

3. For each pair of plangP;, P;) do
if (WEDGE_TEST (R, P;,)\) == Safe) then
Si =S U{s}
else if (PERIMETERTEST (R, P;,)\) == Safe) then
S; = 8 U{4}

. Solve the Set-Cover instanfeising the Greedy Set-Cover alg
rithm to identify the plans retained R.

conditions SC1 and SC4 are violated. In this case, only one of SC2
or SC3 (resp. SC5 or SC6) can be valid. Hence, we need to perform
FPC operations only dtvo boundaries of the inner perimeter, one
along each dimension. This reduces the FPC overhe&2ito

Wedge Test. We now present a powerful optimization, called

Figure 5: The SEER Reduction Algorithm

very favorably with those of the CostGreedy reduction algorithm

[11], which has time complexit¢) (nm) and approximation factor

Wedge Test, that allows conditions SC1 and SC4 to be checkedof O(logm), since typicallyn << m.

with a constantnumber of FPC, specificallg4, irrespective of

the resolution. This is based on the observation that the slope of
the safety function is a monotonic function (Equation 5 in Ap-
pendix A). Thus, by comparing the slopes at the corners of the

The extension of the SEER algorithm to higher dimensions is
provided in Appendix B.2.

4.3 LiteSEER: A Fast Variant

space, we can infer the slope behaviour of the safety function along The SEER design makes conscious efforts, as described above,
its boundaries. Applying Lemma 1, the safety of the boundaries to minimize the computational overheads, but these overheads do
can also be inferred. Hence, it is sufficient to perform FPC only at grow with increasing dimensionality of the query template. There-
each corner of the space and its two adjacent points on the perimefore, we have also designed and evaluated LiteSEER, a light-weight
ter boundaries — that is, at the “corner wedges”. heuristic-based algorithm that trades SEER’s safety guarantee for
Based on the above observations, we employ a two-stage pro-providing rapid running-times. In LiteSEER, a replacement is sim-
cess of safety-checking — in the first stage, use the extremely cheamply assumed to be safe &l the corner points of the selectivity
Wedge Test check, and only if it fails, use the more expensive space are safe. The intuition behind this observation is that when
Perimeter Test to verify replacement safety. two points are safe, then the straight line joining them is also usu-
Note that once a plan is costed at a given location, we store this ally safe (see Appendix A for the justification). This is corrobo-
cost in a cache for reuse later, ensuring no redundant computationsrated by our experimental results (Section 5) which indicate that the
heuristic provides almost the same safety as that obtained through
the strict-checking criteria of SEER.
Given ad-dimensional plan diagrar® with n plans, the Lite-
SEER algorithm only computes the safety function at2fieor-
ners of the associated selectivity space. Itimmediately follows that
its overall complexity ig2(2%n+n?). Since, in most practical sce-
narios of interes2? << n (e.g. inthe 2-D case@? = 4, whilen
is typically in the several tens, if not more), the effective complex-
ity turns out to beO(n?). Note that, in principle, in the absence
of any apriori information, this is theainimum workequired to be
executed byany reduction algorithm. Therefore, LiteSEER is an

4.2 Plan Diagram Reduction

We now show how the above safety checks are integrated into the
SEER procedure for plan diagram reduction. Note that SEER'’s de-
sign is completely different from that of CostGreedy [11] because
now reduction is permitted only if it satisfies a safety criterion that
is applicable ovefs, whereas CostGreedy'’s attention is limited to
only P,.'s endo-optimal region.

The complete SEER algorithm is shown in Figure 5. Here, a
Set-Cover instance is first created from the input plan diageam
Then the two-stage global safety checking procedure of the Wedge ™"~ . . . .
Test, followed by the Perimeter Test, is implemented to evaluate optimal algorithm (complexity-wise) w.r.t. efficiency.
replacement possibilities across each pair of planB,iand the [Note: A generalized variant of SEER called PartialSEER, which
Set-Cover instance is updated accordingly. Finally, the resulting permits guaranteed safety to be limited to a user-defined fractional
instance is solved using the standard greedy techniques [23, 10] toarea ofS, is outlined in Appendix D.]
obtain the reduced plan diagrd®n

Analysis. As discussed earlier, each replacement assessment of a5 EXPERIMENTAL RESULTS

plan-pair (Be,Pr.) requires atmosO(r) FPCs to be performed. The testbed used in our experiments is the Picasso optimizer
There areO(n?) such comparisons performed by the algorithm. visualization tool [21], executing on a Sun Ultra 20 workstation
However, since we cache the already obtained costs, the amortizedequipped with an Opteron Dual Core 2.5GHz processor, 4 GB of
number of FPC to be performed per plardiér). Thus, for gridG main memory and 720 GB of hard disk, running the Windows XP
with m = r x r points, the comparison of all plan pairs requires Pro operating system. The experiments were conducted over plan
only O(ny/m + n?) time. Solving the Set-Cover problem using diagrams produced from a variety of two and three-dimensional
the Greedy Set-Cover algorithm [23, 10] requi€¥%:*) time. This TPC-H andTPC-DS-based query templates operating on the Opt-
results in arO(n+/m +n?) reduction algorithm. Further, since the Com commercial optimizer. The TPC-H database containis
set cover instance created h&$ = n, the approximation factor of formly distributed data of size 1GB, while the TPC-DS database
this reduction algorithm i©(log n). hostsskeweddata that occupies 100GB. The cost-increase thresh-
The above bounds and approximation factors for SEER compareold used in all the plan diagram reductions\is= 20%.
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Physical Design. Following a methodology similar to that advo- Dimension ';‘fu 2}2?,@ RMMsaéirr:)%A,) RM@VE:?(?;%)

cated in [5], we considered three different physical design con- 2D (TPC-H) 514 1400 182

figurations in our studyPrimaryKey (PK), Allindex (Al), and 2D (TPC-DS) 168 7.31 2.87

Tunedindex (TI). PK represents the default physical design of 3D (TPC-H) 28 6.98 1.92
3D (TPC-DS) 100 2.71 1.58

our database engine, wherein a clustered index is created on
each primary key. Al, on the other hand, represents an “index-
rich” situation wherein (single-column) indices are available on all
guery-related schema attributes. Finally, Tl represents the index
environment obtained by implementing the recommendations of featuring in the plan diagrams arising from our suite of multi-
the database engine’s index tuning advisor (which include multi- dimensional query templates. The consistently low RMS values
column indices). While the results for PK and Al are presented in suggest that the model is sufficiently accurate for our purposes.
this section, the Tl performance is provided in Appendix C.2. Finally, as an additional precaution, we deliberately searched for

In the subsequent discussion, we use @lrefer to a query tem- plan cost functions with complex shapes to assess the quality-of-fit
plate based on Quenryof the TPC-H benchmark, and DSQTx in these difficult cases. An example is documented in Appendix C.1
refer to a query template based on Quewf the TPC-DS bench- and the fit is shown to retain its high quality.
mark, operating in the default PK configuration. We prefix Al and . . .

Tl to the query template identifiers in describing our results for 9-2 Plan Diagram Reduction Quality

these specialized configurations. A potentially worrisome aspect of our quest to obtain globally
robust reduction is whether it might result in losing out on the
anorexic reduction levels observed in the localized reduction pro-
cesses of [11]. This concern is quantitatively allayed in Table 4,
which presents a comparison between SEER and CostGreedy (CG)
of the number of plans in the reduced diagram for a diverse suite
of multi-dimensional query templates on the TPC-H database. The
PK physical design configuration was operational in these experi-
ments.

At first glance, SEER might have been expected to perform
worse than CostGreedy because its additional safety checks may
prevent some plan swallowings permitted by CostGreedy— in fact,
this was the source of our concern. However, in Table 4, we ac-
[Note: For completeness, we have also conducted all the experi- tually find theconverse- while CostGreedy does provide anorexic
ments with auniformdistribution of query locations — these results, reduction, SEER does even better. The reason for this is that Cost-
which are qualitatively similar to those presented here, are detailed Greedy follows a conservative cost-bounding approach to estimate
in Appendix C.] the costs of plans outside their endo-optimal regions (details in
[11]). SEER, on the other hand, uses the foreign-plan-costing fea-
ture to obtain the exact costs in these regions, and therefore has
superior reduction possibilities. Therefore, the FPC feature comes
in handy from both quality and safety perspectives.

A question that immediately arises is how SEER would com-
pare against a CostGreedy variant that also utilized the FPC feature.
This issue is also addressed in Table 4, where the performance of
this variant (CG-FPC) is presented. We see that CG-FPC does per-

5.1 Validity of Plan Cost Model
The validity of the plan cost model presented in Equation 1 was form better or as well as SEER, as should be expected — however,
assessed b yattem tFi)n to fit the cos?s of plans er?:rated by O t_the gap, if any, is always very small. A related point to note here is
Com. The g er'mgntagl data consisted och)) t'm'ger-est'mate{i ep- that the SEER reduction quality remains excellent even for the 3D
. ti. n txpvlr the selectivit ' fﬂ?' Ilzn tha:t a arx uery templates, in spite of the fact that the additional dimension
€ tlho costs o Ie d'e elec tykspa;:e 0 b !tehpa S ti ﬁpe g ncreases the possibility of the safety conditions being violated.
In the various plan diagrams (taken from bo exponentially an Finally, we observe in Table 4 that the LiteSEER fast variant hap-
uniformly distributed query templates). As mentioned earlier, the

foreian-nlan-costing (FPC) feature was used to evaluate plans Ou,[_pens to provide reduction quality identical to SEER. Under the Al
side%f t[r)]eir endo-ogpgimal )regions P (and TI) configurations, however, it occasionally performs slightly

The surface fitting was carried out with the classical Linear Least better (see Section 5.2.1), as should be expected due to its being

Squares method [17] and implemented using Matlab 7.4 [25]. An less stringent n allowing replacements.
example 2-D fitted cost function is:

Table 3: RMS Errors in Fitted Cost Surfaces

Query Location Distribution. All the performance results shown

in this section are for plan diagrams generated withonentially
distributed locations for the query points across the selectivity
space, resulting in higher query densities near the selectivity axes
and towards the origin. This choice is based on earlier observations
in the literature (e.g. [13, 14, 22]) that plans tend to be densely
packed in precisely these regions of the selectivity space. From a
performance perspective, these diagrams represent the “tough-nut’
challenging situations with respect to obtaining anorexic reduction
due to their high plan densities and substantially broader range of
plan cost values.

Performance Metrics. In the remainder of this section, we evalu-
ate the SEER reduction algorithm with regard to the following per-
formance parameters: (a) Diagram Reduction Quality, (b) Error-
resistance obtained through Reduction, (c) Safety of Reduction,
and (d) Computational Efficiency. As a precursor, we first evaluate
the validity of the plan cost function model (Section 3.1).

TPC-DS Results. The above results were generated on the TPC-
. ) H database, which has uniformly distributed data. Table 5 shows
Cost(w,y) = f'glf + 45'9y7+ 101116% N 39'751 log + a corresponding set of results for plan diagrams generated on the
Bdylogy + 27.6zylogwy +97.3 TPC-DS database, which features skewed data. It is immediately
For this plan, the complete plots of the actual cost surface and theevident that the reduction profiles of the various reduction algo-
fitted cost surface, as a function of the selectivities of the two base rithms are very similar to those seen with TPC-H.
relations, are shown in Figure 6. It is visually evident that the fit is . . . . .
very good. 5.2.1 Reduction Quality with Allindex Configuration
As further evidence of the accuracy of our model, Table 3 shows  While the PK configuration had only 8 primary-key indices,
the quality-of-fit, measured in terms of the maximum and aver- Allindex includes an additional 53 (non-clustered) single-column
ageRoot-Mean-Square(RM®Jrors, over a large number of plans  indices covering all the remaining query-related schema attributes.
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Figure 6: Plan Cost Function Modeling

TST‘]‘;&E N(?rg‘gfgns CG | CG-FPC | SEER | LiteSEER Another point to note in Table 6 is that we now see LiteSEER
OT2 (2D) 50 14 3 5 3 occasionally permitting slightly greater reduction than SEER, due
QT5 (2D) 51 7 2 2 2 to its relaxed constraint in allowing replacements.

QT8 (2D) 121 7 2 2 2

QT9 (2D) 137 9 3 4 4 _resi

o) " : 3 3 . 5.3 Error-resistance and Safety

QT16 (2D) 32 1 3 3 3 Having established the retention of diagram reduction quality,
8% 88; 16981 g g g g we now move on to assessing the extent to which resistance to se-
QT10 (3D) 75 10 3 2 4 lectivity errors is provided through SEER reduction. We begin with

defining a metric that quantitatively captures this effect:

Table 4: Plan Diagram Reduction Quality (TPC-H) Error Resistance Metric. Given an estimated query locatign

and an actual locatiog,, the Selectivity Error Resistance Factor

Query Original CG | CG-FPC | SEER | LiteSEER ) i i
Template No. of plans gSI]::_Rl:(j) of a replacement plaR,. w.r.t. the optimal planP,. is
DSQTL2 (2D) 25 6 3 2 2 efinead as,
DSQT18 (2D) 114 13 2 2 2
DSQT19 (2D) 55 11 3 4 4 SERF —1_ cre(da) — Coa(ga)
(qe: qa) =
DSQT12 (3D) 33 1 2 2 2 (14 X)coe(qa) — Coa(qa)
DSQT18 (3D) 222 15 2 4 4
DSQT19 (3D) 98 15 2 4 4 Intuitively, SERF captures the fraction of the performance gap be-
) ) ) tweenP,. andP,, thatis closed by>... In principle, SERF values
Table 5: Plan Diagram Reduction Quality (TPC-DS) can range ovef—oo, 1], with the following interpretations: SERF
in the rangg ), 1] indicates that the replacement is beneficial, with
Query Original CG | CG-FPC | SEER [ LiteSEER values close to 1 implying “immunity” to the selectivity error. For
ATeq_‘g'az‘g No. %f;"ans - . . . SERF in the rangf, )\, the replacement is indifferent in that it nei-
A,8T5 EZD; 126 14 4 6 5 ther helps nor hurts, while SERF values belbhighlight a harmful
AIQTS (2D) 121 7 3 3 3 replacement that materially worsens the performance.
,QIQTTfo(Zz%) 13372 184 3 ‘51 g The above formula applies to a specific instance of replacement.
A|8T16 Ezog 35 9 5 5 5 To captqre the ne_t impact of reduction on improying the resistance
AIQT5 (3D) 139 14 5 7 5 in anentire plan diagram, we compute the following
AIQT8 (3D) 168 14 4 6 5
AIQT10 (3D) 77 16 7 8 8 D crep(P) 2oqacenon. () SERF (de, qa)

AvgSERF = > > T
Table 6: Plan Diagram Reduction Quality (TPCH-AI) qeErep(P) £4qq Eexooe (P)

whererep(P) is the set of points in the plan diagranthat were
replaced during the reduction process, ard,.(P) is the set of
The reduction quality results for this index-rich configuration are points lying in the exo-optimal region defined with respecPto,
shown in Table 6. We first notice that the number of plans in the the optimizer's plan choice fag.. The normalization is with re-
original diagram usually increases, often substantially, as should spect to the number of possible selectivity errors in the diagram.
be expected since the optimizer’s search space has increased due {d@o ensure meaningful AvgSERF values from a robustness per-
the availability of the additional indices. For example, the number spective, we exclude the uninteresting scenarios whereindpth
of plans for AIQT5(2D) goes up to 125 from 51, while AIQT5(3D) andc,. have extremely low absolute values, or are both witkin
jumps to 139 from 68. However, when we consider the reduction threshold ofc,,.)
quality of the various algorithms, we find that they continuento- Note that in the above formulation, we assume for simplicity that
terially adhere to anorexic levelgalthough the actual cardinalities  the actual location, is equally likely to be anywhere iR,.’s exo-
may have gone up by a couple of plans. For example, SEER onoptimal space, that is, that the errors are uniformly distributed over
AlIQT5(2D) retains 6 plans as compared to 2 under PK. this space. However, our conceptual framework is also applicable
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Query CG SEER LiteSEER
Template MIinSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF
QT2 (2D) -58.6 0.2 1 0 0.38 0.98 0 0.38 0.98
QT5 (2D) -15.6 0.5 1 0.14 0.51 0.99 0.14 0.51 0.99
QT8 (2D) -2.9 0.82 1 0.3 0.93 1 0.3 0.93 1
QT9 (2D) -46.3 0.37 1 0 0.77 1 0 0.77 1
QT10 (2D) -23.8 0.09 1 0 0.35 1 0 0.35 1
QT16 (2D) -132.5 0.03 0.99 0.04 0.33 0.96 0.04 0.33 0.96
QT5 (3D) -15.4 0.6 1 0.03 0.38 1 0.03 0.38 1
QT8 (3D) -177.7 -0.5 1 0 0.63 1 0 0.63 1
QT10 (3D) -130.7 -2 1 0 0.45 1 0 0.45 1
AIQT2 (2D) -202 -1.1 0.99 0 0.8 0.99 0 0.8 0.99
AIQTS5 (2D) -1336 -3.1 1 0 0.58 1 -10 0.54 1
AIQT8 (2D) -62.4 0.35 1 0 0.54 1 0 0.54 1
AIQT9 (2D) -9486 -3.1 1 0 0.62 1 -5 0.66 1
AIQT10 (2D) -20.2 0.24 1 0 0.25 0.98 0 0.25 0.98
AIQT16 (2D) -76 0.07 1 0 0.75 1 0 0.75 1
AIQTS5 (3D) -2151 0.24 1 0.05 0.62 1 -2 0.66 1
AIQT8 (3D) -103.7 0.43 1 0 0.44 1 -6 0.44 1
AIQT10 (3D) -4680 -4.4 1 0 0.33 1 0 0.33 1
DSQT12 (2D) -4 0.61 1 0.07 0.44 1 0.06 0.44 1
DSQT18 (2D) -194.75 -2 1 0.07 0.81 1 0.07 0.81 1
DSQT19 (2D) -86 0.17 1 0 0.63 1 0 0.63 1
DSQT12 (3D) -142 -0.32 1 0.06 0.53 1 0.06 0.53 1
DSQT18 (3D) -3104 -0.14 1 0 0.85 1 0 0.85 1
DSQT19 (3D) -106.6 0.33 1 0.02 0.82 1 0.02 0.82 1

Table 7: Characterization of Error-Resistance through Reduction

to the more generic case where the error locations have an associpictures in Figure 7, corresponding to the same example.
ated probability distribution. Assuming that the actual location of a query at run-tignes

Resistance Results.For CostGreedy, SEER and LiteSEER, we uniformly distributed ovelS, Figure 7(a) shows thexpected cost

. : - for each query poing., when executed with its optimizer-selected
show in Table 7, the AvgSERF, as defined above, as well as Min- ; : o
SERF and MaxSERF, the minimum and maximum values of SERF planP,.. Note that the peaks in the picture correspond to situations

over all replacement instances, for the various query templates where the plan-choice is highly sensitive to selectivity errors.
We first see here that for all the algorithms, plan diagram reduc- Then, Figure 7(b) shows the expected cost of each query goint

tion is capable, across the board, of providing complete immunity when executed witlf.. from the reduced plan diagram obtained

; D SO using CostGreedy. Note that virtually all the peaks in Figure 7(a)
(MaxS_ERF tending to 1) to selectivity errors forindividual replace-_ are substantively eliminated through the replacement choices in the
ment instances. Secondly, and more importantly, the AvgSERF is

. - ) reduced plan diagram — for example, the dark-blue peak at the left-
also quite substantial for SEER. For example, in DSQT18, on aver- top corner of Figure 7(a) is largely removed. However, on the
age, more than three-quarters of the performance gap due to selec,

tivity errors is bridged by the SEER reduction process. down side, some plans suffer injurious replacements — for e.g., the

. . earth-brown colored plan in the left-bottom corner of Figure 7(a) is
.W'th CostGreedy, on the c_>ther hand, the Av_gSERF IS compar ., replaced by the fluorescent-green colored plan in Figure 7(b),
atively very poor, and occasionally even negative! The important

point to note here is that these low averages are an artifact arisingWhOSe expected cost is orders of magnitude greater. That is, Cost-
out of a small fraction of points (around 10-20%) whose perfor- Greedy in the process of eliminating existing peaks, may introduce

mance is grossly adversely affected by plan replacement. That is,neW peaks.

plan reduction does help in the vast majority of cases but the “few Finally, in Figure 7(c), we show the performance of SEER re-
very bad apples”, reflected by the hugely negative MinSERF val- duction. We see here that (a) it removes all the peaks of Figure 7(a)

ues (which sometimes even run into the thousands), ruin the over-“ke CostGreedy, and (b) it does not introduce any new peaks cour-

A h tesy its safety criterion. In a nutshell, “it provides virtually all the
all performance statistics. More pertinently, these results serve to i "
o L - good, and doesn’t introduce any harm”.
quantitatively and vividly substantiate the need for safe replace-
ment, the motivation underlying our design of the SEER algorithm.
Finally, turning our attention to LiteSEER, we see thatits error- 5.4  Efficiency of Reduction Process
resistance profile is very similar to that of SEER — in fact, the  \we now move on to profiling the time taken to complete the re-
AvgSERF and MaxSERF numbers are identical for most templates. q,ction process by SEER as compared to CostGreedy. These re-
Further, although like CostGreedy it does not guarantee safety, asq|ts are shown in Table 8 for our query template suite.
testified to by the negative values in the MinSERF column, note Focussing initially on the 2D query templates, we see that
that (a) the templates having negative values are relatively rare, (b) SEER's performance is quite acceptable in terms of absolute times
even in these cases, unsafe replacements occur only for about 1% few minutes per reduction), especially in comparison to the orig-
of the points, and (c) most importantly, their magnitudes are small jn4| plan diagranproduction time. However, it is much slower rel-
in comparison (the maximum is -10 for IQT5(2D)). ative to CostGreedy, which offers sub-second response times. This
might seem surprising in light of our analysis in Section 4 showing
Safety Example that SEER is ai® (n/m + n?) dgorithm, whereas CostGreedy is
In the example of Figure 4, plan diagram reduction without explic- O(nm). The reason for the higher running time of SEER is that
itly checking for safety led to situations whereif.. performed the basic cost-bounding computation in CostGreedy is much faster
much worse that?,. atq,. The effectiveness of SEER in avoiding than the foreign-plan-costing operator provided by the commercial
such unsafe replacements is visually highlighted in the sequence ofoptimizers. Our discussions with the development team of OptCom
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Figure 7: Safe Error-resistance with SEER

have indicated that this is not due to the costing itself, but is largely ey CG | CG-FPC [ SEER [ LiteSEER
. . R . X emplate (ms) (min) (min) (sec)
an artifact of setting up the contexts for the costing, including ver- QT2 2D) 15 531 36 142
ifying the validity of the plan with respect to the query. Therefore, QT5 (2D) 16 45.0 1.0 12
it i i ; QT8 (2D) 17 108 9.6 28.8
it is pos_S|bIe that ,future t_)etter implementations of the FPC feature 3To (20) 13 1224 106 26
may bring SEER'’s running time closer to CostGreedy. (In fact, QT10 (2D) 15 38.7 3.0 10.3
our own implementation of FPC in a public-domain optimizer in- QT16 (2D) 15 27.9 1.3 7.5
dicates that its cost can be further brought down byoater of QT5(3D) 25 67 19.0 32
itudg7].) QT8 (3D) 21 190 65.0 91
magni ) . QTI0(3D) || 17 74 16.5 45
When we consider the 3D query templates, however, the running AlQTZ (2D) 17 774 50 20.6
times of SEER can be quite large. It is here that LiteSEER shows AIQT5 §2Dg 12 112.5 3.7 30.0
; ; ; S0 ti ; AIQTS8 (2D 11 108.0 6.9 28.8
its worth since its running times are only a few minutes or even AIQTS (2D) 18 107.9 o1 314
less, across the board for all the query templates. Taken in con- AIQT10(2D) || 12 304 2.0 8.6
junction with its good safety performance (Section 5.3), it suggests AIQT16 (2D) || 12 30.6 2.0 8.2
that LiteSEER offers an extremely attractive compromise between AIQTS (3D) | 26 s 1 8ry 66.2
S AIQTS (3D) 19 167 47.3 80.2
the speed of CostGreedy and the robustness of SEER, making it a AIQT10(3D) || 24 76 14.9 36.5
viable first-cut reduction technique in real-world installations. DSQT12 (2D) || 14 216 26 5.8
Finally, to normalize the effect of the different costing imple- DSQT18(2D) || 13 101.7 9.4 27.1
mentations, the running time of the CG-FPC algorithm is also ngﬁg gg; ;g gg'g 3'3 ig'g
shown in Table 8 — we see here that CG-FPC takes in the order DSQT18(3D) || 25 | 2210 | 89.1 | 106.1
of several tens or few hundreds of minutessomplete the reduc- DSQT19 (3D) || 23 97.0 358 46.6
tion process. In comparison, SEER’s selective usage of the FPC o )
operator, courtesy Theorem 1 and the two-stage checking process, Table 8: Efficiency of Reduction Process

does succeed in substantially bringing down the overheads.

too may be arbitrarily poor for a specific query as compared to the
6. RELATED WORK optimizer’s optimal choice.

Over the last decade, a variety cdmpile-timestrategies have Finally, in the (initial) optimization phase of the Rio approach [3,
been proposed to identify robust plans. For example, in the Least4], a set of uncertainty modeling rules from [16] are used to clas-
Expected Cost (LEC) approach [6, 8], it is assumed that the dis- sify selectivity errors into one of six categories (ranging from “no
tribution of predicate selectivities is apriori available, and then the uncertainty” to “very high uncertainty”) based on their derivation
plan that has the least-expected-cost over the distribution is cho-mechanisms. Then, these error categories are converted to hyper-
sen for execution. While the performance of this approach is likely rectangular error boxes drawn around the optimizer's point esti-
to be good on average, it could be arbitrarily poor for a specific mate. Finally, if the plans chosen by the optimizer at the corners of
query as compared to the optimizer's optimal choice for that query. the principal diagonal of the box are the same as that chosen at the
Moreover, it may not always be feasible to provide the selectivity point estimate, then this plan &ssumedo be robust throughout
distributions. the box. However, the conditions under which this assumption is

An alternative Robust Cardinality Estimation (RCE) strategy |ikely to be valid are not outlined.
proposed in [2] is to model the selectivity dependency of the cost
functions of the various competing plan choices. Then, given a
user-specified “confidence thresholfl; the plan that is expected 7. CONCLUSIONS
to have thdeast upper boundvith regard to cost iff” percentile Errors in selectivity estimates are well-documented causes of
of the queries is selected as the preferred choice. The choice ofpoor plan choices by database optimizers. In this paper, we in-
T determines the level of risk that the user is willing to sustain vestigated whether the optimizer's choices could be replaced by
with regard to worst-case behavior. Like the LEC approach, this alternative plans, more resilient to these errors, from the paramet-
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APPENDIX
A. REPLACEMENT SAFETY THEOREM

THEOREM 1. For a plan-pair (R.,Pr.) and a selectivity space
S with corners[(z1, y1), (z1,y2), (z2,y2), (z2,y1)], the replace-
ment is safe (i.e., within-threshold) inS if any one of the condi-
tions, SC1 through SC6, given in Table A.1 is satisfied.

behaviour of the safety function when Condition (i) is satisfied,
and clearly the value of the safety function is again negative in the
given range. [

In Figure A.1, Curve (d) also corresponds to a safe scenario —
however, it is not possible to differentiate between Curve (d) and
the unsafe case, namely Curve (e), without explicitly computing
the safety function at every point on the given line-segment. Hence,
we conservativelycategorize both cases as unsafe. We have also
observed that the case corresponding to Curve (e) occurs rarely in

Left Right Top Bottom practice.

Boundary | Boundary Boundary | Boundary
SC1]| Safe Safe yo (@) >0 [ fy (@) >0 LEMMA 2 (SLOPEBEHAVIOR). If the slope of the safety
SC2 fygfé)aé 0 Safe () <0 | fy; (@) <O function, f/(x), is non-decreasing (resp. decreasing) along the

line-segmenty = y; andy = y., then it is non-decreasing (resp.
U 7T 77
SC3 Safe fyg%)afze 01 fua(z) <O | fi (2) <O decreasing) for all line segments in the interyal , y2). A similar
!
SCa| 77 () =0 | /L0y >0 Safe Safe result holds forf,. (y).
SC5 | fii(y) <0 | fi,(y) <0 fal:éyé) fZ 0 Safe PROOF. Consider the slope of the safety function
afe

77 77 7 < , df J(x

SC6 z1 (y) <0 zo (y) <0 Safe fzéyé)af_e 0 fyo (1;) — % =g+ 92(1 -+ log .CC) (5)

Forz € (0, 1), this slope is monotonic and its behavior depends on
the sign ofg>. From Equations 2 and 3, we know thatcan be
written as the following function of

(as = (L+ A)ba) + (as — (1 + Nbs)y
(k1 + k2y)

wherek, andk, are constants.
Sincegz(y) is a linear function ofy, the Lemma immediately
follows. [

Table A.1: Safety Satisfaction Conditions

In order to prove the above theorem, we will start with deriving two
lemmas — the first provides us with a condition that is sufficient to 92(y)
ensure safety of all points on the straight line segment joining a —
pair of safe points, while the second describes the behaviour of the
slope of the safety function.

(6)

LEMMA 1 (LINE SAFETY). Given afixed) = y,, and a pair
of safe pointgz1, y,) and (x2, y,) wWith 2 > z1, the straight line
joining the two points is safe if the slogig_ () is either

OR
(i) monotonically decreasing witf{,_(z1) < 0or f, (z2) >0

We now prove Theorem 1 using the LineSafety and SlopeBehav-
ior lemmas:

ProoOFE Consider the SC1 condition in Table 2: Sir}i;la(m) >
0 (i.e. slopef, (z) is non-decreasing) at the TB-boundaries, then
from Lemma 2, we know that the slop& (x) is non-decreasing
throughout the rang@y:, y2).

PROOF The various possible behaviors fif(x) are shown in Moving on to the SC2 and SC3 conditions: Sing&z) < 0
Figure A.1 as Curves (a) through (e). When the slgpgx) is (i.e. slopef,(x) is decreasing) at the TB-boundaries, then from
monotonically non-decreasing (i.e. Condition (i) is satisfied), the Lemma 2, we know that the slop& (z) is decreasing throughout
safety function curve that connects the two safe points is guaranteedthe range(y:,y2). Further, we know that for a given = y, €
to lie belowthe straight line joining the two points — Curve (a) in  (y1, y2), eitherf,_(z1) < 0 (SC2) orf,, (z2) > 0 (SC3).

Figure A.1 shows an example of this situation. This ensures that Thus, when SC1, SC2 or SC3 is satisfied, then for all lines be-
the safety function along the given line segment is always negative tween pointgz1, y) and(z2,y), ¥ € (y1,y2), the end-points are

and hence safe. safe (because the LR-boundaries are safe), and the slope conditions
given in Lemma 1 are satisfied. Hence, all such line-segments are
safe, the union of which is the given region.

Similar arguments can be used to show safety of the region when
conditions SC4, SC5 or SC6 are satisfied. Hence the theorgm.

(i) monotonically non-decreasing,

A similar result holds whem is fixed.

o)
0

C}
(d)
(©

>&
A
Q

(b)
@

(

Figure A.1: Behavior of the safety function f, ()

If, on the other handf;_ (y) is monotonically decreasing, then
the possible behaviors of the safety functifi (y) are shown in
Curves (b) through (e) in Figure A.1. Curves (b) and (c) denote the
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B. HIGHER DIMENSION EXTENSIONS
B.1 Plan Cost Model

Generalizing the arguments used in the 2D case, we obtain the

following cost model for al-dimensional selectivity space.

Cost(zy, ... Z(ailmil + bi, i, log zs, )+

a1

,Ta)

E (@iyinTiy Tiy + biyin Tiy Tip log T4, T4,)
11 <ig
+ ...+ a12..d(3611»’2$3--56d)
=+ b12,,d(I11’21’3..1}d) log(mxgxg..xd)

+ ao (7)

where ther's andb’s are the(2¢T! — 1) coefficients and the;, i =
1...d represent thd relational selectivities.

B.2 The SEER Algorithm

The SafetyCheck algorithm used to verify the safety of the re-
placement ofP,. by P.. in a d-dimensional selectivity space is
given in Figure B.1.

SafetyCheck (Plan DiagramP, Threshold \, Plan P,, Plan P;.,
Dimensiond)

1. if(d ==2)
(a) if WEDGETEST (P,R,
return true.
else if (PERIMETERTEST (P, R,
return true.
(b) return false.

P;,)\) == Safe) then

P;,)\) == Safe) then

2. else
(a) safety = true;
(b) for each(d — 1)-dimension slicé®’ of P

safety = safetyA SafetyCheck (P’,lambdaPye,
Pre,d—1)

3. return safety.

Figure B.1: n-Dimensional SafetyCheck Algorithm

The above algorithm recursively finds the safe area ofdhel )-
dimension “slices” of the inputl-dimension selectivity space.
Whend = 2, the WEDGETEST and PERIMETERTEST meth-
ods are used to check for safety. The SEER algorithm incorporating
this checking mechanism is shown in Figure B.2.

SEER (Plan DiagramP, Threshold \)

1. Create a Set-Cover Instande = (U,S), where S
{S1,S2,...,5.}, U = {1,2,...,n}, corresponding to the
plans in the original plan diagraf

2. Seteacly; = {i},Vi=1..n
3. For each pair of plangP;, P;) do
if (SafetyCheck (P,\, P P;,d) ==true) then
S; = S: U{3}

4. Solve the set-cover instanéausing the Greedy Setcover algo-
rithm to identify the plans retained R.

Figure B.2: n-Dimensional SEER Reduction Algorithm
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C. ADDITIONAL EXPERIMENTS
C.1 Plan Cost Model

In order to confirm the validity of our cost model, we deliber-
ately searched for plans with complex cost functions to assess the
quality-of-fit in these difficult cases. A sample additional case is
shown in Figure C.1, and we see that even here, the fit is of high
quality (the RMS Error is only around 10%). This can be attributed
to the fact that our cost model has 7 parameters which gives suffi-
cient freedom to fit most of the plan cost functions found in prac-
tice.
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(a) Actual Cost Function
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(b) Fitted Cost Function

Cost(z,y) = 184.3x 4+ 619.9y + 524.5zxy — 1090z log z —
1179.9y log y — 836.2zy log xy — 1000

RMSError = 10.96%

Figure C.1: Complex Plan Cost Function



C.2 Tuned-Index Configuration
The results presented in the main paper were forRtimary

KeyandAll Index physical design configurations. We present here

the corresponding results for tfieined Index(Tl) configuration

which implements the recommendations of the index tuning advi-
sor shipped with OptCom. The parameters of the tuning advisor

were set to their default values, and the TPC-H benchmark queries

(generated with the QGen utility) formed the input workload. For

this setup, the advisor recommended 20 additional indices beyond
the default Primary Key configuration.

The results obtained on the TI database configuration for our

suite of query templates are presented in Tables C.1 through C.3.

We see here that the performance profile is very similar to that ob-
tained with the PK and Al configurations, testifying to SEER’s con-

sistent behavior over a wide variety of database environments.

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
TIQT2 (2D) 52 10 4 5 5
TIQT8 (2D) 108 16 3 3 3
TIQTI (2D) 101 16 6 5 5
TIQT10 (2D) 50 10 4 2 2
TIQT16 (2D) 36 14 4 6 6
TIQT5 (3D) 84 10 4 5 5
TIQT8 (3D) 181 14 4 6 5
TIQT10 (3D) 78 12 6 8 7

Table C.1: Plan Diagram Reduction Quality (TPC-H)

Query CG SEER LiteSEER
Template MIinSERF | AvgSERF | MaxSERF MIinSERF | AvgSERF | MaxSERF MIinSERF | AvgSERF | MaxSERF
TIQT2 (2D) -161.3 -0.12 0.99 0.01 0.32 0.94 0.01 0.32 0.94
TIQT8 (2D) -550.1 -3.4 1 0 0.54 1 0 0.54 1
TIQT9 (2D) -87.5 0.01 1 0 0.44 1 0 0.44 1
TIQT10 (2D) -671.4 -15.7 1 0 0.27 0.99 0 0.27 0.99
TIQT16 (2D) -14.4 0.11 0.99 0.02 0.39 0.97 0.02 0.39 0.97
TIQT5 (3D) -166.3 -1.42 1 0 0.71 1 0 0.71 1
TIQT8 (3D) -4188.5 -4.23 1 0 0.61 1 -1.3 0.61 1
TIQT10 (3D) -574 -4.97 1 0 0.31 1 -8.9 0.31 1

Table C.2: Characterization of Error-Resistance through Re-

duction (TPC-H)

Query CG CG-FPC | SEER | LiteSEER

Template (ms) (min) (min) (sec)
TIQT2 (2D) 18 45.9 2.9 12.2
TIQT8 (2D) 12 96.3 4.9 25.7
TIQT9 (2D) 16 90.0 7.2 240
TIQT10 (2D) || 14 44.1 2.6 11.8
TIQT16 (2D) || 12 315 2.0 8.4
TIQT5 (3D) 28 83 20.8 39.8
TIQT8 (3D) 24 180 67.8 86.4
TIQT10 (3D) 19 78 15.9 37.0

Table C.3: Efficiency of Reduction Process (TPC-H)
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Query CG SEER LiteSEER
Template MIinSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF
QT2 (2D) 0 0.76 0.98 0.02 0.62 0.98 0.02 0.62 0.98
QT5 (2D) 0.99 0.99 0.99 0.96 0.98 1 0.96 0.98 1
QT8 (2D) -0.47 0.73 0.99 0.27 0.44 0.99 0.27 0.44 0.99
QT9 (2D) -55.3 -0.56 1 0.86 0.99 1 0.86 0.99 1
QT10 (2D) -0.81 0.4 0.99 0.14 0.34 0.60 0.14 0.34 0.60
QT16 (2D) -0.33 0.49 0.97 0.04 0.46 0.92 0.04 0.46 0.92
QT5 (3D) 0 0.01 0.02 0.78 0.95 1 0.78 0.95 1
QT8 (3D) -22.6 0.41 1 0.15 0.36 0.99 0.15 0.36 0.99
QT10 (3D) -5.5 0.43 1 0.19 0.69 1 0.19 0.69 1
AIQT2 (2D) -3.95 0.16 0.97 0.15 0.64 0.94 0.15 0.64 0.94
AIQTS5 (2D) 0.17 0.38 1 0.28 0.51 1 0.28 0.51 1
AIQT8 (2D) -0.27 0.48 0.99 0.19 0.46 0.99 0.19 0.46 0.99
AIQT9 (2D) -1999.8 -2.1 1 0.96 0.99 1 0.96 0.99 1
AIQT10 (2D) -5.7 0.32 1 0.16 0.33 0.68 0.16 0.33 0.68
AIQT16 (2D) -0.39 0.58 0.96 0 0.58 0.98 0 0.58 0.98
AIQT5 (3D) 0.3 0.6 1 0.05 0.9 1 0.05 0.9 1
AIQT8 (3D) -9.25 0.32 0.99 0.03 0.75 0.99 0.03 0.75 0.99
AIQT10 (3D) -24.6 0.44 1 0.08 0.5 1 0.08 0.5 1
DSQT12 (2D) -1 0.16 1 0.25 0.32 0.54 0.25 0.32 0.54
DSQT18 (2D) -12.2 0.38 1 0.59 0.99 1 0.59 0.99 1
DSQT19 (2D) -11.8 0.08 1 0.18 0.47 1 0.18 0.47 1
DSQT12 (3D) 1 1 1 1 1 1 1 1 1
DSQT18 (3D) 0.99 0.99 0.99 0.72 0.86 1 0.72 0.86 1
DSQT19 (3D) -0.53 0.74 1 0.77 0.87 1 0.77 0.87 1

Table C.4: Characterization of Error-Resistance through Reducion

C.3 Uniform Query Distribution

The results in the main paper were produced with an exponential
distribution of query points across the selectivity space. We present
here the corresponding results for plan diagrams generated with a
uniformdistribution of query points. Tables C.5 and C.6 show the
reduction quality over our suite of query templates on the TPC-H
and TPC-DS databases, respectively, operating with a Primary Key
physical configuration. The performance on an All Index configu-
ration is detailed in Table C.7. Finally, the error-resistance quality
and the reduction efficiency are shown in Tables C.4 and C.8, re-
spectively.

These results are behaviorally similar to those obtained with the
exponential distribution.

Query Original CG | CG-FPC | SEER | LiteSEER

Template No. of plans

QT2 (2D) 25 5 3 3 3
QT5 (2D) 10 3 1 1 1
QT8 (2D) 31 4 2 2 2
QT9 (2D) 21 2 1 1 1
QT10 (2D) 13 3 2 2 2
QT16 (2D) 26 9 2 3 3
QT5 (3D) 18 1 1 1 1
QT8 (3D) 18 6 3 3 3
QT10 (3D) 18 4 2 2 2

Table C.5: Plan Diagram Reduction Quality (TPC-H)

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
DSQT12 (2D) 7 4 2 2 2
DSQT18 (2D) 21 3 1 1 1
DSQT19 (2D) 28 5 2 2 2
DSQT12 (2D) 8 2 1 1 1
DSQT18 (3D) 36 2 1 1 1
DSQT19 (2D) 64 2 1 1 1

Table C.6: Plan Diagram Reduction Quality (TPC-DS)
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Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
AIQT2 (2D) 30 8 3 3 3
AIQT5 (2D) 25 6 2 2 2
AIQTS (2D) 25 3 2 3 3
AIQT9 (2D) 25 5 1 1 1
AIQT10 (2D) 16 4 3 3 3
AIQT16 (2D) 22 14 3 4 4
AIQT5 (3D) 37 4 2 2 2
AIQT8 (3D) 39 5 2 3 3
AIQT10 (3D) 50 9 4 3 3
Table C.7: Plan Diagram Reduction Quality (TPCH-AI)
Query CG CG-FPC | SEER | LiteSEER
Template (ms) (min) (min) (sec)
QT2 (2D) 15 216 2.2 5.8
QT5 (2D) 14 8.1 0.7 22
QT8 (2D) 14 27.0 1.9 7.2
QT9 (2D) 13 18.0 2.1 4.8
QT10 (2D) 14 10.8 0.7 2.9
QT16 (2D) 13 22.5 1.4 6.0
QT5 (3D) 25 17.0 5.1 8.2
QT8 (3D) 21 29.0 10.7 13.9
QT10 (3D) 22 23.0 7.8 11.0
AIQT2 (2D) 16 26.1 2.8 7.0
AIQT5 (2D) 16 21.6 0.7 5.8
AIQT8 (2D) 14 215 2.1 5.8
AIQT9 (2D) 15 21.6 1.7 5.7
AIQT10 (2D) 13 135 0.7 3.6
AIQT16 (2D) 13 18.9 0.4 5.0
AIQT5 (3D) 23 36.0 12.0 17.3
AIQT8 (3D) 20 38.0 14.0 18.2
AIQT10 (3D) 20 49.0 14.0 23.5
DSQT12 (2D) || 19 5.4 0.07 1.4
DSQT18 (2D) || 17 18.0 1.2 4.8
DSQT19 (2D) || 14 24.3 1.7 6.5
DSQT12 (3D) 20 7.0 1.2 3.4
DSQT18(3D) || 30 35.0 7.2 16.8
DSQT19 (3D) 26 63.0 12.7 30.2

Table C.8: Efficiency of Reduction Process




D. PartialSEER

The problem formulation for robust reduction in the main paper Other boundaries are safe.

required the replacement plan todgebally safe. As a generalized
variant, the safety criteria can be relaxed to allow a pfan to
replace planP,. if P, is safe in at least a user-definednimum
safe fraction (MSFpf the area covered by (M SF < 1).

From Theorem 1 we know that the safe (and violating)

bottom boundaries o8 are safe. The algorithm is similar when

points

form contiguous regions i when the slope criteria of at least
one of the size conditions are satisfied. Since the left and bottom
boundaries of the grid are safe, thheandy axes form a part of

In order to assess partia' Safety, we first perform the the boundal’yofthe safe region. The Pal’tia|$afetyCheCkalgorithm

WEDGETEST and PERIMETERTEST checks for global safety.
If this fails, we verify whether the slope criteria of any of the 6 con-
ditions given in Theorem 1 is satisfied. If true, we allow pian

to replace plarP,. if

1. At least two adjacent boundaries in the perimete6ddre
safe; and

2. TheM SF requirement is met i.

The reason for restricting our attention to situations where at
least two adjacent boundaries are safe is that, for this case, an
efficient algorithm can be set up to check satisfaction of the area
requirement, as described below. Figure D.1 shows the modified
SafetyCheck algorithm that finds the safe area when the left and

PartialSafetyCheck (Plan Diagram P, Threshold X\, Area

allowedViolation, Plan P,e, Plan Py, Dimensiond)

1. if(d ==2)
(a) if (WEDGETEST (P,Re,Pre,\) == Safe) return
allowedViolation
(b) if (PERIMETERTEST (P,Rec,Pre,\) == Safe) return
allowedViolation

(c) if the slope criteria of the six conditions of Theorem 1 are|not

satisfiedyeturn —1
(d) if (allowedViolation = 0) return —1
(e) if notwo adjacent boundaries are safeturn —1.

(f) Let the first violating point at the top-boundary of the gri
G occur atx Ty. Setz Ty, Y r — 1,
NumViolatingPoints = 0

(g) Whilez # r andy # —1
i. Setcount =0
ii. While current point is violating (i.ef (xz,y) > 0) and
y# -1
A. move down (i.ey--)
B. if (NumViolatingPoints +
(r—y—1)x (r—z—1)) > allowedViolation,
return —1
ii. While current point is safe (i.¢(z,y) < 0) andz # r
A. move right (i.e.x++), count++
B. if (NumViolating Points+
count X (r —y — 1)) > allowedViolation,
return —1

iv. NumViolatingPoints + = count X (r —y — 1)

d

(h) allowedViolation — = NumViolatingPoints
(i) return allowedViolation

2. else
(a) for each(d — 1)-dimension slicé®’ of P
i. allowedViolation PartialSafetyCheck
allowedViolation, Poe, Pre, d — 1)
ii. if (allowedViolation < 0)
return allowedViolation;

(GEP Y

3. return allowedV'iolation.

Figure D.1: The PartialSafetyCheck Algorithm
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traces the remainder of this boundary.

Figure D.2: The PartialSafetyCheck Algorithm

Figure D.2 shows the flow of the algorithm while tracing the
boundary between the safe (green) and violating (red) regions of
the selectivity space for a pair of plans. In this figure, the top and
right boundaries of the region violate the safety requirement.

We start from the first violating point on the top-boundary of the
grid, and at each stage either move down or right in the grid. At
each interior point that we move to, we perform the costing of the
plansP,. andP... The algorithm stops when we reach the bottom
or right boundaries of the grid.

The PartialSEER reduction algorithm, which employs the Par-
tialSafetyCheck safety-checking technique, is shown in Figure D.3.

PartialSEER (Plan Diagram P, Threshold A\, MinSafeFraction
MSF)

1. Create a Set-Cover Instande (U, S), where S
{S1,52,....,5.}, U = {1,2,...,n}, corresponding to the
plans in the original plan diagram

2. Seteaclt; = {:},Vi=1...n
3. For each pair of plangP;, P;) do
(a) SetallowedViolation = (1 — MSF) x Area(P).

(b) if (PartialSafetyCheck (P,\allowedViolatio;
P;,P;,d) > 0) then
Si = S {4}

4. Solve the set-cover instanéeusing the Greedy Setcover aldo-
rithm to identify the plans retained R.

Figure D.3: The PartialSEER Reduction Algorithm





