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ABSTRACT
Sorting hierarchical data in external memory is necessary for a wide
variety of applications including archiving scientific data and deal-
ing with large XML datasets. The topic of sorting hierarchical data,
however, has received little attention from the research commu-
nity so far. In this paper we focus on sorting arbitrary hierarchi-
cal data that far exceed the size of physical memory. We propose
HERMES, an algorithm that generalizes the most widely-used tech-
niques for sorting flat data in external memory. HERMES efficiently
exploits the hierarchical structure to minimize the number of disk
accesses and optimize the use of available memory. We extract the
theoretical bounds of the algorithm with respect to the structure
of the hierarchical dataset. We then show how the algorithm can
be used to support efficient archiving. We have conducted an ex-
perimental study using several workloads and comparing HERMES
to the state-of-the-art approaches. Our results show that our algo-
rithm (a) meets its theoretical expectations, (b) allows for scalable
database archiving, and (c) outperforms the competition by a sig-
nificant factor. These results, we believe, prove our technique to be
a viable and scalable solution to the problem of sorting hierarchical
data in external memory.

1. INTRODUCTION
Sorting has always been important in data management. Its use-

fulness is even greater for database systems as sorting plays a sig-
nificant role in a number of key query processing algorithms, in-
cluding join evaluation, duplicate elimination, and aggregation, to
name a few. The vast majority of algorithms, however, focuses on
flat datasets; the problem of sorting hierarchical data has, surpris-
ingly enough, received little attention from the research commu-
nity. This is due to the relational data model being inherently flat.
The need for sorting hierarchical data has re-emerged in the con-
text of managing scientific data archives, which tend to be largely
hierarchical, complicated in structure, and quite voluminous. In
this paper we present the Hierarchical ExteRnal MErgeSort (HER-
MES) algorithm for sorting hierarchical data in external memory.
The algorithm takes into account the hierarchical structure and by
exploiting it, it is able to efficiently sort large datasets while mini-
mizing disk I/O and, at the same time, using a minimal amount of
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main memory. As an example, one is able to sort two gigabytes of
hierarchical and highly complex data using only five megabytes of
main memory in a little over five minutes. Moreover, the algorithm
can scale to efficiently sort petabytes of data performing minimal
I/O while only using one gigabyte of physical memory.
Archiving scientific data. The main impetus for this work is man-
aging scientific data for archiving purposes. Scientific data sources
on the Web play a major role for ongoing research efforts. Anno-
tated protein databases like UniProt [8], or sequence databases like
EMBL [11], are the primary sources of information in, e.g., select-
ing targets for conducting biological experiments, or in pharmaceu-
tical research. As is the case in any kind of research, reproducibil-
ity of results is of paramount importance. Problems arise due to the
dynamic nature of scientific databases: they continuously change
as new results become available. Pitfalls include the identification
of erroneous entries in a database, and therefore their modifica-
tion, which results in invalidating scientific results that have used
the erroneous entries as input. In addition, as research progresses,
more accurate results are generated through improved experimen-
tal methods. It is common practice for scientific database providers
to overwrite existing database states when changes occur and pub-
lish new releases of the data on the Web on a regular basis. Failure
to archive earlier states of the data may lead to loss of scientific
evidence, as the basis of findings may no longer be verifiable.

Scientific data is predominantly kept in well-organized hierarchi-
cal data formats. To support versioning, in [5] the authors propose
an archiving approach that efficiently stores multiple versions of hi-
erarchical data in a compact archive. Version numbers denote time
and become a first-class citizen of the process: time is added as an
extra attribute to the data being archived. To generate a new version
of the archive the authors propose nested merge: multiple versions
are merged on the time attribute, with the archiver storing each ele-
ment only once in the merged hierarchy to reduce storage overhead.
An archived element is annotated with timestamps representing the
sequence of version numbers in which the element appears. By
merging elements into a single data structure the archiver is able to
retrieve any version from the archive in a single pass over the data.

Example 1.1: In Figure 1 we see an archive A1−2 containing two
versions of data and an incoming version V3. For ease of presenta-
tion, we assume that nodes are compared on their values. Nodes in
the archive are annotated with their version number (denoted by t
in the figure); version numbers act as timestamps representing the
points in time that a node is present in the archive. Nodes without
a timestamp are assumed to inherit the timestamp of their parent.
Corresponding elements are connected by dotted edges.

Starting from the root, corresponding nodes in V3 and in A1−2
are merged recursively. When a node y from V3 is merged with a
node x from A1−2, the timestamp of x is augmented with the new
version number (e.g., the root of the archive and node A). The sub-
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Figure 1: Merging an incoming version into an existing archive.

trees of nodes x and y are then recursively merged by identifying
correspondences between their children. Nodes in V3 that do not
have a corresponding node in A1−2 are added to A1−3 with the new
version number as their timestamp (e.g., node Q). Nodes in A1−2
that no longer exist in the current version V3 have their timestamp
terminated, i.e., these nodes do not contain the new version number
(e.g., node B). The process is repeated for all levels. 2

With serialized hierarchical data formats, like XML, one usually
traverses the data depth-first. The problem with nested merge as de-
scribed in [5] is that it does not manifest this natural access pattern.
To identify correspondences between children of merged nodes,
one must process complete subtrees. Thus, numerous passes over
the data may be required. If, however, the nodes of the datasets are
ordered on their keys the situation greatly improves. Assuming an
ascending order, as shown in Figure 1, whenever two nodes x and y
are to be merged, one can sequentially scan the children and com-
pare their key values. The child with the smaller value is output to
the new archive, after having been annotated with the proper times-
tamp. This ensures a total ordering among all children of any node.
This process ensures that the archive is always sorted on node keys.
More importantly, only the incoming version has to be sorted be-
fore nested merge. As the new version may be comparable in size
to the archive, sorting is a salient operation.
Change Detection. Apart from archiving, sorting different ver-
sions of hierarchical datasets enables efficient change detection.
This is useful to systems that support incremental query evaluation
and trigger condition evaluation. Existing approaches to change
detection in XML documents (e.g., [6, 7, 18]) operate on unsorted
documents and only work in main memory. However, an algorithm
similar to nested merge can be employed to efficiently spot differ-
ences. With the input documents sorted, change detection can be
supported for datasets larger than the size of main memory.
Sorting hierarchical data. The complexity of sorting large hierar-
chical datasets is shown to be below that of sorting flat data. This is
due to the smaller number of possible sorting outcomes, as in any
sorted result the initial parent-child relationships from the original
data have to be retained. For example, there is no need to compare
nodes in different subtrees of the dataset, or located at different lev-
els of the hierarchy. As with any external memory algorithm, the
major challenge is to reduce the overall number of I/O operations.

The common approach to sorting large datasets is external merge-
sort and its variations [14]. External mergesort splits the dataset
into multiple runs that are sorted in main memory during a single
pass over the data. Runs are then merged to generate the sorted out-
put. Sorting hierarchical data is, however, not straightforward; the
hierarchical structure has to be retained and each sorted run has to
represent a proper hierarchy itself. An obvious approach would be
to “flatten” the data by writing the complete set of root to leaf paths
to a file and then sorting the entries in the file using standard exter-

nal mergesort. As shown in [16], this approach does not exploit the
hierarchical structure and is very inefficient in terms of memory,
storage space and processing power. Bottom-up approaches [16]
for sorting hierarchical data, on the other hand, operate by splitting
the input in complete subtrees that are sortable in main memory.
These subtrees are stored as sorted runs in separate files. Once the
children of each node are sorted, the data is output by reading the
sorted subtrees from the run files. This employs a random access
pattern: though each run will be sequentially scanned, entire runs
will be read in a different order than the one they were generated.
Such approaches do not perform well on the high-branching, wide-
spread structure of scientific datasets. As an example, the current
release of the EMBL Nucleotide Sequence Database [11] (Release
93, December 2007) has over 100 million entries below a single
root node. The average size of each entry is four kilobytes. There-
fore, during output, a large number of small files will have to be
accessed in random order, which penalizes I/O performance.
Contributions. In what follows we present our approach to sorting
arbitrary hierarchical datasets. Our main contributions are:
• We propose an algorithm that generalizes the most widely-

used techniques for sorting flat data in external memory. The
algorithm efficiently exploits the hierarchical structure in or-
der to minimize the number of disk accesses and optimize
the utilization of available memory.

• We extract and verify the theoretical bounds of the algorithm
with respect to the structure of the hierarchical dataset.

• We present how the algorithm can be applied for archiving
databases and the performance gains it results in.

• We have implemented the algorithm and conducted a de-
tailed experimental study of its performance for both archiv-
ing and stand-alone sorting; we include a comparison to the
state-of-the-art approaches. Our results show that our algo-
rithm outperforms the competition by a large margin and its
performance is the one expected from its theoretical analysis.

• Though motivated by sorting scientific datasets for archiving
purposes, the algorithm is general and efficient enough to be
applicable in a variety of problems where the need for sorting
arbitrary hierarchical datasets arises.

The rest of this paper is organized as follows. Related work in the
area is presented in Section 2. Our algorithm for sorting arbitrary
hierarchical datasets is given in Section 3. The algorithm’s theo-
retical analysis is presented in Section 4, while its use in archiving
is presented in Section 5. In Section 6 we present the results of a
detailed experimental study. Finally, we conclude and present our
future work directions in Section 7.

2. RELATED WORK
Sorting is a fundamental computing problem and as such it has

received considerable attention. Departing from internal memory
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implementations, the basis of most external memory sorting algo-
rithms over flat, record-based datasets is external mergesort. Vari-
ous extensions have been proposed over time, with [14] presenting
an extensive study of most external sorting techniques, while [13]
presents the details of implementing external mergesort as part of
a relational database engine. There have been numerous proposals
for improving the algorithm’s performance, ranging from increas-
ing its internal sorting efficiency, to enhancing its CPU utilization,
or to its parallelization.

In [20] the authors propose placing blocks from different runs
in consecutive disk addresses to reduce the seek overhead during
the merging phase (at the expense of additional seek cost during
run creation). They also study reading strategies, like forecasting
and double buffering, and propose a read planning technique. The
latter uses heuristics to precompute the order in which records will
be read from disk during merging. It then utilizes this order to
reduce seek overhead, based on knowledge of the physical location
of the blocks on the medium. These improvements can be almost
verbatim applied to our algorithm, provided they are adapted to
hierarchical data (see Section 4.3 for a discussion on how this can
be achieved).

Moving on to strictly hierarchical data models, the most wide-
spread one is XML. It was used as the serialization protocol for
archiving scientific data and the definition of the nested merge op-
eration [5], which provided the motivation for the development of
HERMES. Similar concepts were provided in [17] and [19] where
the semantics of generalized XML tree merging were defined (al-
beit in different ways). Regardless of the exact semantics, efficient
merging implementations depend on having their inputs sorted, and
therefore our proposal is immediately applicable. Furthermore,
XML query languages like XPath [2] and XQuery [3] provide an
order by clause that may be used in conjunction with a DTD to
completely sort XML documents. However, the specification does
not mention any particular implementation. We believe that our al-
gorithm is one such possible implementation to be used by XML
query engines.

The XML Toolkit (XMLTK) provides a tool named XSort for
sorting XML documents [1]. XSort allows the specification of the
context nodes the subtrees of which should be sorted. For each
context node multiple XPath expressions identify the actual ele-
ments to be sorted. Only user-specified elements are sorted and the
subtrees of these elements are not sorted recursively. Sorting pro-
ceeds by generating a global key for each element to be sorted. It
then uses a standard external mergesort algorithm to sort elements
based on the value of this global key. XSort does not exploit the
hierarchical structure of the data. Indeed, it might not be possible
to sort the entire document without making multiple calls to XSort.
By collapsing hierarchical data to their flat counterparts, the hier-
archy reconstruction step is left to the user. Our algorithm does not
impose such restrictions.

The most relevant piece of work we are aware of, and the state-
of-the-art in sorting XML datasets, is NEXSORT [16]. The NEX-
SORT algorithm takes into account the properties of hierarchical
datasets and consists of two phases: sorting and output genera-
tion. During the sorting phase, NEXSORT scans the input document
depth-first, detects complete subtrees, and decides, based on a user-
given threshold, whether to sort these subtrees in main memory or
not. Only subtrees of size no less than the specified threshold are
sorted and stored on disk as a sorted run. Sorted subtrees are re-
placed in the tree by just their root and a pointer to the sorted run
stored on disk. Conceptually, NEXSORT processes the input docu-
ment bottom-up, collapsing subtrees into their roots until only the
root of the entire tree remains. In the output phase, NEXSORT per-
forms a depth-first traversal of the collapsed tree to generate the

final sorted document. Generated sorted runs need to be accessed
in a random fashion during the merging phase, therefore penalizing
I/O. Furthermore, the choice of threshold is a critical part for the
performance of NEXSORT making performance dependent on the
structure of the document. For documents like EMBL [11], where
only a few subtrees are large, this approach is very inefficient. Our
algorithm, by making efficient use of compression and carefully
laying out runs on external memory, is able to achieve much better
I/O performance, as we shall see in Section 6.

3. SORTING HIERARCHICAL DATA
We now present our algorithm: Hierarchical ExteRnal MErge-

Sort – HERMES, an adaptation of external mergesort for hierarchi-
cal data. HERMES runs in two phases: (a) first, the hierarchical
document is “vertically” split into sorted runs on disk; (b) then, the
runs are iteratively merged into greater ones until the final sorted
output is generated. HERMES extensively exploits the fact that one
needs to perform key comparisons only for nodes having the same
parent node (i.e., siblings). Nodes belonging to different subtrees
do not need to have their keys compared. This enables us to apply
local replacement selection for every in-memory node.

3.1 Sort Keys
A hierarchical dataset is a tree whose nodes have an identifier

(or label), a type, and an optional value (or payload). To sort hier-
archical datasets we have to specify a sorting criterion for nodes.
This criterion may include the node label, its value, a combination
of the two, or a well-defined subset of the subtree rooted under that
node.1 We assume a hierarchical sort key specification (key speci-
fication for short) similar to [4, 5]. The key specification K is a set
of key definitions k = (Q,S), where Q is an absolute path of node
labels and S is a sort value expression. We assume that path Q of
key definition k is unique among all elements in K. We distinguish
between keyed and unkeyed nodes. Keyed nodes have a path that
matches path Q of a k ∈ K. The sort expression S determines the
values on which nodes having path Q are sorted. We refer to these
values as sort keys.

For sorting, every node has an additional sort key attribute. Given
a key specification K, we assign each keyed node its key value in a
preprocessing step as described in [5]. For unkeyed nodes, the sort
key is the maximum value of the sort domain, followed by a place-
holder denoting its position in the input. For each node n, let its
local key (or simply key) k(n) be the value of its sort key attribute.
The key is the local ordering criterion by which we decide the rank
of a node with respect to its siblings (of the same type, if different
types are present). To sort the entire tree, one has to recursively sort
the children of every non-leaf node, starting from the root. We as-
sume the local key of a node to be unique among all of its siblings
of the same type (we can always ensure uniqueness by appending
the position or the identifier of the node to the local key). Let the
absolute key a(n) of a node be the concatenation of the local keys
of all its ancestors: the concatenation of the local keys for all nodes
from the root of the tree up to n. Therefore, the absolute key for a
node is given by its unique path from the root if we replace each
node label in the path with the corresponding local key value.

Using absolute node keys we can define the total ordering cri-
terion for all nodes in the tree. Two nodes x and y are equal iff
they have the same absolute key. In all other cases, and for any two
nodes x and y, their absolute keys, a(x) and a(y) respectively, share
a proper prefix (at the very least the value of the local key of the

1For sorting trees that exceed main memory, we assume that,
though arbitrarily long, node keys do not exceed the size of avail-
able memory.
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Figure 2: A hierarchical dateset annotated with the local key values for its nodes

root node). Suppose that the common prefix of a(x) and a(y) is of
length c. Then x is less than y iff ac+1(x) < ac+1(y),2 or a(x) is
of length c, where ai denotes the ith local key component of a(x).
Correspondingly, node x is greater than y iff they are not equal and
x is not less than y. Naturally, any node is considered less than any
of its children to preserve hierarchical relationships. The definition
of local keys for unkeyed nodes means that all unkeyed nodes will
follow their keyed siblings in input order in the total ordering. The
children of unkeyed nodes may be keyed, in which case we need to
recursively sort them. A tree is sorted if the children of all nodes
are sorted on their local keys (if they are keyed).

Example 3.1: A hierarchical dataset is shown in Figure 2(a). Each
node is annotated with its local key. The absolute key for node r is
/0/8/12/23; for node t, it is /0/5/20. In Figure 2(b), the same
dataset is shown sorted. 2

Note that the local key value of a node may be a subtree. In
such cases we serialize the subtree into a string and perform string
comparison, when comparing keys. Also, sibling nodes may be of
different type and therefore keyed on different sort value expres-
sions. To address this, we prepend every local key with the type
of the node. We then define a total order on node types to distin-
guish between multiple types of key and for grouping siblings of
the same type in the output tree. If keys are not unique, two sib-
lings may have the same key value even though they are different
nodes. In such cases, we append the position of the node to its
key. The same applies if we want to preserve the order of unkeyed
nodes: we set their local key to be their position, prepended by a
symbol that the node is unkeyed.

In the case that complex keys are present (i.e., if a node has
two or more key paths), the local key of a node consists of the
concatenation of all its key values (possibly prepended by their
path or type) separated by a special character. For instance, if a
node is keyed by the values of attributes firstname and lastname
(possibly found in its payload), its local key can be recorded as
firstname:john,lastname:smith. When comparing two such
nodes, corresponding components of the complex key can be iden-
tified and be compared. If the key of a node n has q key paths, then
the value of the key value for the i-th key path is denoted as k(n)[i].
For two such nodes n1 and n2, of the same type, we define n1 to be
less than n2, i.e., k(n1) < k(n2), when for some j with 1 ≤ j < q,
n1[i] = n2[i] for all 1≤ i < j and n1[i+1] < n2[i+1].

3.2 The HERMES Algorithm
During the first phase of the algorithm, we create sorted runs

using a hierarchy-aware adaptation of replacement selection. Our
goal is to exploit the hierarchical structure. This can reduce the
number of possible sorting outcomes from N! (for a flat file of N
records) to (F!)b(N−1)/Fc · ((N−1) mod F)! for a tree of N nodes

2Here, “<” denotes an arbitrary ordering of local key values. If
the key values are character strings, this is their lexicographical or-
der; if the key values are numbers, “<” corresponds to arithmetical
comparison.

and a maximum fan-out of F [16]. Sorted runs contain the keys in
a compressed form (to eliminate redundancy). During the second
phase, sorted runs are merged to create the sorted output.

3.2.1 Standard external mergesort
External mergesort uses replacement selection to create the ini-

tial runs. For flat data, replacement selection reads the input record
by record and starts filling a min priority heap. When the heap is
full, the first (and thus smallest) item is removed and written to the
first run. Then, it is replaced in the heap by the next record from the
input. The (new) smallest item in the heap is examined. If it has a
key greater than the one just written, it is written to the current run
and replaced in the heap by the next record from the input. Other-
wise, the item cannot be included in the current run and is therefore
marked for the next run. Marking a record implies placing it at the
end of the heap and considering it greater than unmarked ones dur-
ing heap comparisons. At some point, all records in the heap will
have been marked for the next run. Then, the current run will be
closed and the algorithm will start creating the next run. Repeat-
ing this process until the input has been exhausted yields runs that
contain sorted subsets of the input. In the next phase the runs are
merged using a priority heap. The priority heap is initially filled
with the first item of each run and the smallest item is selected and
written to the output run. Subsequently, it is replaced by the next
record of the same run and the process continues. If we use one
memory page for each run being read and one for the output run,
it is possible that the amount of available memory is not sufficient
for all runs to be simultaneously processed. In this case multiple
merge levels are necessary. At each such level l, as many runs of
level l as the memory can accommodate are merged into a single
run of level l + 1, until only one run is obtained at some level ln.
This run contains all the records in sorted order.

3.2.2 Hierarchy-aware replacement sort
For hierarchical data, one needs to sort the children of the root of

the tree on their key values, and then recursively repeat this process
for the root’s children until the whole tree is sorted. The children of
a node can be sorted, however, independently of other node keys in
the tree. Thus, sorting in the traditional sense, i.e., ordering a group
of items on their values, only needs to be performed “locally” at a
node. Our algorithm is based on employing replacement selection
using a priority heap locally at a node to produce a sorted run of its
children.

We use a tree serialization protocol much like XML, i.e., the
tree is stored in a depth-first manner: the start and end of a node
are specified with starting and ending tags and all its children lie
within. All node-specific information (i.e., its type, name, local
key annotation (if any), and payload) follow its starting tag. The
input tree is thus retrieved in depth-first fashion and for each node
we take appropriate action. The output is a file that contains the tree
in the same serialized format, except that children of all nodes are
ordered by their key values (or by their position in the input tree, if
they are not keyed).

The algorithm operates on an in-memory representation of tree
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type: "employee"
key: "4248521" text: "John Doe"

attributes: 
"duty = programmer",
"hired: '5/4/2004'"

Payload

Heap read state = 0

Figure 3: An example of a SortNode

nodes, termed SortNodes. A SortNode holds: (a) the type of the
node (and possibly its position in the document), (b) the key of
the node which can be constructed when the node is first read into
memory,3 (c) a pointer to the payload of the node (the payload
might be text associated with the node, an attribute value, etc.),
(d) an array of pointers to the SortNodes corresponding to the chil-
dren of the node, which is used as a priority heap and is referred
to simply as heap hereafter, and (e) one bit called read state bit.
The read state bit is set to 0 when the start of the node is read and
is set to 1 when the end of the node has been encountered (i.e.,
when the whole subtree rooted at the node has been fully read).
The payload of a node can be reached using the pointer mentioned
above, but plays no role during sorting. For this reason it is copied
elsewhere in memory; further discussion of payloads is deferred to
Section 4.2. A typical SortNode is shown in Figure 3.
Sorting. The sorting phase of our algorithm for the creation of
the initial runs is shown in Figure 4. The input is read tag by tag.
Stack inputPath holds the SortNodes of all ancestors of the last
read node (initially it contains the SortNode for the root). Stack
outputPath holds the SortNodes for the ancestors of the last output
node. Traversal of the input starts at the root node. When the start
tag of a node is encountered, a SortNode is created in main mem-
ory. If the available memory is full, one or more nodes need to be
written to the current run to make room for the newly read node
(lines 7-11). The nodes to be output are the nodes that form the
subtree rooted at a node that (a) has the least absolute key among
all subtrees in the tree, and (b) has been completely read from the
input. The root of this subtree is located by findLeastKey and out-
put by outputSubtree; both procedures will be explained later on.
Nodes are output to the current run until enough memory has been
freed for the new node.

When enough memory becomes available (lines 12-16), we iden-
tify the local key for the node and create a SortNode for it (with its
read state bit set to 0). The new SortNode is inserted as a child to its
parent’s SortNode: it is pointed to by an element of the heap array
of its parent’s SortNode. This is performed by procedure insertN-
ode of Figure 4. If the first place in the heap of inputPath.top() is
free, then a pointer to the new SortNode is inserted there; other-
wise the pointer is inserted at the end of the heap. If the first place
of the array is free, it means that the array had the heap property at
some point in time, after which its first element was removed (i.e.,
it was output to a run). Thus, placing the new SortNode in the first
place of the array enables us to maintain the heap property with a
single call to heapify. We use the terminology of [9] with respect to
heap operations: buildHeap constructs a heap from an array, while
heapify (0) maintains the heap property of the array when its first
element is removed and substituted by a new one. Once the SortN-
ode is connected to its parent, it is pushed to the top of inputPath,
so that the top of inputPath always holds the SortNode for the cur-
rently processed node. When the end of a node is encountered, the
top of inputPath corresponds to its SortNode. The SortNode’s read
state bit is set to 1, marking that the subtree rooted at the node has

3If the key of a node is the value of one of its descendants, we
assume the node has been annotated with this value in a previous
annotation step, as in [5], so that its key can be found locally.

Algorithm 1: HERMES - Sorting Phase (Tree T )
1. Stack inputPath
2. Stack outputPath
3. while (the input has not been exhausted)
4. Read the next tag from T
5. if (a start tag was encountered)
6. Read the new node n
7. while (not enough memory left for n)
8. SortNode min = findLeastKey ()
9. outputSubtree (min)
10. free(min)
11. end while
12. Extract the local key of n
13. Create a SortNode sn for n
14. sn.readstate = 0
15. insertNode (inputPath.top(), sn)
16. inputPath.push(sn)
17. else /* an end tag was encountered */
18. inputPath.top().readstate = 1
19. inputPath.pop()
20. end if
21. end while

Procedure insertNode (SortNode p, SortNode sn)
22. if (the first place in p.heap is free)
23. insert sn at the first place of p.heap
24. else
25. insert sn at the end of p.heap
26. return

Procedure outputSubtree (SortNode root)
27. Write root to current run
28. sort (root.heap)
29. for each (SortNode cn child of root)
30. outputSubtree (cn)
31. free(root)
32. return

Figure 4: The sorting phase of HERMES

been fully read; the inputPath stack is then popped (lines 17-20).
The path to the parent node of the most recently output subtree

is maintained in stack outputPath (initially this stack only contains
the SortNode for the root of the tree). For each node in outputPath,
the algorithm stores the key value of its last output child. This
enables heapify to identify children nodes that have key values less
than that key value and mark them for the next run by moving them
to the end of the heap (i.e., by considering them “greater” than their
siblings with keys greater than the last output key). Note that the
memory space required for storing this information is equal to the
size of the outputPath stack. To keep the presentation as simple as
possible, we omit details of how this information is implemented.
It suffices to note that when the array of a SortNode has the heap
property, the children of the node that should be written to the next
run are all placed at the end of the array.
Subtree output during sorting. We now turn to procedure find-
LeastKey (shown in Figure 5), which selects the next node (or sub-
tree) to be output when memory is full. The algorithm locates the
root of the subtree that (a) has the least absolute key that is greater
than the last key output to the current run, and (b) has been fully
read. When findLeastKey is called, the top of outputPath holds
the parent of the previously output node. Using getLeastChild,
we obtain the minimum child of the top of outputPath. Procedure
getLeastChild, shown at the bottom of Figure 5, operates on some
SortNode p. It initially checks if the first element in p’s heap array
is free. This happens when no new child of p was read since the
last time a child of p was output; then, the last element of the array
is brought to the first position. Otherwise, a new node has been in-
serted as the first element of p’s heap array. In both cases, heapify
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Procedure: findLeastKey ()
1. SortNode sn = getLeastChild (outputPath.top())
2. while (all children of sn have been written)
3. free(sn)
4. sn = getLeastChild (outputPath.top())
5. outputPath.pop()
6. end while
7. while (sn == null)
8. outputPath.pop()
9. sn = getLeastChild (outputPath.top())
10. end while
11. if (outputPath is empty)
12. Start a new run
13. outputPath.push(root of the tree)
14. Write the root of the tree to the new run
15. end if
16. while (the end of sn has not been read)
17. sn.buildHeap()
18. outputPath.push(sn)
19. Write sn to current run
20. sn = the first item of sn.heap
21. end while
22. return sn

Procedure getLeastChild (SortNode p)
23. if (the first place in p.heap is free)
24. move the last element of the heap to the front
25. p.heapify (0)
26. if (all children of p are marked for the next run)
27. mark p for the next run
28. return null
29. else
30. return the first item of the heap

Figure 5: Procedures findLeastKey and getLeastChild

is called to adjust the heap. A more complex case arises when
(a) p is the top of both the inputPath and the outputPath, (b) at
least one child of p has been output, and (c) two or more children
of p are read consecutively into p’s heap (which has already been
constructed using buildHeap) before any child is output. In this
case, buildHeap would have to be called again. To avoid this we
force a child of p to be output before the second consecutive child
of p is inserted as the first element of p’s heap array. This case is
not shown in insertNode, however, to keep the presentation simple.
Procedure getLeastChild returns the first item of the heap, thus the
node with the least key value. The only exception is the case when
all children of p have been marked for the next run; this marks p
for the next run as well.

Returning to findLeastKey, we first dispose of nodes of the out-
putPath that have been fully output (lines 1-5). A node has been
fully output if it has been fully read and its heap array is empty.
Next, while the top of the outputPath stack has all its children
marked for the next run, we ascend the tree by popping the stack to
find the greatest ancestor that does not have all its children marked
for the next run (lines 7-10). If no such node has been found after
the root of the tree has been popped, the current run is closed and
a new run has to be created (lines 11-15). The root of the tree is
output to the new run and pushed onto the outputPath stack. At this
point, we have reached a node some children of which are eligible
to be written to the current run. However, if the subtree rooted at
this node has not been fully read yet we need to descend into the
tree to find such a complete subtree (lines 16-21). While descend-
ing, nodes are visited for the first time since the creation of the cur-
rent run; therefore, we call buildHeap for each and push onto the
outputPath stack their child with the least key value (without call-
ing getLeastChild– it will always be the first element of the heap
array). As we traverse a path of the tree we output visited nodes
(line 19). The procedure returns the node closest to the root after

the iteration (line 22).
The fully read node returned by findLeastKey is passed to out-

putSubtree (shown in Figure 4). The absolute key for the root of
the subtree is smaller than all the subtree’s nodes (as it is their pre-
fix) so it precedes them in the output run. After the root of the sub-
tree is output, outputSubtree sorts the root’s children (all of which
are present – line 28). It then recurses until the whole subtree has
been sorted and written to the current run (lines 29-30). At the same
time, the memory occupied by the subtree is freed (line 31).

Example 3.2: For the dataset of Figure 2 we show a part of the sort-
ing phase in Figure 6, assuming that seven nodes fit in main mem-
ory. In Figure 6(a), node 3 has just been read and inputPath.top()
points to node 8, the parent of the last read node. Since memory is
full, the tree is traversed from the root towards the leaves, at each
step heapifying and following the pointer to the child with the least
key value. In Figure 6(b), the state of the system when the heap for
node 8 has been constructed is shown. Stack outputPath points to
that node, as it is the parent of the node to be output. In Figure 6(c),
that node has been output and at the next step (Figure 6(d)), node
1 has been read and placed in the first place of its parent’s heap.
Node 8 has then been fully read and inputPath is popped. A node
needs to be output again and heapify is called for the heap of node
8. Since 1 is less than 3, the key of the last written node, node 1 is
placed at the end (shown in Figure 6(e)). Node 9 is then output and
the next node is read from the input. Note that at the next output
step, the subtree rooted at node 12 will be output as a whole, while
node 1 will be written to the next run. 2

Node serialization in runs. Keys are written to disk runs in a
compressed form, as all absolute keys in the tree share common
prefixes. Had absolute keys been written uncompressed, the run
files would be polluted with redundant information. This would
not only be wasteful in terms of secondary storage, but also would
heavily increase the I/O cost of writing each run to disk and sub-
sequently reading it back in during merging. We use a typical tree
compression scheme. Each time a node is output to the current
run, its type, local key value and payload are serialized to the disk,
preceded by the following special characters:

• A “|” if the node is a sibling of the last written one.
• A “/” if the node is a child of the last written one.
• A “^” for each level in the tree that the node is higher than

the last written one.

Merging. During the merging phase, the sorted runs will be merged
to produce the final output. One memory page is used as the input
buffer for each input run and one page as the output buffer of the
resulting merged run. As with external mergesort for flat data, it is
possible that the available physical memory does dot suffice for all
sorted runs to be merged in one merging phase. In this case more
than one merging levels are required [13]. Merging at each level
is identical from an algorithmic perspective, thus we only describe
the algorithm for a single merging phase.

The merging algorithm is shown in Figure 7. Nodes are read
from the sorted runs into memory. When a node needs to be out-
put a hierarchical priority queue, similar to the one used during
the sorting phase, is used to locate the node with the least absolute
key. This node is output and the next one is read from the run to
which the output node belonged (lines 6-8). Identifying the node to
output (line 5) is performed by findLeastKey, but with some mod-
ifications with respect to the sorting phase. The main difference is
that the first element of a SortNode’s heap array is always greater
than the one previously written from that heap to the current run.
This means that if a node n is visited by findLeastKey, then the
subtree rooted at n will be written entirely to the output run before
findLeastKey leaves the node. Thus, findLeastKey only pops a
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Figure 6: An example of the sorting phase for the creation of the initial runs

Algorithm 2: HERMES - Merging Phase (Run [] runs)
1. for each run file r in runs
2. readNextLeaf (r)
3. end for each
4. do
5. SortNode min = findLeastKey ()
6. let r′ = run from which min was read
7. Write min to the output run
8. readNextLeaf (r′)
9. while (not all runs have been exhausted)
10. return

Procedure readNextLeaf (Run r)
11. while (a leaf node has not been reached)
12. Read the next node n from r
13. sn = lookUp (r.path.top(), n)
14. if ( sn == null)
15. Create a SortNode sn for n
16. insertNode (r.path.top(), sn)
17. end if
18. inputPath.push(sn)
19. end while
20. return sn

Figure 7: The merging phase of HERMES

node from outputPath (line 8 in Figure 5) when the subtree rooted
at this node has been written completely. Note that there is no way
one can tell if the subtree rooted at a node has been entirely read
or not without reading the next symbol of all runs that contain chil-
dren of that node. Therefore, findLeastKey only returns leaf nodes
during the merging phase, and outputs internal nodes as it descends
to find the leaf nodes. The node returned by findLeastKey is writ-
ten to the output run and the next node from the run from which
the output node came is read. The process ends when all runs have
been exhausted.

Note that each time we read from a run, we read as many nodes
as required to reach a leaf, accomplished through procedure read-
NextLeaf of Figure 7. Always reaching a leaf ensures that when
an internal node has been read, at least one of its children will have
been read as well. For each input run we maintain a stack, termed
path, that holds the ancestors of the last read node from that run.
Initially, path contains the SortNode for the root of the tree (which
is the first node written to all runs given the run serialization proto-
col). Note that an internal node may appear in more than one run
(i.e., its descendants may appear in multiple runs). When an inter-
nal node is read, we check if it is already present in the heap of its
parent’s SortNode (line 16). If the node is already there, no new
SortNode is created; otherwise, a SortNode is created and inserted
into its parent’s heap (lines 14-17).

4. ALGORITHM ANALYSIS
In this section we study the theoretical properties of HERMES

with respect to the size of the initial sorted runs and the I/O cost
of the algorithm. We show that our algorithm maintains the most
important advantages of external mergesort with replacement selec-
tion for the creation of initial runs. At the same time it does not re-
peat redundant information both in main memory and on disk, and
does no redundant comparisons between nodes. We also present
how the core algorithm takes advantages of the hierarchical struc-
ture to boost its performance.

4.1 Run Size
For flat data, the average size of a run produced by replacement

selection is twice the size of the memory used [14]. Hereafter, we
refer to the “size” or “length” of a run not in terms of bytes, but
in terms of the number of nodes that it contains. The same applies
to the size of main memory. For standard external mergesort each
run is expected to contain twice as many records as can fit in a full
main memory priority heap. After the priority heap becomes full,
its size remains constant: before a new record is inserted into the
heap, one is first output to the current run (and the heap shrinks
when the input has been exhausted). We now prove that the initial
runs created by HERMES have the same property:

Theorem 4.1: The average size of a run is twice the size of avail-
able main memory for sorting. 2

PROOF. Consider the priority heap hn of a node n in main mem-
ory, which holds pointers to the children of n. The size of hn, which
we denote as |hn|, grows as children of n are read from the input.
When the first child of n is to be output to the current run, hn stops
growing and from that point on its size remains constant. This is
because from that point on, as explained in Section 3.2, before a
new node is to be inserted into hn, one node from hn is output to
the current run. When all children of n have been read, hn begins
to shrink. In other words, HERMES outputs the children of n in the
same order that standard replacement selection would output them
if hey were records of a flat file and in the same number of runs.
Consequently, for each node n the expected number of n’s children
written to the current run is twice the size of hn, i.e., twice the size
of hn when the first child of n is output.

Let m be the maximum number of nodes that fit into memory and
consider the point in time t0 at which a new run is created. At that
point in time the memory is full, i.e., a node needs to be written to
the run (the first node of the run). At t0 the size of the heap hn of a
node n (1 < n < m) is |hn|0. All |hn|0 children of n will be written to
the new run, since each one of them is neither marked for the next
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run at t0, nor will ever be marked for the next run (as all of them are
present when output to the run starts). When the first child of node
n is to be written to that run at a later time ti (ti > t0), the size of hn
will be either equal to |hn|0 (if no child of n was read in the interval
[t0, ti], i.e., the node had been fully read at t0) or greater than |hn|0
if more children of n were read during that interval. In both cases
|hn|i ≥ |hn|0 holds. However, the expected number of children of
n that will be written to that run is 2|hn|i, i.e., the total number of
nodes written to that run is:

n=m

∑
n=1

2|hn|i = 2
n=m

∑
n=1
|hn|i ≥ 2

n=m

∑
n=1
|hn|0

At time t0 the memory is full and holds m nodes. Of these nodes,
all but the root of the tree are pointed to by some heap h`, that is
∑

n=m
n=1 |hn|0 = m−1 u m for large values of m. Hence,

n=m

∑
n=1

2|hn|i ≥ 2m

holds.

From the description of the algorithm it follows that each node
appears only once in main memory, not only during the creation
of the initial runs, but also during the merging phase. Also, nodes
appear only once in the sorted runs; only the key value of some
internal nodes may be written to more than one runs, at most once
in each run, and only when it is necessary for the reconstruction of
the subtree that the run represents. More importantly, the algorithm
only compares local key values of sibling nodes. Never are absolute
keys used to compare two nodes that belong to different subtrees.

4.2 I/O Behavior
Regarding the I/O cost of HERMES, suppose that available mem-

ory is M memory pages. During the merging phase, M−1 memory
pages are used for reading the input and 1 page is used to write
to the output run. If the total size of the input tree is T memory
pages then each initial run will have an average size of 2(M− 1).
Also, since M− 1 buffers can be used for merging, there are go-
ing to be dlogM−1d T

2(M−1)ee levels of merging. Adding the first
pass over the input to create the initial runs, we have that there will
be 1 + dlogM−1d T

2(M−1)ee passes over the input. In each of these
passes, the whole tree is read and written to disk. This makes a
total I/O cost of 2T ·

(
1+ dlogM−1d T

2(M−1)ee
)

.
As pointed out in [13], one of the main concerns with replace-

ment selection is how one can handle the payloads of the nodes that
reside in main memory at any given time, i.e., the payloads of the
nodes whose keys are in the heap at that time. If these nodes are
kept in the original buffer pages there is a great waste of space: only
half of the nodes of any given page are expected to be in the prior-
ity heap of their parent node at any given point in time. This would
mean that half of the available memory is not effectively used for
sorting keys. Therefore, the benefits from replacement selection are
cancelled (and quicksort could be used instead, probably yielding
better results). As also pointed out in [13], the solution to this prob-
lem is to copy the payloads of those nodes to a temporary space in
memory until they are written to the run, so that no space is wasted.
Assuming that nodes of the same type have similar size, this can be
a viable solution. However, large variations in the size of the nodes
of the tree require complex and potentially overhead-inducing in-
memory management primitives.

Double buffering certain pages during the merging process is
also a technique that can improve the performance of our algorithm.
For instance, using more than one memory pages for the output run
at each merge level can eliminate the need for the CPU to wait for a

write I/O call to complete after the output buffer is flushed (as is the
case if a single output buffer is used). Regarding the input buffers,
the situation is somewhat different. Reserving two memory pages
(or more) per input run would reduce the number of runs we can
merge by half. What we can do is reserve a number of k memory
pages in order to prefetch the next page from the k input buffers
that contain one of the k smallest maximum keys among all buffers
(since we then know that the next page to be read will be the next
from one of those k runs).

4.3 Improvements
We now present how the hierarchical structure has been further

exploited to improve the core algorithm.
Processing entire subtrees. A useful optimization arises when all
descendants of a node n have been read into main memory and the
first needs to be output. In that case, the whole subtree rooted at
n is output, with the children of nodes of that subtree being sorted
(see Section 3.2). As n will be the first node of the subtree to be
written, one can place a mark on the run file indicating that the
whole subtree follows, i.e., all descendants of n are written to that
same run, following n. That way, when n is read during the merg-
ing phase, we know that it is followed by the entire subtree rooted
at n. Therefore, only n needs to be brought to memory and be
placed in the heap of its parent. The rest of the subtree needs not
be constructed in main memory. When n is to be output, the sub-
tree of n is copied from the input run to the output run without any
in-memory processing, as it is already sorted. Furthermore, if this
subtree spans many pages, these pages can all be prefetched.
Properties of runs. We now turn to the properties of initial runs.

Lemma 4.1: A group of nodes that co-exist in memory at some
point in time will be written either to the same run, or to two con-
secutive ones. 2

PROOF. During the creation of the initial runs, a node that has
been read from the input will be written either (a) to the current
run, if it has a greater key than all its siblings that had been written
to the current run when the node was read, or (b) to the next run
otherwise. Thus, if two nodes n1 and n2 co-exist in memory at
some point in time, they will eventually be written either to the
same run or to consecutive ones. That is, if ri is the current run, n1
and n2 will either both be included in ri, or both in ri+1, or one of
them in ri and the other in ri+1. Following an inductive argument,
it is easy to see that the same applies for any number of nodes that
at some point in time co-exist in memory.

We shall now show that this is the case for all groups of sibling
nodes. Recall that the input tree is read depth-first. For this reason,
all nodes with the same parent will be read as a batch. Let n f be
the first node of the batch written to the output and nl the last one.

Lemma 4.2: Every node of the batch other than n f and nl will at
some point in time co-exist in memory with some other node of the
batch, i.e., with one of its siblings. 2

PROOF. The statement holds due to depth-first traversal. As-
suming it does not hold, there must be at least one run of length 1.
Any other case implies that at least one node that does not belong to
the batch has been read between two nodes of the batch. The latter
is eliminated by the depth-first traversal of the tree. The former is
negligible since it implies that the memory allocated for the heap
can only hold one node (i.e., it has a size of 1); fortunately, we have
been able to use larger memory sizes for building heaps!

Thus, all co-existing nodes will eventually be written to consec-
utive runs, say, rw . . .rz. The only nodes of the group not accounted
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for so far are n f and nl . To show that all groups of sibling nodes
will be placed in consecutive runs, it suffices to prove the following.

Lemma 4.3: Node n f will be written either to rw−1 or to rw and nl
will be written either to rz or to rz+1. 2

PROOF. The trivial cases are (a) when n f and nl co-exist with
some other node of the batch in their parent’s heap at some point
in time, or (b) they are written to rw and rz respectively; then the
statement holds. If neither case holds, we need to show that n f will
be written to rw−1 and nl will be written to rz+1. Therefore, n f
is the only node of the batch written to rw′ (w′ < w) and nl is the
only node of the batch written to rz′ (z′ > z). Then, for n f we have
that when it was to be written to a run, it was the only entry in its
parent’s heap (otherwise we fall into the first trivial case mentioned
above). This implies that memory became full just when n f was
read. After it was output to the run, the next node read, say, ng,
was a sibling of n f , as input is processed in a depth-first manner
(if n f has no siblings the lemma holds). If the key of ng is greater
than the key of n f , then ng is written to that same run, i.e., w≡ w′.
Otherwise, it is marked for the next run and outputting continues
from a sibling of ng’s parent. The parent of ng is visited again by
the algorithm when the next run is being produced and ng is output
to that run. In that case, w≡ w−1. Similar arguments show that nl
will either be written to rz or rz+1.

A different merging scheme. The previous lemmata prove that
all children of a node are written in consecutive runs. During the
merging phase, one can utilize this fact when not all siblings of a
node have been read into its parent’s heap and the first sibling is
written to a run. A bit of extra book-keeping is needed to identify
the first and last of these consecutive runs (i.e., runs pertaining to
the set of siblings). Assuming these runs are no more than k, we
can prefetch at least one page from each run and in this way avoid
having the CPU wait for I/O to complete while merging the siblings.

We shall now present a different merging scheme that takes ad-
vantage of all nodes in a batch being written to consecutive runs.
In the following we assume that all children of a node n have been
written to k consecutive runs rw, . . . ,rw+k. Such information can be
recorded for n during the replacement selection phase and stored in
the SortNode for n, which remains in memory until the last child of
n is flushed to a run. During the merging phase, runs rw, . . . ,rw+k
can be merged into a single run rw,w+k. Before we start merging
these runs, we can be certain that rw,w+k contains all children of n
in the proper order. We therefore record this when the first node of
the batch is written during merging. During the next merging level,
when n is read, we can identify that this run contains the whole sub-
tree rooted at n, so that we can output all nodes of the batch con-
secutively, similarly to what we mentioned for the case of merging
initial runs. Again, in this way we avoid the cost of re-constructing
the subtree in memory and inserting its nodes into the priority heaps
of their parents. Considering the prefetching techniques mentioned
earlier this can turn into a significant advantage. The only caveat
is that this technique is applicable only if multiple merging levels
are needed. In case of a single merging level, this variation will
probably have worse performance since it will introduce another
pass over the records of rw,w+k, if these runs rw . . .rw+k are merged
individually. If multiple merging levels would be used, however,
we can use this technique for disjoint groups of k runs. The larger
the fan-out of the tree, the greater the length of a batch will be and,
thus, the more efficiently this technique is expected to perform.

5. ARCHIVING REVISED
The main motivation for HERMES was archiving of scientific

datasets. We now focus on merging a new sorted version of a hi-
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Figure 8: The archiving process

erarchically represented database into an existing sorted archive.
Having the incoming version and the archive sorted allows us to
overcome restrictions on archive sizes due to main memory merg-
ing. The process is outlined in Figure 8. The three main steps
are: (a) assigning key values to nodes in the input version given
a key specification, (b) sorting nodes in the new version accord-
ing to their key values, and (c) merging the sorted archive and the
incoming version into a new version of the archive, which is both
annotated and sorted. During merging, corresponding nodes are
identified based on their key values. The archiver stores each node
only once in the resulting archive and annotates it with a timestamp
representing the sequence of version numbers the node appears in.
Keys and Annotation. The local key of an element is used to dis-
tinguish it from its siblings, as described in Section 3.1. We use
hierarchical key specifications as in [4, 5], where all keys of a node
are defined relative to its parent. For archiving we make some ex-
tra assumptions on the key structure of Section 3.1: key values are
unique among siblings, i.e., the document adheres to the key spec-
ification. Also, a node below an unkeyed node in the tree cannot
be keyed itself. Thus, each key specification defines the maximum
depth at which a keyed node can be found. We say that a node is a
frontier one, if it is the deepest possible keyed node on a path from
the root; no unkeyed nodes exist above frontier nodes. We assume
that nodes that exist beneath some key path cannot be keyed them-
selves. This ensures that key values do not change as a result of
reordering keyed nodes when sorting or merging them (see [4, 5]
for a more comprehensive discussion of these assumptions). One
pass over the new version of the database is sufficient to annotate
the input with key values [5]. The archive does not need to be an-
notated as its elements are already annotated with their keys.

Merging sorted documents. Nested merge (a) identifies cor-
responding nodes in the archive and the incoming document and
(b) merges them into single node in the new archive by recursively
merging their corresponding children. The efficiency of identify-
ing corresponding children is greatly improved when the document
and the archive are sorted. We then perform the merging in a single
depth-first scan of the document and the archive.

The algorithm is shown in Figure 9. It accepts as input: (a) a
node from the archive (archNode), (b) a node from the new version
(docNode), (c) a set T of timestamps at which archNode existed,
and (d) the timestamp of the new version t. Nodes archNode and
docNode have been identified as the same, i.e., they have the same
key values. For each archive node we can call its method hasTimes-
tamp() that returns true if the node has a non-inherited timestamp.
In the beginning, if archNode has such a timestamp, we adjust it to
include the timestamp of the new version and write the node and
its timestamp to the new archive (lines 1-3). We traverse depth-
first the subtrees rooted at archNode and docNode to merge them.
In each step, childA and childD are the current children of archN-
ode and docNode being examined, respectively. If the key value
of childA is less than that of childD (line 7), then childA is output
and the next child of archNode is read (line 13). When outputting
a node we write the node with its time annotation (if any) and the
subtree rooted at the node to the new archive. If childA has an in-
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herited timestamp, it is output with T − t as timestamp, as it is not
present in the new version. Otherwise, it is output with its own
timestamp (lines 8-12). If the key of childD is less than the key
of childA, childD is output, annotated with t (the timestamp of the
new version) and the next child of docNode is read (lines 14-16).
Otherwise, childA and childD have the same key value, i.e., they
are the same node. They are then merged recursively (line 19) un-
less childA is a frontier node. If so, no merging is required and
the whole subtree rooted at childA is output, with the timestamp
of the new version added to the timestamp of childA if the latter is
different than the timestamp of archNode (lines 21-25). The next
children of both archNode and docNode are then read (lines 26-27),
with null values indicating that all children have been read.

Recall from Section 3.1 that when comparing a keyed node with
an unkeyed one, the keyed node is always found to be less and
therefore all keyed nodes will be processed before their unkeyed
siblings (if any). This means that if childA is unkeyed at some
time, all remaining keyed children of docNode (i.e., childD’s) will
be processed in lines 14-17. Respectively, if childD is unkeyed, all
remaining keyed children of archNode will be processed in lines 7-
13. Also, an unkeyed node from the archive is always considered
less than an unkeyed node from the new version. Hence, if both
childA and childD are unkeyed at some point in time, childA will
be output in lines 7-13. Alternatively, one could compare unkeyed
nodes on their value to avoid repeating unkeyed nodes with the
same value in the output. In line 30, all children of archNode or
docNode will have been output. Any remaining children below
the other node are output with their respective timestamps adjusted
(lines 31-42). Procedure nestedMerge is called on the roots of the
archive and the new version; on exit the new archive is sorted.

Archiving-aware sorting. Using HERMES as the sorting al-
gorithm, we further improve the efficiency of merging. First, we
combine the merging of sorted runs with the nested merging of the
archive. This saves us one full scan of the new version. Further-
more, the subtrees under key path values and those under nodes
that are keyed by subtree expressions are stored redundantly as key
values and as normal nodes. We store these nodes only once in the
corresponding key values and extract the respective subtrees when
writing the document. This approach reduces I/O cost significantly,
as we remove ca. 50% of the nodes that need to be kept in main
memory and read/written when sorting.

6. EXPERIMENTAL RESULTS
HERMES has already been deployed as part of the archive man-

agement system XARCH [15]. XARCH is a stand-alone Java appli-
cation that allows one to maintain, populate, and query archives of
hierarchical data with a key specification. XARCH uses HERMES
for sorting incoming versions before applying nested merge (as in
Section 5). We also wanted to evaluate the performance of HER-
MES under various workloads as a stand-alone hierarchical data
sorting solution. To that end we re-implemented it in C++. HER-
MES was compiled using the GNU C++ compiler, version 4.1.2. All
our experiments were run on an Intel Core 2 Duo processor clock-
ing at 2.33GHz with 2GB of physical memory. The box was run-
ning Ubuntu Linux 7.10 with the 2.6.22 kernel. We report perfor-
mance for both Java and C++ implementations. The first presents
the archiving performance of HERMES in the context of a prototype
implementation; the second presents the “raw” sorting performance
for arbitrary hierarchical data. For each experiment we report the
average wall clock time of five runs over cold data.
Archival testing. We used XARCH to archive ten major releases of
the SwissProt database [12], i.e., releases 40 (October, 2001) to 49
(February, 2006). The first release has 17.1 million XML elements
and a size of 403MB while the last has 51.6 million elements and

Algorithm 3: nestedMerge (archNode, docNode, T , t)
1. if (archNode.hasTimestamp())
2. T = T + t
3. Write archNode with T as timestamp
4. childA = archNode.nextChild()
5. childD = docNode.nextChild()
6. while (childA 6= null or childD 6= null)
7. if (childA < childD)
8. if (childA.hasTimestamp())
9. output(childA, childA.timestamp())
10. else
11. output(childA, T − t))
12. end if
13. childA = archNode.nextChild()
14. else if (childD < childA)
15. output(childD, t)
16. childD = docNode.nextChild()
17. else
18. if (childA is not a frontier node)
19. nestedMerge (childA, childD, T , t)
20. else
21. if (childA.hasTimestamp())
22. output(childA, childA.timestamp()+t)
23. else
24. output(childA)
25. end if
26. childA = archNode.nextChild()
27. childD = docNode.nextChild()
28. end if
29. end if
30. end while
31. while (childA 6= null)
32. if (childA.hasTimestamp())
33. output(childA, childA.timestamp())
34. else
35. output(childA, T − t)
36. end if
37. childA = archNode.nextChild()
38. end while
39. while (childD 6= null)
40. output(childD, t)
41. childD = docNode.nextChild()
42. end while

Figure 9: Nested Merge of sorted trees

a size of 1.2GB. We used 300MB of main memory for sorting. In
the first archiving step, version 40 is added to the empty archive; in
each following step a new version is added to the archive. For each
archiving step me measured the time for annotating and sorting the
new version, and the time for merging it with the existing archive.
We report these times in Figure 10, showing the size of each ver-
sion next to the version number. The sorting time increases linearly
with the size of each version. The first archiving operation is the
shortest, as there is no existing archive. For the rest of the oper-
ations, merging needs one pass over the existing archive and one
pass over the new version. As the size of both the archive and the
new version grows, merging takes slightly longer. The size of the
archive after all ten operations was 2.28GB. Overall, merging time
is comparable to sorting time for all operations after the first one.
Sorting testing. We implemented the algorithm of Section 3 and
the improvements of Section 4. To create the input data we used a
custom data generator. Each input file was an XML document, each
node of which had a randomly generated character string as its la-
bel. We used the label of a node as its key. Node label lengths, and
thus key value lengths, were variable. The generator allowed us
to specify the maximum depth of the tree and a maximum fan-out
for all nodes. The fan-out of each node was uniformly distributed
between 0 and the specified maximum. As a result, the average
fan-out was half the maximum. We compare the performance of
HERMES to that of NEXSORT using the original implementation of
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Figure 11: Impact of input size

NEXSORT in combination with the Transparent Parallel I/O Envi-
ronment [10], as in [16]. As suggested in [16], we set the sorting
threshold for NEXSORT to be roughly twice the block size, which,
for our system was 64KB, making the threshold equal to 128KB.

6.1 Impact of Input Size
We first measured the impact of input size on the running times

of HERMES and NEXSORT. We used input trees of a depth of six,
which is a typical depth for most real-world datasets. For each
depth, we generated trees of different sizes by varying the average
node fan-out. For both algorithms, the size of available main mem-
ory for sorting was set to 10MB. The sizes of the input trees varied
between 30MB (or, 1.2 million nodes) and 2.2GB (or, 83 million
nodes). The average length of a node key was set to ten bytes.
The results are presented in Figure 11. We also report under the
“HERMES simple” plot the response time for our algorithm if the
improvements of Section 4 are not used.

In all cases, HERMES performs 8.5 to 10.8 times faster than
NEXSORT. This is due to the way NEXSORT writes sorted runs.
NEXSORT employs a stack over secondary storage to store the next
subtree to be sorted. When a subtree residing in the stack has been
sorted, the sorted subtree is written to disk and a pointer is writ-
ten back to the stack. At any point in time there are multiple such
secondary storage stacks used for book-keeping purposes. Push-
ing nodes onto these stacks and popping them involves disk ac-
cesses. Therefore, during its sorting phase, NEXSORT reads and
writes both to the on-disk stack pages and to the current sorted run
at the same time. This introduces a severe performance penalty. In
addition, NEXSORT accesses the disk in a random pattern when re-
constructing the output tree: it follows pointers to sorted runs that
have not been sequentially written to disk (i.e., one run after an
other). Hence, a lot of time is spent with the CPU stalling for I/O.

On the other hand, during replacement selection for the creation
of initial runs, HERMES accesses secondary storage only for the
purpose of flushing data to the current run. As additional evidence,
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Figure 12: Impact of available main memory

during our experiments we observed that NEXSORT’s reconstruc-
tion time amounted to almost 40% of its total running time. On the
contrary, the merging phase for HERMES took no more than 20%
of the total running time (when a single merging level is required).
As one can observe from the results, the improvements discussed
in Section 4, give another 15% to 25% performance boost to HER-
MES. Thus, we believe such improvements are a worthwhile addi-
tion to the main algorithm and have used them in all experiments.

6.2 Impact of Available Main Memory
In our next experiment, we examined the performance of both

algorithms for different sizes of main memory available for sorting.
We generated an 1GB input tree with 41 million nodes. This tree
was six levels deep and the average node fan-out was set to 35. We
varied the available memory size to seven different values ranging
between 0.5MB to 200MB and measured the running time for both
HERMES and NEXSORT. The results are presented in Figure 12.

When only 0.5MB of physical memory are used, HERMES re-
quires two merging levels. We observed that processing each merg-
ing level takes about 45 seconds, or, about 25% of the total running
time. For larger sizes of available main memory only one merging
level is required and thus the total running time is almost constant.
When the amount of available memory grows much larger than the
amount needed to achieve a single merge level, running time drops
slightly as available memory increases. This is because the average
size of a sorted run grows much bigger and the number of sorted
runs drops, i.e., merging has a smaller fan-in. When only one merg-
ing level is needed HERMES performs almost ten times faster than
NEXSORT, irrespective of the amount of available memory. When
two merging levels are required, HERMES performs about eight
times faster than NEXSORT.

6.3 Impact of Tree Depth
We next examined how the depth of the input tree affects the per-

formance of our algorithm. We experimented with trees three, five,
seven, and nine levels deep. For each of these depths we generated
trees of different sizes (by varying the average fan-out). The results
are presented in Figure 13. As shown, the running time of our al-
gorithm is not heavily affected by the depth of the tree, especially
for trees deeper than five levels. One can observe that the deeper a
tree is, the more efficiently it is sorted by HERMES.

To understand why this is the case, consider trees of the same
size (i.e., equal numbers of nodes) but of different depths. To keep
the number of nodes fixed, shallow trees will have a much greater
fan-out than deep trees. For instance, the largest tree we generated
for each depth had a size of about 1.6GB. However, the average
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fan-out for a tree of depth three is 7,500 nodes, while the average
fan-out for trees of depth five, seven, and nine are 85, 21 and 9
respectively. When sorting using HERMES, the larger the fan-out
of a tree is, the greater the average size of a heap is in main mem-
ory. As a result, each heapify operation takes longer. Moreover,
for a fixed memory size, the probability of a subtree having been
fully read during the sorting phase grows are the fan-out shrinks.
Thus, the algorithm processes entire subtrees more frequently, al-
beit for smaller subtrees. Thus, the improvements described in Sec-
tion 4.3 are more frequently applicable. This behavior verifies our
claim that HERMES takes advantage of the hierarchical structure of
a dataset: it performs better for deeper hierarchies. Also, these re-
sults verify the theoretical expectations of [16]: the possible sorting
outcomes for a tree with a fixed number of nodes increases as the
maximum fan-out of the tree grows.

6.4 Impact of Key Length
We then moved on to evaluate the performance of HERMES with

respect to different key lengths. We used our generator to create
regular trees with the same number of nodes. All trees had a depth
of five and a constant fan-out of eighty. They only differed in the
average length of node keys. We created trees with the average key
length varying from 5 bytes to 180 bytes. For each such tree, we
ran HERMES having set the available main memory to 10MB. The
resulting running times are shown in Figure 14.

As expected, the running time increases linearly with the length
of the key. When longer keys are used all in-memory operations on
keys, such as in-memory copying and comparisons, take longer to

execute. The same applies to secondary storage operations, since
the amount of data to be read/written for each key increases. The
increase in execution time is linear to the length of the keys, which
is also expected since all the aforementioned operations take linear
time with respect to key length.

7. CONCLUSIONS AND FUTURE WORK
We have presented HERMES, an algorithm for efficiently sort-

ing hierarchical data in external memory. HERMES generalizes
widely adopted sorting techniques, such as replacement selection
and external mergesort. We have studied the performance of our
algorithm theoretically and proposed improvements. Experimen-
tal results show that HERMES clearly outperforms competition by
a significant factor and can scale up well to meet real-world needs.

As mentioned, a version of HERMES has already been deployed
as part of the XARCH database archiver [15]. In the near future
we plan to deploy the stand-alone version of HERMES for sorting
arbitrary XML data. We also aim to explore further uses of the al-
gorithm in different application domains. We believe that HERMES
is an optimal solution to the problem of sorting hierarchical data.
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