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ABSTRACT
Several data management challenges arise in the context of Inter-
net advertising networks, where Internet advertisers pay Internet
publishers to display advertisements on their Web sites and drive
traffic to the advertisers from surfers’ clicks. Although advertisers
can target appropriate market segments, the model allows dishon-
est publishers to defraud the advertisers by simulating fake traffic
to their own sites to claim more revenue. This paper addresses
the case of publishers launching fraud attacks from numerous ma-
chines, which is the most widespread scenario. The difficulty of
uncovering these attacks is proportional to the number of machines
and resources exploited by the fraudsters. In general, detecting this
class of fraud entails solving a new data mining problem, which
is finding correlations in multidimensional data. Since the dimen-
sions have large cardinalities, the search space is huge, which has
long allowed dishonest publishers to inflate their traffic, and de-
plete the advertisers’ advertising budgets. We devise the approxi-
mate SLEUTH algorithms to solve the problem efficiently, and un-
cover single-publisher frauds. We demonstrate the effectiveness of
SLEUTH both analytically and by reporting some of its results on
the Fastclick network, where numerous fraudsters were discovered.

1. INTRODUCTION
Internet advertising is crucial for the success of the entire Inter-

net, and has evolved into an ideal choice for small and large busi-
nesses to target their advertisements to the appropriate customers
on the fly. Hence, Internet advertising contributes to the well being
of e-commerce. An Internet advertiser, such as eBay, provides an
advertising commissioner, say, Valueclick, with its advertisements,
allocates a budget, and sets a commission for each customer action,
e.g. advertisement clicking, auction bidding, or purchasing. The
Internet publishers, for instance neopets.com or myspace.com, mo-
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tivated by the commission paid by the advertisers, contract with the
commissioner to display advertisements on their sites. Advertising
covers the running expenses of such sites, and thus, advertising also
supports the intellectual value of the Internet.

The main orchestrators in this setting are the commissioners be-
tween publishers and advertisers, whose servers are the backstage
for targeting and budgeting. Whenever a surfer visits a publisher’s
site, the surfer is referred to the commissioner’s servers. The com-
missioner picks an advertisement to display on the publisher’s site,
and logs the impression (advertisement rendering). If the surfer
clicks the advertisement, (s)he is referred to the commissioner that
logs the click, and clicks-through the surfer to the advertiser’s site.

Since publishers are paid by the traffic they drive to advertis-
ers, there is an incentive for fraudsters to inflate the number of
impressions and clicks their sites generate [1, 3, 14, 18, 25, 27,
28, 30, 34]. Even more, on real networks, we notice some fraud-
sters disguised as publishers, hijack some sites (mirror them un-
der different domains), sign up online with the commissioners for
those sites, provide a PayPal R© account for anonymity, and start
simulating traffic and earning revenue. Equally important is the
hazard of dishonest advertisers simulating clicks on the advertise-
ments of their competitors to deplete their advertising budgets [23,
31], which impedes the campaigns of their competitors. Failing to
identify fraudulent traffic results in bad reputation for the commis-
sioner, and sometimes in paying forfeitures to advertisers [19, 20].
This kind of fraud is jeopardizing, not only the industry of search
engines and Internet advertising, but also the entire Internet [13].

Modern online advertising dynamics entail detecting fraud in
this huge traffic environment in near real-time, as illustrated in Fig-
ure 1. Since advertisers monitor their campaigns online, commis-
sioners provide advertisers with (usually) hourly campaign reports
about the traffic and expenditure of campaigns. These campaign
reports should be almost exact since advertisers change their bud-
gets (or bids on keywords if applicable) based on the traffic qual-
ity and cost [24]. Hence, it is desirable to detect fraud, for the
(hourly) campaign report window, in time less than the span of the
window. If fraud detection lags behind by several window spans,
advertisers experience poor quality of service, since their budgets
will be managed based on misleading campaign reports that reflect
both fraudulent and legitimate traffic. Moreover, debiting advertis-
ers’ accounts, and later crediting them for detected fraudulent pay-
ments, incurs high accounting overhead, and makes fraud detection
non-transparent to advertisers. From a data mining perspective, the
problem scale is challenging, since an average-sized commissioner
receives around 70M records hourly. Thus, a fraud detection sys-
tem should process each traffic entry in no more than 50μs, which
allows for only very efficient algorithms.
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Figure 1: A Framework for How Near Real-Time Fraud Detec-
tion Fits into the Advertising Framework

We focus primarily on publishers’ fraud where a publisher tries
to increase its revenue with fraud traffic. The detection approach
and mechanism can be generalized to advertisers’ fraud. Our ap-
proach for detecting fraud is based on mining the commissioner’s
traffic logs. The main premise of our traffic analysis approach is to
draw correlation between the fraudster’s site and the machines used
in the attack. To circumvent log analysis, fraudsters strive to dilute
the strong correlation between their sites and the machines from
which the attacks are launched [29]. This can be done either on the
side of the attacking machines or on the side of the attackers’ sites.
Hence, an attack is either performed by a single-publisher who gen-
erates traffic from numerous machines, possibly while obliterating
or frequently changing the identification of these machines; or by a
group of fraudsters sharing their resources to launch a coalition at-
tack. This paper, concentrates on single-publisher attacks, which is
the most common case in advertising networks. Detecting single-
publisher attacks complements our coalition attack discovery al-
gorithms proposed in [28]. Detecting these two classes of attacks
leaves no chances for fraudsters to escape. The proposed frame-
work was deployed on one of the major world networks, Fastclick,
and was successfully used in fraud detection.

This paper models discovering single-publisher attacks as a new
problem of finding correlations in multidimensional data. We de-
vise the SLEUTH algorithms for detecting single-publisher attacks
in their most general form. The tunability, effectiveness, and ac-
curacy of the SLEUTH algorithms are demonstrated through com-
prehensive experiments on the Fastclick network. The SLEUTH
algorithms discovered several suspects, most of which were veri-
fied manually to be fraudsters, and their contracts were terminated.

We start by describing the economics of online single-publisher
attack detection in § 2. § 3 presents the detection approach for
single-publisher attacks. The problem model is built in § 4. We
devise the 2-Pass-SLEUTH and 1-Pass-SLEUTH algorithms in § 5
and § 6, respectively, and contrast their performance in § 7. Our
experimental results are reported in § 8. We present the related
work in § 9, and we conclude in § 10.

2. ECONOMICS OF SINGLE-PUBLISHER
ATTACKS

We start by establishing the association between the number of
machines used in a single-publisher attack and the difficulty of de-
tecting the attack. Then, we discuss the economics of detecting
single-publisher attacks as an optimization problem.

2.1 The Association Between Attack
Sophistication and Detection Difficulty

Understandably, the difficulty of detecting an attack increases
as the number of machines from which the attack is launched in-
creases. In its simplest form, launching an attack from one ma-
chine, identified by one cookie-ID, can be detected trivially by
checking for duplicate impressions and clicks [25]. However, launch-
ing an attack from multiple machines is much harder to detect,
since the detection algorithm has to examine the relationship be-
tween each publisher and all the machines generating its traffic.

Although the straightforward use of network anonymization, e.g.
tor.eff.org, is attractive for inexperienced fraudsters, it is not ef-
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Figure 2: Variation Trends of Total Cost of Fraud and Detec-
tion with Fraud Detection Effort
fective. Those services were designed to protect surfers’ privacy.
Hence, they block surfers’ cookies [4]. Therefore, using network
anonymization can be trivially detected by monitoring the percent-
age of cookie-less traffic per publisher and investigating publishers
whose traffic deviates from the norm. Similarly, on real networks,
we notice some novice fraudsters generating a lot of traffic from
ISPs that assign virtual IP addresses to surfers, such as AOL R©, in
order to hide among legitimate traffic. However, the ranges of IPs
of those ISPs are well known, and again, the ratio of the traffic of
any publisher received from those ISPs is highly stable across all
the publishers. Hence, such attacks are easily detected by examin-
ing the ratio of the traffic received from ISPs assigning virtual IPs
as compared to the entire publisher’s traffic.

Hard-to-detect attacks from several machines could be costly and
unscalable to launch. To have a normal percentage of cookie-less
traffic, and a normal percentage of non-virtual ISPs’ IPs, fraudsters
are motivated to either own the attacking machines, or to control
botnets of real surfers’ machines through Trojans in order to use
IPs and cookies of those real surfers. Even when botnets are used,
attacks launched from a botnet of tens of thousands of machines
infected by top-notch Trojans are more sporadic than attacks from
tens of machines infected by off-the-shelf Trojans for two reasons.
First, off-the-shelf Trojan code that is more popular is easily de-
tected with anti-virus software. Hence, the majority of botnets can-
not grow to huge sizes. Second, small botnets can still be powerful
if coupled with high bandwidth [7]. Therefore, launching scalable
attacks entails high cost or requires sophisticated Trojan-writing
skills. This establishes the association between the difficulty of
launching an attack and the difficulty of detecting it.

2.2 Minimizing the Damage of
Single-Publisher Fraud Detection

This association on the fraudsters’ side has its ramifications on
the side of the detection approach, since most attacks are not highly
sophisticated. On the other hand, as we try to detect more sophis-
ticated attacks, we report more honest publishers as suspects (false
positives). Discarding all suspects discounts massive traffic from
honest suspects and forgoes the corresponding lawful revenue. Re-
ducing the forgone lawful revenue requires scrutinizing the traffic
and sales history of suspects via costly human investigation.

From Figure 1, this is even more aggravated by the risk of not
producing accurate campaign reports to advertisers in a timely fash-
ion if not enough investigation workforce is employed [13, 24].
Hence, detecting more sophisticated attacks with very few honest
suspects and producing accurate timely campaign reports are two
conflicting goals. This dilemma incurs tremendous time-critical in-
vestigation cost on the commissioners, which raises the advertising
cost. In the cases where the prices of the campaigns are fixed by
the commissioner and not determined through auctions, it might
force advertisers to switch to other commissioners that have less
advertising cost. On the other hand, not detecting any attacks at
all reduces the campaigns’ effectiveness, and hence, raises the ad-
vertising cost of the commissioner as compared to its competitors.
This also drives advertisers away from the commissioner.

Therefore, a commissioner typically has two extremes on the de-
tection spectrum as shown in Figure 2. One extreme is to employ a
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very aggressive detection algorithm that reports most publishers as
suspects, and employ a massive number of human investigators in
order to detect attacks from any number of machines, and produce
timely campaign reports to advertisers. The other extreme is to em-
ploy a very lenient detection algorithm that reports few suspects,
and deal with the cost of fraud attacks that jeopardizes the commis-
sioner’s effectiveness and reputation. Typically, the commissioner
aims at reducing its suspects, to save on the human cost, while de-
tecting the majority of attacks, which are not highly sophisticated.
This corresponds to the trough of the total cost curve in Figure 2.

2.3 Research Objective
While exactly calculating the optimal total fraud cost is out of

the scope of this work because of lack of measured and estimated
costs of fraud and detection, we provide a tool for the commissioner
to find the sweet spot where the total cost curve becomes almost
minimal. The goal of this work is to provide an algorithmic tradeoff
between detecting attacks from a larger number of machines versus
decreasing the number of honest suspects reported as fraudulent.

Through this research, we reduce the total fraud cost by devis-
ing an effective detection mechanism whose aggressiveness can be
tuned to explore the tradeoff between the fraud and detection costs,
in order to minimize the total cost of single-publisher attacks.

3. DETECTION APPROACH FOR
SINGLE-PUBLISHER ATTACKS

We now discuss the first steps towards detecting single-publisher
attacks. We develop an approach based on how fraudsters can use
their resources to launch scalable attacks. We then use this devel-
opment to present our tunable detection methodology.

3.1 Efficiently Using Resources
Although the fraudster’s resources can be limited, there are intel-

ligent ways to increase the sophistication of the attack. Attacks can
be made very difficult to detect by frequently changing the identifi-
cation (IP or cookie ID) of the attacking machines so that the traffic
appears as if coming from a large number of machines. As fraud
detectives, this makes associating the attacking machines with the
fraudster very challenging.

3.1.1 Frequently Changing the IP
Although the attack might be generated from a limited number

of machines, say 10, the attacker can change the real IP addresses
assigned by the ISP to the attacking machines. Every time a con-
nection (e.g. dial-up) is made to the ISP, the ISP assigns a single
real IP address to the account. There is a chance that disconnecting
and reconnecting changes the IP address assigned to the machine.
However, most ISPs start a session with every connection and as-
sign a new IP only after session expiration. The duration of such
sessions is around 30 minutes [17]. Therefore, attackers have to
disconnect, wait for the session to expire, and then reconnect again
to be assigned a new real IP. This activity throttles the attacking
machine. Even if the fraudsters control a moderate number of ma-
chines, say 100, their bandwidth will be throttled.

As mentioned earlier, connecting to the Internet through an ISP
that uses virtual IPs is trivially detected. Using real IPs and chang-
ing them slows down the attack. This makes changing the cookie
IDs of the machines the most popular way to scale up the attack.

3.1.2 Frequently Changing the Cookie:
The NAT-Masquerading Attack

To make the best use of the IPs, the fraudster can frequently
change the cookie identification of the attacking machines, and
hence, make the traffic resemble that of Network Address Trans-
lation (NAT) boxes. We demonstrate one such attack in Figure 3.

The NAT-Masquerading Attack
begin

For each machine connected to the Internet through a distinct IP
Phase 0: Connecting to the Internet Anonymously

Connect to the Internet through a proxy server
Phase 1: Collecting Cookies

Repeat several times
Load publisher’s site
Move assigned cookie to Bank Folder

Phase 2: Faking Traffic
Repeat forever

Move a random cookie from Bank Folder to Cookies Folder
Simulate an impression or a click

end;

Figure 3: The NAT-Masquerading Attack

The NAT-Masquerading attack is one way the attackers can in-
crease the number of cookies used in the attack. For each machine
connected to the Internet through a unique IP, the attacker starts
without a cookie, requests the publisher’s page, and thus the ma-
chine is assigned a valid cookie with a new ID from the commis-
sioner. This cookie is automatically stored in the “Cookies” folder.
The script moves this cookie to a different folder, and repeats the
process many times. After the machine ends up with a bank of valid
cookies that were assigned by the commissioner, the script selects
a random cookie from the cookie bank, returns it to the “Cookies”
folder, and makes a fake impression and/or click with this cookie,
whose ID is reported to the commissioner. The script returns the
cookie to the bank folder, selects another cookie, and so on.

3.1.3 The NAT-Masquerading Attack Strengths
Attacks like NAT-Masquerading are very attractive for fraud-

sters. A fraudster only needs a small number of IPs, and a script that
is easy to write. The traffic can pass as normal cookie-identified
traffic from numerous surfers behind some NAT boxes. The attack
scales well even from a small pool of IPs.

In addition to its simplicity, and inexpensiveness, we discovered
that the NAT-Masquerading attack is widely used since it is difficult
for commissioners to detect, due to the following reasons:

1. Duplicate detection of cookies is not effective. The NAT-
Masquerading attack interleaves the cookie actions to widely
separate the activities of the same cookie. Hence, the attack
is denser, while impressions and clicks are not duplicated in
a small window of time [25].

2. Duplicate detection of IPs is not appropriate. Because
this attack discredits cookies information, we can only utilize
IPs-based signals to detect the attack. In contrast to cookies,
IPs could be shared by several machines. Therefore, dupli-
cate detection of IPs would erroneously discard legitimate
NAT traffic, and reduce the commissioner’s revenue.

3. Difficulty in matching IPs with fraudsters. The traffic of
a fraudster could be a mixture of legitimate traffic and fraud-
ulent traffic coming from various IPs. In addition, if the
fraudster launches his attack through proxy servers, the traf-
fic from the IPs of the proxy server could be a mixture of the
fraudster’s traffic and genuine traffic of other publishers.

NAT-Masquerading is the most generalized single-publisher at-
tack using any set of IP addresses. We state the following proposi-
tion without proof.

PROPOSITION 1. Using the same number of IPs, any attack us-
ing zero or one cookie, can also be detected using the same mech-
anism that detects attacks with many cookies.

3.2 Shifting the Focus from Cookies to IPs
To detect the generalized single-publisher attacks, the detection

algorithm should go beyond examining cookies. As fraud detec-
tives, we should not rely solely on detecting traffic entries with the
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same cookies [25]. Since the general forms of attacks, like NAT-
Masquerading, reduce the reliability of cookies information, we
should examine the relationship between publishers and IPs. We
should identify outlier activities of publishers with respect to IPs1.
Such abnormalities reflect all attacks as discussed next.

One such abnormality could be a publisher whose traffic is mo-
nopolized by a few IPs. This could be a fraudster using these IP to
launch an attack. However, this measure is overly aggressive, since
some IPs, like those of legitimate NAT boxes, are shared by numer-
ous computers, and could generate most of a publisher’s traffic.

The complementary abnormal behavior, of some IPs directing
a considerable portion of their traffic to a specific site, could re-
veal IPs used by a fraudster. Yet, it could also be a site, like mys-
pace.com2, which is highly popular among numerous IPs.

Thus, we need to normalize the traffic and detect active pairs of
publishers and IPs. We are searching for correlations that do not
reflect the average activity of the IP and the publisher. An inactive
IP should be generating little traffic for most publishers. Similarly,
an unpopular site should receive slim traffic from most IPs. We
are looking for unpopular sites receiving most of their traffic from
inactive IPs that are only active for this specific sites, i.e., sites and
IPs that are strongly coupled.

4. PROBLEM FORMALIZATION
Now, we build a model for detecting attacks from several IPs.

4.1 Modeling the Problem
Abstractly, the incoming traffic entries can be viewed as indepen-

dent elements with two dimensions, the publisher, and the IP. The
event of generating a traffic entry for a publisher, x, has sample
probability P (x). Similarly, the occurrence of an IP, y, has sample
probability P (y). To model the problem, we make the following
assumption.

ASSUMPTION 1. The probabilities, P (x) and P (y), of observ-
ing x and y, respectively, are normally independent.

That is P (x∧y), the sample probability of publisher x receiving
a traffic entry from IP y, is given by P (x)P (y). For example, in a
dataset, let x have P (x) = 0.001, and y have P (y) = 2.5∗10−4, if
x and y are uncorrelated, the commissioner should receive a traffic
entry from IP y to publisher x with probability 2.5 ∗ 10−7.

We model the problem of detecting single-publisher attacks as
identifying publishers correlated with several IPs, which clearly vi-
olates Assumption 1. As we seek weaker correlations, we report
more honest suspects, though such anomalies are the primary sus-
pects that could be investigated, a costly time-critical process. As-
sumption 1 is validated through real network analysis in § 8.2.1,
where we report the number of honest suspects of this assumption.

This is a manifestation of the tradeoff between discovering more
single-publisher attacks, and minimizing the cost of fraud detec-
tion, as discussed in § 2.2. The more attacks we try to discover,
the weaker the correlations we target, the more the honest suspects,
and the higher the detection cost.

Based on Assumption 1, there should exist a high correlation be-
tween a fraudster and the IPs s(he) exploits. Hence, for each pub-
lisher, we should search for IPs that generate a significant portion
of this publisher’s traffic.

However, this metric might be overly aggressive, since some ac-
tive IPs naturally generate significant portions of the traffic of nu-
merous publishers. Therefore, we should not suspect IPs which are
active for several publishers. In other words, we report a correlated

1We concentrate on fraud detection, and assume the traffic source
IPs are not spoofed. Counteracting spoofing was studied in [5].
2Est. 1999, has over 300M accounts, as of February 2008.

pair of a publisher and an IP only if the publisher receives a sig-
nificant portion of its traffic from this IP, while the IP is driving a
non-trivial percentage of its traffic to the publisher’s site.

To model the solution, we borrow a definition from the data
streams literature, and build on it. We define a correlated pair as
one where the IP is a frequent3 element for the publisher, and the
publisher is a frequent element for the IP.

4.2 Formal Problem Definition
We formulate the problem of detecting correlations in a 2-dimensional

stream as follows. Given a stream S of size N of 2-dimensional
data entries, and two user4 defined frequency thresholds φ, and ψ,
both in the interval (0, 1); find all pairs, such that for each dis-
covered pair, (x, y), it is true that F (x, y) > �φF (x)�, and that
F (x, y) > �ψF (y)�; where F (x, y) is the number of occurrences
of the pair (x, y) in S; F (x) is the aggregate number of occur-
rences of all the pairs with x as its first dimension value; and F (y)
is the aggregate number of occurrences of all the pairs with y as its
second dimension value.

For notational purposes, we denote the stream of pairs which
have publisher x as its first dimension, Sx, and call it the traffic of
publisher x. Similarly, Sy stands for the traffic of IP y. F (x) is the
size of Sx, and F (y) is the size of Sy. We also denote the set of
distinct publishers in the first dimension A1; and the set of distinct
IPs in the second dimension A2. We say an IP y is φ−frequent for
publisher x, if F (x, y) > �φF (x)�; and publisher x is ψ−frequent
for IP y, if F (x, y) > �ψF (y)�.

The two frequency thresholds φ, and ψ are the means by which
the commissioner adjusts the aggressiveness of the algorithm. No-
tice that the thresholds and the algorithms presented hereafter can
be tuned according to the nature of publishers and IPs. That is, the
commissioner can group the publishers based on their traffic size or
the level of confidence, and sets different φ thresholds for different
groups of publishers. Similarly different ψ thresholds can be used
for different groups of IPs. However, for simplicity, we assume one
φ across all publishers and one ψ across all IPs.

The higher the φ, and ψ, the stronger the correlation sought, the
fewer the honest suspects, and the lower the fraud detection cost as
discussed in § 2.2.

4.3 To Stream or Not to Stream
We have borrowed the problem of frequent elements on data

streams to formalize the problem of finding correlation in 2-dimensional
streams. In reality, some networks might relax the requirement of
detecting fraud in a stream environment. While still analyzing traf-
fic in near real-time, the goal could be relaxed to process the traffic
window in time that is less than the window span. This relaxation
on the application side leaves room for multi-pass algorithms.

To use a single-pass or multi-pass algorithms is a network design
decision. We expect multi-pass algorithms to be more accurate than
single-pass algorithms, due to their ability of verifying estimates
of frequencies on several passes. Higher accuracy means fewer
suspects to manually investigate, and lower detection cost.

On the other hand, from an application perspective, a single-pass
algorithm allows reporting suspects at any time. In contrast, multi-
pass algorithms have to scan the entire stream at least once before
reporting suspects when a query is posed, which introduces some
latency in query response time. This gives single-pass algorithms
an advantage, especially when dealing with large traffic windows,
say days or weeks. This property of online responding to queries is

3The term frequent was defined in [22] as an element in a stream
of size N , which occurs more than �φN� times, where φ ∈ (0, 1)
is a user predefined frequency threshold.
4By user, we refer to the commissioner.
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crucial for customer satisfaction, if real-time handling of advertis-
ers’ complaints is a network design goal. This way, advertisers can
contact the commissioner about suspicious traffic, and the commis-
sioner can respond to their concerns almost instantaneously. From
a system design standpoint, single-pass algorithms enable cumula-
tively monitoring of traffic, and issuing queries at any point, with-
out necessarily defining when the analysis window ends a priori.

At Fastclick, we decided to employ a single-pass streaming al-
gorithm due to the above reasons. However, we also explored the
multi-pass option. We developed, 2-Pass-SLEUTH, a two-pass al-
gorithm as an effort in this direction. 2-Pass-SLEUTH was devel-
oped further into our streaming 1-Pass-SLEUTH algorithm. Before
we describe the algorithms in § 5 and § 6, we comment on the in-
feasibility of an exact solution in a stream environment.

4.4 Infeasibility of an Exact Stream Solution
The problem of exactly detecting correlations is infeasible on

streams, as shown in Theorem 1.
THEOREM 1. Any exact solution for the problem of detecting

correlations in multidimensional streams requires keeping exact and
complete information about all pairs in the stream.

Proof. The proof is by contradiction for 2-dimensional streams,
and the generalization for higher dimensions is straightforward.
Given a 1-dimensional stream, q1, q2, . . . , qI , . . . , qN , of size N ,
construct a 2-dimensional stream of pairs of size N as follows,
(q, q1), (q, q2), . . . , (q, qI), . . . , (q, qN ), by appending some ele-
ment, q, as the first value for all pairs. An answer to the query
about correlations in the constructed stream with thresholds φ and
ψ = 1 − 1

N
can be directly translated into an answer to a query

about frequent elements in the original stream with threshold φ.
Answering the exact query about the constructed 2-dimensional
stream without complete information contradicts the fact that find-
ing exact frequent elements in a stream requires complete informa-
tion about all elements [6, 11]. �

From Theorem 1, an exact solution entails keeping complete in-
formation about the traffic. The traffic can be stored in a large 2-
dimensional array of publishers and IPs. Every time the commis-
sioner receives a new impression or click, the corresponding cell
gets incremented. Storing an array of the traffic of publishers and
IPs is infeasible. There are approximately 232 = 4G IPs, and an av-
erage commissioner has around 50,000 publishers. An array with a
traffic counter for each pair will contain more than 214∗1012 cells.
If each cell is a 4-Byte integer, the array size is approximately 1
PetaByte. The other extreme is trading space for speed. Since this
array is very sparse, it can be stored using a sparse matrix repre-
sentation [32]. However, the sparse matrix representation entails
access time linear in the cardinality of at least one dimension. This
is not suitable for real-time updates and queries.

We are not aware of any stream mining solution for the proposed
problem. This is one generalization of the frequent elements [22]
in data streams for higher dimensionality. The problem of frequent
elements in streams has been generalized before in other contexts.
The notion of frequent elements was generalized for hierarchies in
[8], where an element can only be frequent if the sum of frequen-
cies of its infrequent children satisfies the threshold. The notion
was then re-generalized for higher dimensionality in [9]. A single-
dimensional stream was summarized in [27] using a 2-dimensional
structure containing antecedents and consequents of associations
between frequent pairs of elements that are not widely separated in
the stream. However, none of the algorithms in [8, 9, 27] can be
modified to handle the problem in hand. Also, we are not aware
of any other data mining algorithm that can be, which necessitates
devising a new approximate algorithm.

5. DEVELOPING A TWO-PASS SCHEME
In this section, we investigate how to detect single-publisher

fraud instances by efficiently identifying correlations in multidi-
mensional data over large domains. We start by proposing a two-
pass scheme, 2-Pass-SLEUTH, in § 5.1. Then, we give its imple-
mentation details in § 5.2. We develop 2-Pass-SLEUTH into the
single-pass scheme, 1-Pass-SLEUTH, in § 6.

5.1 2-Pass-SLEUTH: the Big Picture
In the first discovery pass, a set of IPs, the frequent group =⋃

∀x∈A1

{y|(y ∈ A2) ∧ (F (x, y) > �φF (x)�)}, is formed that con-

tains all the IPs found to be φ−frequent for at least one publisher.
For each publisher, x, a data structure is constructed that keeps
track of which IPs are φ−frequent for x. After scanning the traf-
fic, the publishers’ data structures are queried for φ−frequent IPs.
The second verification pass is made on the traffic to verify that
each IP in the frequent group generates a high percentage of its
traffic for the suspected publisher(s). For each IP, y in the frequent
group, a data structure is constructed that reports the ψ−frequent
publishers for y. After completing the second pass, all correlations
= {(x, y)|y ∈ frequent group ∧ F (x, y) > �φF (x)� ∧ F (x, y) >
�ψF (y)�} are reported.

Although the formal problem is symmetric on both dimensions,
we purposefully selected the publishers’ dimension to handle in
the first pass because the cardinality of the publishers is typically
much smaller than that of the IPs (50,000 versus 4G). Our goal is a
feasible and more accurate processing in the first pass to lessen the
IPs to be examined in the second pass. Thus, the large cardinality
of the IPs is reduced considerably from a processing standpoint.

To implement this scheme, we have to first identify frequent el-
ements in one pass. Several approximate schemes [10, 11, 12, 15,
16, 22, 26] have been proposed to solve this problem, any of which
can be employed to accurately report IPs that are frequent to spe-
cific publishers, as well as publishers who are frequent to specific
IPs. We chose Space-Saving [26] for the reasons explained in § 6.

5.2 Implementing 2-Pass-SLEUTH
We now briefly describe how to implement the two-pass 2-Pass-

SLEUTH scheme using Space-Saving [26]. We explain how Space-
Saving can be incorporated in the discovery pass to output the fre-
quent group, and the discussion applies to the verification pass.

During the first discovery pass, a lightweight Stream-Summaryx
structure is kept for each publisher, x. Stream-Summaryx is em-
ployed by Space-Saving to maintain partial information about ex-
actly m IPs of interest, e1, e2, . . . , em, using m counters, where m
is as specified later. At any time, each counter is monitoring a spe-
cific IP. Although Stream-Summary is a hash-based structure, the
IPs monitored in Stream-Summaryx are sorted by their estimated
frequencies. That is, e1 (em) has the highest (lowest) estimated
frequency, Count(x, e1) (Count(x, em)). If an IP is not moni-
tored, its estimated frequency is 0.

Stream-Summaryx monitors the φ−frequent IPs for x with a
guaranteed error rate, ε. Space-Saving guarantees that monitored
IPs can have their hits overestimated by no more than εF (x), and
never underestimated. Regardless of the permutation of Sx, the
guaranteed error rate, ε, decreases with the increase in the number
of counters in Stream-Summaryx ,m, and with the data skew. Even
if all IPs contribute equally to Sx, i.e., in the worst case of uniform
data, a permissible error rate, ε, is enforced withm at most �1

ε
�. In

practice, ε is set between φ
10

and φ
100

.
For every observed pair (x, y) in the traffic, the algorithm se-

lects the Stream-Summary that monitors x, and updates Stream-
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Algorithm: Space-Saving(Stream-Summary SSx, sizem, element y)
begin

If y is monitored in SSx{
let Count(x, ei) be the counter of y
Count(x, ei) ++;

}else{
//The replacement step
let em be the element with least hits,min
Replace em with y;
Assign ε(x, y) the valuemin;
Count(x, y)++;

}
end;

Figure 4: The Space-Saving Algorithm
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Figure 5: The Publisher-Hash-Table Structure

Summaryx using the Space-Saving algorithm, as sketched in Fig-
ure 4. If there is a counter, Count(x, ei), in Stream-Summaryx
assigned to the observed IP, y, i.e., ei = y, then Count(x, ei)
is incremented, and the counter is moved to its correct position in
Stream-Summaryx , in amortized constant time. If y is not moni-
tored, i.e., no counter is assigned to y, then em, the IP that currently
has the least estimated hits, min, is replaced with y. Since the ac-
tual hits of y can be any number between 1 and min + 1, Space-
Saving assigns Count(x, y) the value min+ 1, since it gives ele-
ments the benefit of doubt not to underestimate frequencies. Thus,
Space-Saving never misses a frequent IP but may report some in-
frequent IPs as frequent. For each IP, ei, in Stream-Summaryx ,
the algorithm keeps track of its maximum possible over-estimation,
ε(x, ei), resulting from the initialization of its counter when in-
serted into the Stream-Summaryx . That is, when starting to mon-
itor y, set ε(x, y) to the counter value that was evicted. Thus, at
any time and for any IP, ei, in Stream-Summaryx , 0 ≤ ε(x, ei) ≤
min ≤ εF (x); and F (x, ei) ≤ Count(x, ei) ≤ (F (x, ei) +
ε(x, ei)) ≤ F (x, ei) + εF (x).

As depicted in Figure 5, all publishers’ Stream-Summary struc-
tures are stored in a hash table, Publisher-Hash-Table. This ensures
constant amortized processing per traffic entry in the first pass.

After the completion of the first pass, for every publisher, x,
the IPs in Stream-Summaryx are traversed in order of their esti-
mated frequency, and all the IPs are output, until an IP is reached
whose frequency is below �φF (x)�. Space-Saving guarantees that
all identified φ−frequent IPs for any publisher, x, have frequencies
no less than �(φ − ε)F (x)�. In addition, an IP y with F (x, y) >
�φF (x)� is guaranteed to be reported. The frequent group is formed
as a union of all the reported IPs, and the second verification pass
is made on the traffic. For each IP, y, in the frequent group, the
ψ−frequent publishers for y are found in a way similar to the one
used in the discovery pass. Concurrent to this process, the frequent
IPs discovered for each publisher in the discovery pass can be ver-
ified to remove uncertainties introduced by the error ε. To report

anomalies, for each publisher, x, all IPs that are φ−frequent for x
are checked. For each such IP, y, if x is ψ−frequent for y, then the
pair (x, y) is suspicious.

6. DETECTING CORRELATIONS IN
ONE PASS

In § 6.1 and § 6.2, we develop the ideas in § 5 into a one-pass al-
gorithm, 1-Pass-SLEUTH, and its Captured-Correlations structure.

6.1 Merging the Two Passes
The 2-Pass-SLEUTH scheme presented in § 5 accurately discov-

ers correlations that can be manually inspected to discover fraud.
However, it requires two passes on the traffic. In order to make
only one pass on the traffic, publishers that are frequent for IPs
must be discovered in this single pass. Simultaneous discovery of
ψ−frequent publishers in, Sy , for each IP, y, in the traffic window
is not feasible. The reason is, in large samples of real data, the
number of distinct IPs occurring in a dataset of lengthN is roughly
found to be N

3
. That is, collecting information about the traffic of

all IPs entails keeping N
3

Stream-Summary structures; which is an
infeasible O(N ) approach. Hence, we devote this section to an-
swering the question: “how to select and monitor IPs that should
have their frequent publishers identified in a single pass?”

6.1.1 Selecting IPs to Monitor
The IPs which should have their traffic monitored are those that

would appear in the frequent group at the end of the discovery pass
in the two-pass scheme. Those are the IPs that are φ−frequent
for at least one publisher. The ψ−frequent publishers of these IPs
should be known in order to verify the suspects discovered on the
publishers’ dimension. The rest of the IPs, the infrequent group
= {y|(y ∈ A2) ∧ (∀x ∈ A1, F (x, y) ≤ �φF (x)�)} , are not
φ−frequent to any publisher. Due to time and space constraints, it
is desirable not to monitor the traffic of IPs in the infrequent group,
since they have no chance of signaling fraud. In reality, IPs in the
frequent group can only be known after the discovery pass.

We follow a best-effort approach to answer the above question.
We integrate the verification pass into the discovery pass by iden-
tifying the IPs of the frequent group as early as possible. In Theo-
rem 6, we will establish the correctness of our algorithm by show-
ing that the IPs discovered early to belong to the frequent group,
are accurate and complete under very reasonable assumptions.

Every IP that becomes φ−frequent for at least one publisher in
the course of the pass should have its traffic monitored, to verify
the suspects discovered on the publishers’ dimensions by the end
of the pass. The earlier we correctly classify an IP to belong to
the frequent group, the bigger the analyzed portion of the traffic of
this IP. Thus, the answer to the above question lies in the following.
Early and accurate identification of IPs that belong to the frequent
group is necessary to feasibly and precisely detect correlations.

However, the set of IPs identified as frequent over time can be
unbounded, since some IPs can be identified as φ−frequent for
some publisher in the course of the pass, but are deemed infrequent
by the end of pass. To wisely allocate space for monitoring IPs, the
traffic of an IP that becomes φ−infrequent for all publishers should
stop being monitored.

Hence, we need to employ an accurate frequent elements algo-
rithm that continuously report, for each publisher, which infrequent
IPs are becoming frequent, as well as which frequent IPs are be-
coming infrequent. This is the reason we selected the Space-Saving
algorithm, since it can incrementally answer continuous queries
about frequent elements in a data stream, with negligible constant
space and time overheads.
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Figure 6: The IP-Hash-Table Structure

6.1.2 Bootstrapping the Monitored IPs
Once we identify an IP, y, as being φ−frequent for at least one

publisher, the traffic of y should be monitored using a new Stream-
Summaryy that should be initialized wisely.

The straightforward initialization approach is to collect informa-
tion about y from all publishers. For each publisher, x, the algo-
rithm should read Count(x, y) from Stream-Summaryx and insert
it into Stream-Summaryy . However, this makes the processing time
of the traffic entries linear in the number of publishers, which is im-
practical. We follow a more pragmatic approach.

We sample Sy to populate Stream-Summaryy . The biggest avail-
able unbiased sample of Sy is the part of the traffic not yet ob-
served. Our goal is to make the number of publishers’ hits in
Stream-Summaryy a consistent scale-down of the true hits the pub-
lishers have received since the very beginning of the pass. Thus,
we create an empty Stream-Summaryy , and set the counter of x in
Stream-Summaryy , Count(y, x), to 1.

6.2 The 1-Pass-SLEUTH Algorithm and
the Captured-Correlations Structure

Now, we describe the Captured-Correlations structure, and how
it is utilized to summarize correlations between publishers and IPs.

6.2.1 The Captured-Correlations Structure
The Captured-Correlations structure consists of two components.

First, the Publisher-Hash-Table contains a Stream-Summary struc-
ture for each publisher as explained in § 5.2. Stream-Summaryx
monitors the φ−frequent IPs for x as illustrated in Figure 5.

The second component, as depicted in Figure 6, is the IP-Hash-
Table, a hash table that monitors the traffic of IPs suspected to be-
long to the frequent group. This table should be searchable by the
IP. The number of IPs whose traffic are monitored in IP-Hash-Table
is limited as shown later in Theorem 5. For each IP, y, in IP-Hash-
Table, there is a pair, pairy, 〈Countfreq(y), Stream-Summaryy〉.
The traffic of IP y is monitored with Stream-Summaryy that tracks
the frequent publishers for y using n counters, where n = �1

η
�, and

η is the maximum error rate the commissioner allows in discover-
ing ψ−frequent publishers in the IPs’ dimension.

Meanwhile, for any IP, y, the number of publishers y is currently
frequent for is stored in the counter Countfreq(y). If an IP, y, is
currently frequent for at least one publisher, then it is expected to
belong to the frequent group, and its traffic should be monitored in
IP-Hash-Table. The purpose of keeping Countfreq(y) is to stop
monitoring the traffic of IP y, and free the space used by pairy
once Countfreq(y) is decremented to 0. When this happens, y is
no more expected to belong to the frequent group.

6.2.2 The ϕ Reduced Threshold
In order to allow for early discovery of the IPs that belong to the

frequent group, we reduce the frequency at which the publishers’

Stream-Summary structures report an IP to be frequent or infre-
quent. For a publisher, x, instead of reporting an IP, y, to be fre-
quent when Count(x, y) reaches φF ′(x), y is reported as frequent
when Count(x, y) reaches ϕF ′(x), where F ′(x) is the number of
hits seen so far for publisher x, ϕ is a user specified reduced thresh-
old5, and ε ≤ ϕ ≤ φ. This enables more accurate monitoring of
traffic of IPs in the frequent group.

Similarly, the Stream-Summary of an IP, y, is deleted from IP-
Hash-Table only when its frequency drops below the reduced thresh-
old for all publishers, i.e., Count(x, y) < ϕF ′(x) for every pub-
lisher, x. This delayed deletion of the Stream-Summary of an infre-
quent IP gives it a chance to become frequent again without loosing
information about its past traffic.

Using ϕ instead of φ to assign Stream-Summary structures to
IPs, and incrementing or decrementing their counters in IP-Hash-
Table entails some overhead, since some IPs in the infrequent group
will have their traffic monitored. However, as larger portions of the
traffic of IPs are monitored, fewer honest suspects are output, which
reduces the human cost significantly.

6.2.3 The 1-Pass-SLEUTH Algorithm
The 1-Pass-SLEUTH algorithm is sketched in Figure 7. For ev-

ery observed pair (x, y), the algorithm selects the Stream-Summary
that monitors x, and increments the counter of y in Stream-Summaryx .
The algorithm then checks if there are any IPs in Stream-Summaryx
that became ϕ−frequent. Only the last observed IP, y, can become
ϕ−frequent. If this is the case, Countfreq(y), is incremented,
if y already belongs to IP-Hash-Table. Otherwise, y is inserted
into IP-Hash-Table with Countfreq(y) = 1 and an empty Stream-
Summaryy data structure. On the other hand, if there are any IPs
in the Stream-Summaryx that became ϕ−infrequent, their counters
get decremented in IP-Hash-Table. If the counter of any of these
IPs reaches 0, the IP gets deleted from IP-Hash-Table. Next, IP-
Hash-Table is searched for IP y. If it exists, publisher x is incre-
mented in its Stream-Summaryy .

Once the traffic is scanned by 1-Pass-SLEUTH and Captured-
Correlations is built, the user can query for correlations. The Anomaly-
Alarm algorithm that reports correlations efficiently is straightfor-
ward. As described in Figure 8, the algorithm checks all the pub-
lishers in the first dimension. For each publisher, x, it finds all
IPs that are φ−frequent for x. For each IP, y, it checks if x is
ψ−frequent in Stream-Summaryy . If both frequency conditions
hold, this pair (x, y) is reported as a possible fraud instance.

7. PERFORMANCE ANALYSIS OF
THE SLEUTH ALGORITHMS

Now, we briefly comment on the performance of 2-Pass-SLEUTH
and 1-Pass-SLEUTH from an analytical perspective. We analyze
the accuracy, and the processing time of the SLEUTH algorithms.

7.1 Run Times of the SLEUTH Algorithms
THEOREM 2. 2-Pass-SLEUTH runs in two passes, with an amor-

tized constant processing time per traffic entry.

Proof. The proof follows directly from the algorithm definition
and the streaming nature of Space-Saving. �

We also prove that 1-Pass-SLEUTH processes each traffic entry
in constant amortized time. Hence, 1-Pass-SLEUTH is effective in
a streaming environment.

THEOREM 3. The 1-Pass-SLEUTH algorithm has an amortized
constant processing time per traffic entry.

Proof. The 1-Pass-SLEUTH algorithm is divided into four main
steps. For any pair, (x, y), the first step increments y in Stream-

5From real network experience, we suggest setting ε ≥ ϕ
10

≥ φ
100

.
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Algorithm: 1-Pass-SLEUTH(Captured-Correlations(m,n))
begin

for each pair, (x, y), in the traffic S{
let x be monitored using Stream-Summaryx

Space-Saving(Stream-Summaryx,m, y);
If y turned ϕ−frequent for x{

If pairy exists in IP-Hash-Table{
IP-Hash-Table.Countfreq(y) + +;

}else{
SSy = new empty Stream-Summary with n counters;
pairy = new pair 〈1, SSy〉 ;
Insert pairy in IP-Hash-Table;

}
}
let Setxinfreq be the set of elements turned ϕ−infrequent
for each q ∈ Setxinfreq{

IP-Hash-Table.Countfreq(q) − −;
If IP-Hash-Table.Countfreq(q) = 0{

delete pairq from IP-Hash-Table;
}

}// end for
If pairy exists in IP-Hash-Table{

let y be monitored using Stream-Summaryy

Space-Saving(Stream-Summaryy , n, x);
}

}// end for
end;

Figure 7: The 1-Pass-SLEUTH Algorithm

Algorithm: Anomaly-Alarm(Captured-Correlations(m, n))
begin

for each Stream-Summaryx in Publisher-Hash-Table{
Integer i = 1;
while (Count(x, ei) > �φF (x)� AND i ≤ m){

let ei be monitored in IP-Hash-Table at pairy

let F ′′(y) be the total number of y hits in Stream-Summaryy

If (Count(y, x) > �ψF ′′(y)�){
output (x, y) as correlated;

}
i+ +;

}// end while
}// end for

end;

Figure 8: The Anomaly-Alarm Algorithm

Summaryx. The second step increments Countfreq(y) if y be-
came ϕ−frequent in the Stream-Summaryx . The third step decre-
ments Countfreq(q), for every q that became ϕ−infrequent in
Stream-Summaryx . The fourth step increments x in Stream-Summaryy ,
if the traffic of y is monitored. From [26], the first and the fourth
steps consume amortized constant time. We will show that the sec-
ond and the third steps also consume amortized constant time.

Any element, q, can only becomeϕ−frequent in a Stream-Summary
data structure, when q is incremented. Hence, the number of times
q is reported as ϕ−frequent is no more than the number of occur-
rences of q. Bearing in mind that an element can only become
ϕ−infrequent if it was originally ϕ−frequent, we deduce that the
number of times q is reported as ϕ−infrequent is no more than the
number of occurrences of q. Generalizing that to all the IPs that
occur in Sx, for any publisher x, it follows that the total number of
times of the elements are reported as frequent or infrequent is no
more than 2F (x). Dividing this by the size of Sx, then for every hit
to x, the average number of IPs reported as frequent or infrequent
is at most 2. Since processing counter increments, or decrements,
and creating or deleting Stream-Summary data structures is done
in an amortized constant time because of the hash table, then the
second and third steps are done in amortized constant time.

Hence, the four steps have amortized constant time. �

7.2 Space Usages of the SLEUTH Algorithms
From Theorems 4 and 5, 1-Pass-SLEUTH consumes more space,

since φ > ϕ. However, the space requirements of both algorithms
are bounded, and can be accommodated on current machines.

THEOREM 4. The space used by 2-Pass-SLEUTH is O(|A1| ∗
( 1
ε

+ 1
φ∗η )), where A1 is the number of publishers.

Proof. In the first pass, 2-Pass-SLEUTH keeps a Publisher-Hash-
Table that contains a Stream-Summary data structure for each pub-
lisher. In the second pass, for each IP in the frequent group, a
Stream-Summary structure is maintained. The space consumed by
Publisher-Hash-Table is the size of one Stream-Summary structure
multiplied by their number. This is equal to O(m∗|A1|) = O( |A1|

ε
).

The maximum number of IPs that can be frequent for one pub-
lisher is 1

φ
. Hence, the maximum possible number of IPs in the

frequent group is |A1|
φ

. Each of these IPs is allocated a Stream-

Summary structures requiring up to n = 1
η

counters. Hence, the

total space used in the second pass is O( |A1|
φ∗η ). �

THEOREM 5. The space used by 1-Pass-SLEUTH is O(|A1| ∗
( 1
ε

+ 1
ϕ∗η )), where A1 is the number of publishers.

Proof. The Captured-Correlations data structure used by the
1-Pass-SLEUTH algorithm consists of two components. The first
component is the Publisher-Hash-Table that contains Stream-Summary
data structures for all publishers. The second component is IP-
Hash-Table that carries the pairs of counters and Stream-Summary
data structures for IPs.

The space consumed by Publisher-Hash-Table is O(|A1|
ε

).
The space consumed by IP-Hash-Table is the size of one Stream-

Summary structure multiplied by their number, since the space used
by the hash table and the counters is linear in the number of mon-
itored IPs. The maximum number of IPs that can be frequent for
one publisher is 1

ϕ
. Hence, the maximum possible number of IPs’

Stream-Summary structures is |A1|
ϕ

. Each of these structures re-

quires up to n = 1
η

counters. Hence, the total space used by the

second component is O( |A1|
ϕ∗η ). �

7.3 Accuracy of the 1-Pass-SLEUTH Algorithm
Although 1-Pass-SLEUTH monitors the traffic of IPs approxi-

mately, since their traffic is monitored after they are frequent for at
least one publisher, practically, its accuracy is very high. Assum-
ing that the traffic characteristics of non-fraudulent publishers and
IPs are stable within the analyzed window, for every fraudster, 1-
Pass-SLEUTH guarantees reporting all its exploited IPs as stated in
Theorem 6.

Violations of this assumption are expectedly uncommon as the
traffic window analyzed is typically an hour or a few hours. Since,
fraudsters cannot forcefully influence the traffic of honest sites con-
tracting with the commissioner, they cannot use this assumption to
escape 1-Pass-SLEUTH.

THEOREM 6. If the characteristics of non-fraudulent traffic are
stable within the analyzed window, 1-Pass-SLEUTH and Anomaly-
Alarm report all suspects in the stream.

Proof. For any fraudulent pair (x, y), let |S′′|, and F ′′(x, y)
denote the number of hits observed after the creation of Stream-
Summaryy , for all pairs, and for (x, y), respectively. Let N be
the size of the entire stream. Sx will consist of alternating on-
segments, where y is φ−frequent in Stream-Summaryx , and off-
segments, where y is φ−infrequent in Stream-Summaryx . Since,
by the end of S, y is φ−frequent for x, then Sx ends in an on-
segment. During an on-segment, the traffic of y is guaranteed to
be monitored. Therefore, the traffic of y cannot start being mon-
itored amidst an on-segment. That is, just before monitoring the
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traffic of y, y was φ−infrequent in Stream-Summaryx , and was
φ−frequent for x in the portion of Sx after Stream-Summaryy was
last created, even if this portion contains off-segments. Hence,
F ′′(x,y)
F ′′(x) > F (x,y)

F (x)
> φ, where F ′′(x) is the number of hits ob-

served for x after creating Stream-Summaryy .
If the traffic characteristics of non-fraudulent pairs do not change

drastically within the stream, for any non-fraudulent pair (x, y), the
following holds.

|S′′|
N

≈ F ′′(x, y)
F (x, y)

(1)

For the rest of the proof, we assume rough equality holds with
high probability. Without loss of generality, let x be the only fraud-
ster exploiting y, and y is exploited by x only. Summing Equation 1

for all IPs except y yields F ′′(x,A2\y)
F (x,A2\y) ≈ |S′′|

N
. Since F (x) =

F (x, y) + F (x,A2\y), and F ′′(x) = F ′′(x, y) + F ′′(x,A2\y),
then F ′′(x,y)

F (x,y)
> F ′′(x)

F (x)
= F ′′(x,y)+F ′′(x,A2\y)

F (x,y)+F (x,A2\y) . Thus, F
′′(x,y)
F (x,y)

>
|S′′|
N

for this fraudulent pair.

Summing Equation 1 for all sites except x yields F
′′(A1\x,y)
F (A1\x,y) ≈

|S′′|
N

. SinceF (y) = F (x, y)+F (A1\x, y), and F ′′(y) = F ′′(x, y)+

F ′′(A1\x, y), then F ′′(x,y)
F (x,y)

> F ′′(y)
F (y)

. Since x is ψ−frequent for

y, then F (x, y) > ψF (y), and hence, F ′′(x, y) > ψF ′′(y). Since
Count(y, x) ≥ F ′′(x, y), then Count(y, x) > ψF ′′(x).

Thus, y gets reported as φ−frequent for x, and x gets reported
as ψ−frequent for y. �

8. EXPERIMENTAL RESULTS
After analyzing the performance and the usability of 2-Pass-

SLEUTH and 1-Pass-SLEUTH, we report their behavior on the Fastclick
network. We experimented with a 45-minute traffic trace of 54,045,873
entries. We evaluated the effectiveness and accuracy of the algo-
rithms. In addition, we explored the tradeoff between the fraud and
the detection costs, discussed in § 2.2.

8.1 Algorithmic Assessment
The proposed algorithms were implemented in C++, and were

executed on a Pentium IV 2.66 GHz, with 1.0 GB RAM. For 2-
Pass-SLEUTH and 1-Pass-SLEUTH, in order to measure the recall
(the number of correct elements found as a percentage of the num-
ber of actual correct elements) and the precision (the number of
correct elements found as a percentage of the entire output), we
had to implement an exact solution. The goal is to measure the al-
gorithmic accuracy of the SLEUTH algorithms as compared to an
exact algorithm that exactly solves the correlations problem in mul-
tidimensional streams. This should not be confused with whether
the suspects are fraudulent or not.

We implemented a linked-list representation of the sparse matrix
of publishers and IPs, and used it to calculate the correct corre-
lations. However, to process a data sample of size less than 3M
entries, the sparse matrix approach ran in over 84 hours.

So, we had to retreat to a smarter exact algorithm. We imple-
mented Exact, a single-pass hash-based algorithm that keeps infor-
mation about the size of the traffic of every publisher-IP pair ob-
served in the dataset. Although Exact cannot realistically be used
to analyze large datasets, it provides all the correlations when used
for smaller datasets. We dissected the traffic dataset by time into
15 data samples that were of roughly equal sizes. Thus, on small
datasets, Exact makes it possible to measure the recall and the pre-
cision, and assess the savings of the approximate SLEUTH algo-
rithms.

To evaluate the strengths of the SLEUTH algorithms, we ran
comprehensive experiments with values of φ and ψ varying from

0.1 to 1.0 on a fixed interval of 0.1. For simplicity, we used the
same φ for all publishers and the same ψ for all IPs. Throughout
the experiments, ϕwas set to φ

2
. mwas set to 10

φ
, which guarantees

an ε of at most φ
10

in the publishers’ Stream-Summary structures.
n was set to 10

ψ
, which guarantees an η of at most ψ

10
in the IPs’

Stream-Summary structures. The results are reported in § 8.1.1. We
then examine the online nature of 1-Pass-SLEUTH by comparing
its performance to the single-pass Exact as the stream is processed,
and report the results in § 8.1.2.

8.1.1 The Effectiveness of the SLEUTH Algorithms
We examined how the algorithms behave as φ changes. We is-

sued queries for finding correlations with ψ fixed at 0.1. We varied
φ from 0.1 to 1.0 on a fixed interval of 0.1. We then examined
how the algorithms behave as ψ changes, and varied ψ from 0.1
to 1.0 on a fixed interval of 0.1, with φ fixed at 0.1. Every query
was issued against the 15 data samples. For various φ, the average
space, run time, recall, and precision for 2-Pass-SLEUTH, 1-Pass-
SLEUTH, and Exact are plotted in Figures 9(a) through 9(d), re-
spectively. For various ψ, the performance metrics are plotted in
Figure 10.
8.1.1.1 The Space and Time Efficiency of SLEUTH.

From Figures 9(a) and 10(a), the space consumptions of the SLEUTH
algorithms were at most one fifth that of Exact when both φ and
ψ were 0.1. Since Exact keeps complete information, its space
usage was constant for all φ values. The space consumptions of
the SLEUTH algorithms dropped as φ increased, since they kept
fewer counters in the publishers’ Stream-Summary structures. In
addition, the number of IPs whose traffic was monitored decreased
since fewer IPs qualified to be in the frequent group. On the other
hand, their space usages dropped very slightly as ψ increased, since
the SLEUTH algorithms kept fewer counters to monitor the traffic
of each monitored IP. However, the number of such monitored IPs
did not decrease. This is the reason the decrease in spaces of the
SLEUTH algorithms was relatively slower with the increase in ψ
than with the increase in φ. This is clear when comparing Fig-
ures 9(a), and 10(a). The ratio of the space usage of the SLEUTH
algorithms to Exact dropped from 1 : 5 to 1 : 20 as φ approached
1, while it decreased to 1 : 6 as ψ approached 1. On average,
2-Pass-SLEUTH consumed 10% less space than 1-Pass-SLEUTH,
due to monitoring fewer IPs.

From Figures 9(b) and 10(b), the run times of the SLEUTH al-
gorithms were almost constant. However, they ran 1.5 times faster
than Exact in Figure 9(b), and 1.2 times faster than Exact in Fig-
ure 10(b). This is due to fewer increments on the IPs’ dimension.
On average, 2-Pass-SLEUTH ran 4% faster than 1-Pass-SLEUTH,
since fewer IPs were monitored as the frequent group was iden-
tified more accurately. This speed difference shows both algo-
rithms are CPU intensive. The second pass did not slow down 2-
Pass-SLEUTH. Instead, 2-Pass-SLEUTH benefited from fewer in-
crements on the IPs’ dimension.

8.1.1.2 The Accuracy of SLEUTH.
The recall and precision of 2-Pass-SLEUTH were always con-

stant at 1. The recall of 1-Pass-SLEUTH varied between 1 and
0.9997 throughout the experiments. From Figure 9(d), the preci-
sion of 1-Pass-SLEUTH decreased slightly from 0.97 to 0.95 as φ
increased from 0.1 to 1.0. When varying ψ, from Figure 10(d), the
precision of 1-Pass-SLEUTH decreased slightly from 0.97 to 0.91.
8.1.1.3 Comments on the SLEUTH Effectiveness.

When compared to Exact, 2-Pass-SLEUTH runs faster, consumes
less space, and gives exact results. However, 2-Pass-SLEUTH can
only start the second pass after the end of the window. The second
pass consumed 18% of its run time on average, which is consider-
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(c) Recall Variation with Phi
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Figure 9: Performance Variation as φ Changes Using Real Data
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Figure 10: Performance Variation as ψ Changes Using Real Data

able latency in reporting suspects, especially when analyzing long
traffic windows, like days. This supports the design decision at
Fastclick to consider only single-pass schemes.

When compared to the single-pass Exact, 1-Pass-SLEUTH gives
high quality results, uses a lot less space, and runs faster. However,
it could be argued that the difference in space can be counteracted
by cheap memory. The real strength of 1-Pass-SLEUTH is clearer
when handling data of realistic sizes at a real time rate. The set
of experiments presented above handles a very small dataset. On
larger datasets, as explained in § 8.1.2, 1-Pass-SLEUTH consumes
much less space than Exact. The larger space consumed by Exact
makes it virtually impossible to process realistic datasets in real
time, due to thrashing.

8.1.2 1-Pass-SLEUTH Onlineness
To assess the online nature of 1-Pass-SLEUTH, we had to ex-

amine its scalability. The goal is to show that traffic entries are
processed continuously at a constant rate regardless of the win-
dow size. We conducted another set of experiments. We issued
one query with φ = ψ = 0.1 on the complete traffic stream
(54,045,873 entries). We measured the time and the space usages
for the algorithms after every 2,000,000 entries, and plotted the
results in Figure 12. Clearly, Exact could not process the entire
dataset due to thrashing.

From Figure 12(a), Exact started thrashing after consuming 12M
entries. Meanwhile, 1-Pass-SLEUTH only used 24MB and its space
consumption was almost constant throughout the stream. The flat
curve of 1-Pass-SLEUTH is a manifestation of its constant space
usage that is a lot smaller than Exact.

In terms of execution time (Figure 12(b)), Exact thrashed while
1-Pass-SLEUTH had a constant processing time per entry regard-
less of the window size, as is clear from its linear trend, until it
finished after 19.65 minutes. The fact that it was able to process
the traffic the commissioner received in 45 minutes (approximately
54M entry), in less than 20 minutes proves its ability to discover
fraud in real time without any lag, and with the ability to report
suspects with almost no query latency.

8.2 Comments on Findings
To evaluate the tradeoff between the weakness of the sought cor-

relations and the number of honest suspects (false positives), we
ran comprehensive experiments with various values of φ and ψ,
and sketched the results in Figure 11. Large values of φ and ψ pro-
duce fewer correlations, fewer honest suspects, and hence, lower
cost of fraud detection. However, to look for fraudsters that are
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Figure 11: Variation of Percentage of Correlations with φ and
ψ (Number of Publishers axis has logarithmic scale)

using numerous IPs, and forging slim traffic from each IP to stay
under the radar level, the thresholds on φ and ψ were lowered. Al-
though some honest suspects get reported, which raises the cost of
fraud detection, the SLEUTH algorithms reduces the suspects dra-
matically compared to the case where they are not used.

For simplicity, we issued queries with φ = ψ. We varied them
from 1.0 to 0.1 on a fixed interval of 0.1. For every run, when an-
alyzing the traffic, we only considered publishers receiving at least
10
ψ

hits, in order to reduce the noise of under-sampled publishers.
The number of qualified publishers varied between 3.7k and 5.2k
publishers, which is big enough to ensure the validity of the results.
We comment on our findings, including validating Assumption 1,
and report some statistics on the discovered fraudsters.

8.2.1 Assumption Validation
The problem of detecting single-publisher attacks was modeled

as searching for correlations violating Assumption 1. Assumption 1
states that the two dimensions of publishers and IPs are almost in-
dependent. That is, there should be no strong correlation between
x and y for any observed pair (x, y). Through analysis of real data,
we show these correlations are very infrequent. We measured the
number of publishers reported as suspects.

From Figure 11, the percentage of the publishers reported in-
creased from 0.06% of the qualified publishers, when φ and ψ were
1.0, to 6.37%, when φ and ψ were 0.1. The median percentage of
qualified publishers reported as suspects, even for combinations of
φ and ψ not shown in Figure 11, was 0.42%. § 8.2.2 reports very
few honest suspects to not only show the validity of Assumption 1,
but also the high correlation between fraudsters and exploited IPs.

8.2.2 Tradeoff between Fraud and Detection Costs
Figure 11 is a manifestation of the tradeoff between the costs of

the fraud and the detection mechanisms presented in § 2.2. As the
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number of suspects increased, the percentage of honest suspects
also increased from 0% to 23.18% of the reported suspects (0%
to 1.48% of the qualified publishers). The percentage of honest
suspects was 0% when the φ and ψ were both more than 0.8. The
median of honest suspects, even for combinations of φ and ψ not
shown in Figure 11, was 14.25%.

A suspect was judged to be fraudulent or a false positive based
primarily on the sales volume generated by its traffic. The sales in-
formation of around 52% of the advertisers contracting with Fastclick
were available to judge the value of the traffic from each publisher.
This is a good sample to judge all publishers since each publisher
generates traffic to almost all the advertisers.

However, the sales information alone is not enough to judge pub-
lishers due to the lack of evidence of malicious behavior. Around
17.2% of the publishers had meager sales. Discarding all publish-
ers with sparse sales underpays the commissioner for large honest
traffic volumes, as discussed in § 2.2.

8.2.3 Comments on Discovered Frauds
Around 79.4% of the frauds discovered were from 8 IPs or fewer.

Around 52.3% of which, used more than a single cookie for their
attacks. This shows the proliferation of NAT-Masquerading.

It is also worth reporting that among our false positives, we dis-
covered some publishers that were weakly correlated with a few
IPs, such that the traffic of the IPs did not yield any sales. How-
ever, these publishers were generating sales from traffic from the
rest of the IPs. We expect this correlation to be a result of either
DDoS attacks; or as attacks of competitors of these publishers that
aim at judging these honest suspects as fraudsters to terminate their
contracts with commissioners. We discounted the traffic coming
from these suspected IPs, but charged the advertisers for the traffic
coming from the rest of the IPs.

9. RELATED WORK
After describing our single-publisher attack detection approach

and evaluating it on Fastclick network, we summarize the related
work to clarify the relevance of the considered problem. Click
fraud has been a concern to commissioners since their conception
[35]6. Classical fraud detection judges publishers based on metrics
of advertisements on their sites, such as how the ratio of impres-
sions to clicks (the Click Through Rate) for advertisements differs
from the norms [18]. The classical approach depends on the com-
missioners’ edge in knowing the network-wide behavior of each ad-
vertisement. Supposedly, this knowledge is only available to com-
missioners, since the traffic model conceals from the publishers the
advertisements loaded and clicked on their sites.

However, the classical approach can be fooled by fraudsters who
can take advantage of a specific site architecture that reveals the
advertisements loaded and clicked [29]. This architecture is used
by some trusted publishers, like CNN, to maximize revenue among
several commissioners. Specifically, CNN redirects advertising traf-
fic to a pool of servers operated by CNN before reaching the com-
missioners. This architecture reveals the advertisements loaded and
clicked by surfers. If adopted by fraudsters, this architecture allows
sampling the natural advertisements’ behavior. Hence, fraudsters
can automate traffic whose metrics comply with real traffic.

Furthermore, the classical approach cannot detect malicious in-
tentions, and is designed to discard low-quality traffic, even if it
is legitimate, where the quality of a click or an impression is an
estimate of the probability it yields a sale. Aggressively discount-
ing low-quality traffic whose metrics (e.g. CTR) deviate from the

6The complementary problem of hit shaving, where advertisers do
not pay commission on some traffic, was addressed in [33]. The
problem of dishonest commissioners has been studied in [21].

norms, or that yields no sales “underpays” honest publishers and
commissioners for massive legitimate traffic delivered by their servers.

The main challenge is to distinguish fraudulent traffic from nor-
mal traffic. Asking for the cooperation of surfers, as proposed by
the cryptographic approaches [3, 30], entails changing the adver-
tising network model to be non-transparent to all surfers, which is
unscalable. Moreover, they require the commissioners to uniquely
identify surfers, which compromises surfers’ privacy.

Analyzing the traffic data, which alleviates the drawbacks of
both the cryptographic and classical approaches, was first proposed
in [25]. Since commissioners face the dilemma of preserving surfers’
privacy versus detecting fraud, they can only perform traffic-mining
techniques on aggregate data using temporary surfers’ identifica-
tion, cookie IDs and IP addresses. This identification is temporary
and stores no personal identification to preserve surfers’ privacy.
Meanwhile, machines used in the attacks are still identified enough
for satisfactory fraud detection.

Detecting click fraud attacks has recently attracted much atten-
tion. In [25], we proposed a simple Bloom filter-based [2] algo-
rithm that detects a naı̈ve click fraud attack, where the publisher
runs a script that continuously loads its page and simulates clicks
on the advertisements in the page. The solution detects duplicates
in a stream of impressions or clicks within a short period of time,
like an hour. Experiments on real data were revealing. One of the
advertisements was clicked 10,781 times by the same cookie ID in
one day.

A more sophisticated click fraud attack was identified by Anu-
pam et al. in [1]. It involves a coalition of dishonest publishers. In
[27], a solution was proposed for detecting this attack via coopera-
tion between commissioners and Internet Service Providers (ISPs)
through identifying associations in a stream of HTTP requests. [28]
proposed a generalized coalition attacks detection mechanism by
discovering sites that have similar traffic. Our real-data analysis in
[28] shows that legitimate sites have highly dissimilar traffic. Sites
that receive their traffic from highly similar sets of IPs are almost
always suspicious. In [28], we modeled the problem of detecting
fraud coalitions in terms of the set similarity problem. We first
proposed our Similarity-Seeker algorithm that uncovers coalitions
of site pairs. We then extended the detection algorithm to detect
coalitions of any size by finding all maximal cliques in a sites’ sim-
ilarity graph. On the Fastclick network, 93% of the detected sites
were provably fraudsters.

Interestingly, data analysis techniques, like [25, 27, 28], can
identify specific patterns and correlations that characterizes fraud-
ulent traffic [23]. Hence, this approach can reveal malicious in-
tentions. Thus, it complements the classical tools that detect low-
quality traffic and cannot distinguish it from fraudulent traffic.

Detecting single-publisher attacks complements our algorithms
for coalition attacks [28] that involve coalitions between several
fraudsters. Detecting these two classes of attacks leaves no chances
for fraudsters to escape.

10. CONCLUSION AND FUTURE WORK
This paper explored the association between the sophistication

of single-publisher attacks, and the difficulty of detecting such at-
tacks; as well as the tradeoff between the single-publisher fraud
cost and fraud detection costs. We modeled discovering single-
publisher attacks as finding correlations in multidimensional datasets.
We devised the approximate 2-Pass-SLEUTH and 1-Pass-SLEUTH
algorithms to solve the problem efficiently.

We demonstrated the effectiveness and accuracy of the proposed
SLEUTH algorithms analytically. Our analytical evaluation was
verified through comprehensive experiments on the Fastclick net-
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Figure 12: Scalability Using Real Data

work. The online nature of 1-Pass-SLEUTH and its independence
of the stream window size was also established.

Although using the proposed framework, it is difficult to detect
attacks from tens of thousands of IPs with a manageable ratio of
honest suspects, attacks from tens and hundreds of IPs can still
be detected with very few honest suspects. The good news is two
folds. First, the number of honest suspects (false positives) is very
limited. Interestingly, among the reported correlations, manual in-
vestigations detected numerous fraudsters whose contracts were
terminated. Second, such attacks are the majority of the attacks
due to the difficulty of using tens of thousands of IPs in attacks.
Hence, the false positives are also expected to be very few.

Publishing this technique of fraud detection does not help fraud-
sters escaping detection. To reduce this correlation between the
fraudsters’ sites and the attacking machines, fraudsters can share
traffic with each other to reduce the correlation between their sites
and the exploited IPs. This is considered as a coalition attack,
which has been successfully addressed in [28] by detecting attacks
with traffic derived from similar sets of IPs. This work makes it
very difficult for fraudsters to launch attacks from a small num-
ber of IPs. Hence, it increases the cost or the skills needed to
launch single-publisher attacks, with a negligible cost on the com-
missioner’s side.
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[11] E. Demaine, A. López-Ortiz, and J. Munro. Frequency Estimation of Internet
Packet Streams with Limited Space. In Proceedings of the 10th ESA European
Symposium on Algorithms, pages 348–360, 2002.

[12] C. Estan and G. Varghese. New Directions in Traffic Measurement and
Accounting: Focusing on the Elephants, Ignoring the Mice. ACM TOCS
Transactions on Computer Systems, 21(3):270–313, 2003.

[13] S. Goo. ‘Click Fraud’ Threatens Foundation of Web Ads. Washington Post
Magazine, October 22 2006.

[14] M. Jakobsson, P. MacKenzie, and J. Stern. Secure and Lightweight Advertising
on the Web. In Proceedings of the 8th WWW International Conference on
World Wide Web, pages 1101–1109, 1999.

[15] C. Jin, W. Qian, C. Sha, J. Yu, and A. Zhou. Dynamically Maintaining Frequent
Items over a Data Stream. In Proceedings of the 12th ACM CIKM International
Conference on Information and Knowledge Management, pages 287–294, 2003.

[16] R. Karp, S. Shenker, and C. Papadimitriou. A Simple Algorithm for Finding
Frequent Elements in Streams and Bags. ACM TODS Transactions on Database
Systems, 28(1):51–55, 2003.

[17] J. Kerkhofs, K. Vanhoof, and D. Pannemans. Web Usage Mining on Proxy
Servers: A Case Study. In Proceedings of the ECML/PKD Workshop on Data
Mining for Marketing Applications, 2001.

[18] D. Klein. Defending Against the Wily Surfer-Web-based Attacks and Defenses.
In Proceedings of the 1st USENIX ID Workshop on Intrusion Detection and
Network Monitoring, pages 81–92, 1999.

[19] M. Liedtke. Google to Pay $90M in ‘Click Fraud’ Case. Washington Post
Magazine, March 9 2006.

[20] M. Liedtke. Yahoo Settles ‘Click Fraud’ Lawsuit. MSNBC News, June 28 2006.
[21] S. Majumdar, D. Kulkarni, and C. Ravishankar. Addressing Click Fraud in

Content Delivery Systems. In Proceedings of the 26th IEEE INFOCOM
International Conference on Computer Communications, pages 240–248, 2007.

[22] G. Manku and R. Motwani. Approximate Frequency Counts over Data Streams.
In Proceedings of the 28th VLDB International Conference on Very Large Data
Bases, pages 346–357, 2002.

[23] C. Mann. How Click Fraud Could Swallow the Internet. Wired Magazine,
January 2006.

[24] N. Mason. Web Analytics: Insights From the Front Line, Part 2. ClickZ News,
Feb 5 2008.

[25] A. Metwally, D. Agrawal, and A. El Abbadi. Duplicate Detection in Click
Streams. In Proceedings of the 14th WWW International World Wide Web
Conference, pages 12–21, 2005.

[26] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient Computation of Frequent
and Top-k Elements in Data Streams. In Proceedings of the 10th ICDT
International Conference on Database Theory, pages 398–412, 2005. An
extended version appeared in ACM TODS Transactions On Database Systems,
31(3):1095–1133, 2006.

[27] A. Metwally, D. Agrawal, and A. El Abbadi. Using Association Rules for Fraud
Detection in Web Advertising Networks. In Proceedings of the 31st VLDB
International Conference on Very Large Data Bases, pages 169–180, 2005.

[28] A. Metwally, D. Agrawal, and A. El Abbadi. DETECTIVES: DETEcting
Coalition hiT Inflation attacks in adVertising nEtworks Streams. In Proceedings
of the 16th WWW International World Wide Web Conference, pages 241–250,
2007.

[29] A. Metwally, D. Agrawal, A. El Abbadi, and Q. Zheng. On Hit Inflation
Techniques and Detection in Streams of Web Advertising Networks. In
Proceedings of the 27th IEEE ICDCS International Conference on Distributed
Computing, 2007.

[30] M. Naor and B. Pinkas. Secure and Efficient Metering. In Proceedings
EUROCRYPT International Conference on the Theory and Application of
Cryptographic Techniques, pages 576–590, 1998.

[31] S. Olsen. Click Fraud Roils Search Advertisers. CNET News, March 4 2005.
[32] U. Pooch and A. Nieder. A Survey of Indexing Techniques for Sparse Matrices.

ACM Computing Surveys, 5(2):109–133, 1973.
[33] M. Reiter, V. Anupam, and A. Mayer. Detecting Hit-Shaving in Click-Through

Payment Schemes. In Proceedings of the 3rd USENIX Workshop on Electronic
Commerce, pages 155–166, 1998.

[34] D. Vise. Clicking To Steal. Washington Post Magazine, page F01, April 17
2005.

[35] T. Zeller Jr. With Each Technology Advance, a Scourge. The New York Times,
October 18 2004.

1228


