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ABSTRACT
Efficient support for applications that deal with data het-
erogeneity, hierarchies and schema evolution is an impor-
tant challenge for relational engines. In this paper we show
how this flexibility can be handled in Microsoft SQL Server.
For this purpose, the engine has been equipped in an in-
tegrated package of relational extensions. The package in-
cludes sparse storage, column set operations, filtered indices,
filtered statistics and hierarchy querying with OrdPath la-
beling. In addition, economical loading of metadata allow us
to answer queries independently of the number of columns in
a table and drastically improve scaling capabilities. The de-
sign of a prototypical content and collaboration application
based on a wide table is described, along with experiments
validating its performance.

1. INTRODUCTION
There is a fast growing market of large-scale content and

collaboration applications and messaging systems (e.g. Mi-
crosoft Exchange). Those systems support thousands of
concurrent users, each defining document repositories with
widely varying schemas. In addition, queries against these
systems need to return results interactively and consistently
in just a few seconds.

These applications will benefit from data models that go
beyond the traditional schemas in relational systems. While
normalized schemas are rather static and do not contain a
large number of properties, large scale content and collab-
oration applications deal with heterogeneous collections. It
is not uncommon for these applications to consider tens of
thousands of different properties, where only a small frac-
tion pertains to a particular entity. Storing such collections
is an important challenge for product catalogs, document
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management, knowledge extraction, XML indexing ([8]) or
object-oriented stores. Moreover, these applications usu-
ally require hierarchies, multi-valued properties and frequent
schema changes. We use the term flexible schema to reflect
such extensibility and heterogeneity of a data model [17].

This paper presents a set of features built into Microsoft
SQL Server 2008 to explicitly support flexible schemas im-
plemented as sparse wide tables with current limits of up to
300k columns, 1k indexes, and 300k distribution statistics.
It describes the relevant design changes to the architecture of
the server through system catalogs, query compilation and
storage data structures. A prototypical content and collab-
oration application, similar to Microsoft Office Sharepoint
Server, is used for illustration purposes.

The classic relational approaches of a property bag or ISA
relation decomposition fail to handle heterogeneous collec-
tions efficiently ([3, 17]). For example, storing arbitrary
objects in relational databases usually results in complex
multi-table schemas and requires relevant translation in-
structions in object-relational mappers. This fact leaves ap-
plication developers in an unpleasant quandary. One may
consider specialized solutions, but they deprive him from
a well-developed services ecosystem including data man-
agement, security, reporting, and application development
tools. Also, additional integration costs should be taken
into account, as significant components of business systems
are most often implemented in a relational manner and re-
ceive expected support. A common surface of SQL seems
to be broad enough to express heterogeneity and make spe-
cialized optimizations transparent to users. In fact, [6, 3]
give solid insights that the problem can be efficiently han-
dled by means of wide tables as long as they are accompanied
with appropriate storage, transportation and indexation ap-
proaches.

In [17], two categories of flexible schemas are distinguished:
unclustered and clustered. While the first one refers to
strongly heterogeneous entities that do not form any classes
in terms of attributes they are characterized with, for the
second one, such classification is possible, e.g. documents,
contacts or pictures. Moreover, if classes can be arranged
in a hierarchy like product categories, object types etc., one
deals with a hierarchical case. Otherwise, we say it is a flat
case. The hierarchical case is attractive due to its generality
and interesting usage scenarios.

A flexible schema implemented as a wide table inevitably
leads to sparseness and a large number of columns. The
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package we propose address challenges in terms of efficient
storage, processing, model modification and scaling. It is
important to note that these features do not extend the re-
lational model itself but rather augment its implementation.
This ensures the full utilization of existing system services,
including query processing and optimization.

In our proposition efficient querying of hierarchical data is
addressed with the OrdPath labeling ([13]), which provides a
compact scalar representation of position in a hierarchy tree.
Sparse wide tables are stored by means of interpreted stor-
age ([3]), which achieves significant savings in space as well
as access time. In order to enable the efficient retrieval and
manipulation of a large numbers of columns, we introduced
a logical scalar representation that groups sparse columns in
a column set. Economical data indexation in terms of space
and DML is addressed with filtered indices ([17]). Besides
mechanisms used for efficient query execution, adequate se-
lection and query optimization support is crucial. In this
area, we propose the idea of filtered statistics, which remain
complementary to our approach for indexation. The propo-
sition is completed with several optimizations that ensure
scaling in terms of columns and statistics on a single table.

The presence of different classes in a clustered flexible
schema implies an underlying data organization in a wide
table. In fact, instances belonging to the same classes to-
gether with associated properties form logical subtables. It
should be emphasized that a sparse column set, filtered in-
dices and statistics allow us to support the subtables the
same way regular tables are supported.

The package itself represents a value as an integrated solu-
tion for flexible schemas. Among its elements, four of them
contribute to the field: new data organization in interpreted
storage, sparse column set in data transportation and ma-
nipulation, filtered statistics in cardinality estimation and
techniques that ensure scalability of wide tables in terms of
columns.

The paper is organized as follows. Section 2 outlines a
prototypical flexible schema database application. This ap-
plication serves as running example throughout the rest of
the paper. In Sect. 3 a labeling scheme for hierarchical data
is described. Sparse storage and operations with a sparse
column set are discussed in Sect. 4 and 5.Support for index-
ation and cardinality estimation is covered in Sect. 6 and 7.
Large scale capabilities are given in Sect. 8. Section 9 out-
lines previous work. In Sect. 10 experimental results for
individual features and the integrated package are provided.
We finally summarize our contribution in Sect. 11.

2. DETAILED EXAMPLE
There is a number of real life applications like document

management systems, product catalogs or location manage-
ment systems that fit the pattern of a flexible schema. In
this section we describe a simplified version of a prototypi-
cal content and collaboration application that is similar to
Microsoft Office Sharepoint Server, and discuss benefits of
the presented design. This example is also utilized later to
describe the feature package we implemented and perform
experimental validation.

2.1 Content and Collaboration Application
A content and collaboration system is an important work

platform in modern corporations. Users can conveniently
store and manage various content in a common environment

Figure 1: A fragment of the type hierarchy in our
sample content and collaboration application

of integrated tools. Such an application not only allows
storage of heterogeneous content, like documents, pictures
or contact information, characterized by a fixed set of type
specific properties, but also provides users with the flexibil-
ity to annotate their content with custom properties. The
content types held in the system belong to a common hier-
archy. A simplified version of the hierarchy in our sample
application is presented in Fig. 1.

Users organize their data in lists of elements of a partic-
ular content type. Each content type is associated with a
specific set of properties that is inherited and extended in
subtypes. At the top of the type hierarchy there is a generic
root that defines common properties, usually of administra-
tive character, e.g. Date created. Content types become
more and more specialized when one goes down the hierar-
chy. Let us look closer at the Document type in our exam-
ple. Besides characteristics inherited from Root, it may also
introduce properties like Author, Reviewer that are shared
by its subtypes: Offer, Invoice etc. Accordingly, the def-
inition of Offer can be extended with the properties Date
sent, Total value etc. Depending on a particular system a
type hierarchy can be both arbitrarily wide and deep. In
addition to the type specific properties, our sample schema
also models flexibility for a user to extend predefined prop-
erty sets with custom annotations and better suit personal
needs. This capability can be seen as adding new content
types and impact the hierarchy’s extensibility.

Typical retrieval access patterns in the system include dis-
playing the content lists owned by a user, e.g. lists in the
user’s home page, or accessing all content of a specific type,
e.g. all invoices for the last month. New lists are created
with a common content type for its future items. Each item
that is added can be described with properties defined for
this content type. Another use case is an update of a spe-
cific property to a selected number of items in a user’s list,
e.g. DateTaken for pictures stored in a user’s pictures list.
As far as administrative operations are concerned, a large
volume of data may be retrieved and copied to a backup
table.

2.2 Flexible Schema Design
The main characteristics of such a content management

system is heterogeneous collection of instances of content
types from a certain hierarchy.

Both extensibility and efficiency of such applications can
be achieved by storing entities of a heterogeneous types in
a single wide table. Then, for each content type, there is a
logical subtable within the whole table that consists of rows
and columns associated with this content type. A sample
table, referred to as ListItem, is given in Fig. 2. It contains
lists of items for users of the system. For example, Katie,
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Figure 2: Sample flexible schema for a prototypical content and collaboration application, brackets indicate
properties introduced by each content type and bolded frames distinguish multi-valued properties

Rob and Rick own 1, 2, 3 different lists, respectively. The
approach adopts the model of having a single column per
each unique property defined in the content type hierarchy
(Fig. 1). The columns that do not pertain to the content
type of a particular row are equal to null and the whole table
remains sparse ([3, 17]).

In some cases, properties may be multi-valued, like Phone
type and Phone number. For example, in object-oriented
frameworks they are usually treated as a part of an entity
definition and organized in dependent collections. Also here,
wide tables provide a convenient way to handle ordered and
unordered value collections for single properties. Namely,
each entity is specified by multiple rows with the same value
of CollId. If the order is meaningful, an additional column
Ordinal is employed. Note that the same query can be used
to retrieve entities with simple and with multi-valued prop-
erties. Also, an additional overhead in space originating
from common administrative attributes is insignificant and
can be reduced by prefix column compression. In our exam-
ple, in the class Contact, there are two multi-valued proper-
ties Phone type and Phone number, whose values are ordered
collections. In this case, both properties are tightly-coupled
and form a complex type, but this is not a requirement. A
sample entity with 3 different phones is encoded as the col-
lection with CollId=6 belonging to the list with ListId=5.

2.3 Metadata vs. Data
When an application uses subtables in the way we have

described, it is effectively shifting traditional “metadata con-
tent” into the “data” itself. Subtables are not designated in
queries by a pre-declared table name, but rather by predi-
cates on a discriminator column. Bypassing relational meta-
data declaration simplifies application development and ad-
ministration, especially when the number of subtables is ex-
pected to be dynamic, or when they are hierarchical. For
example, queries that operate at different levels in a hier-
archy can be written in a straightforward way on a single
table, instead of requiring a (potentially variable) number
of unions and joins.

This shift from “metadata” into “data” provides flexibil-
ity, but it comes at a price, which can be examined in light of
how relational implementations exploit metadata. In terms
of query processing, table metadata is the traditional an-
chor for indices and statistics, which are made available to
the optimizer as soon as parsing is complete.

Consider a query written against pre-declared tables, and
compare it with an equivalent that uses subtables instead.
To reach comparable query behavior, one first needs to en-
able the creation of indices and statistics for subtables, then
extend query optimization to identify and utilize applica-
ble metadata. In particular, identifying relevant metadata
for a query changes from simple name lookup (table name
in the query) to operations based on predicate inferencing
(predicates on discriminator columns).

3. QUERYING HIERARCHIES
In this paper we consider a general case of a flexible schema

with a hierarchy. If the implementation is based on wide ta-
bles, one can observe a hidden schema consisting of logical
subtables. Each of them refers to a particular class in the
hierarchy, a content type in our prototype.

Any representation of class membership should ensure two
important goals: efficient data retrieval and cheap modifi-
cations of a schema. Note that, due to differences in class
definition, one may expect that the majority of queries and
DML operations will address separate classes. Let us look
closer at an efficient implementation of two common cases
presented in [17]. A flat scenario, i.e. without any hierarchy
of subtables, can be naturally implemented by a single nu-
meric discriminating column that stores a class number for
each row. Each property refers to only one logical subtable,
thus, a desired range of rows can be retrieved by means of
a simple equality predicate. Also, values used for encoding
have strictly nominative interpretation, which does not re-
quire any renumbering when changes to the logical schema
are made. On the other hand, the case of a hierarchy needs
a more subtle discriminator, since each property belongs to
the class it is introduced with, and to all its descendants. A
prefix addressing allows us to retrieve rows from a particular
class by means of a range predicate. However, possible dis-
criminating values are ordered and of variable length, which
makes both efficient querying and extensibility a challenge.

To address the aforementioned problems, the analogy be-
tween a hierarchy in a flexible schema and a hierarchical
structure of XML documents has been exploited. SQL Server
uses the OrdPath labeling ([13]), originally designed to deal
with a general case of schemaless documents. Each class
has a label associated with it. This label is defined as a
sequence of ordinals separated by dots, like 1.2, 4, 2. The
multi-component labels may be introduced due to careting-
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Table 1: Encoding of classes in our sample hierarchy

Node Path Encoding (Li, Oi, Fi)
Root 1 01 001 1
Document 1/1 01 001 1 01 001 1
Invoice 1/1/1 01 001 1 01 001 1 01 001 1
Offer 1/1/2 01 001 1 01 001 1 01 010 1
Contact 1/2 01 001 1 01 010 1
Picture 1/3 01 001 1 01 011 1

in, covered further. The address of a given subclass is a
concatenation of labels on the path from the root to this
class, where each two labels are separated by a slash, e.g.
1.2/3/1, 2/3/1.

In OrdPath a class address is represented in a compressed
format by a sequence of triples (Li, Oi, Fi)i∈{0,..,n−1}. The
first two components encode an i-th ordinal. They are bit-
strings of variable-length and Li specifies the length of Oi

in bits. Fi is a single bit equal to 0, when the ordinal is
followed by a dot and to 1, otherwise. A prefix-free encod-
ing is used for the lengths Li, which guarantees that their
ends are always recognizable. It also preserves the original
ordering of addresses and allows us to perform more efficient
comparisons of compressed sequences.

Besides performance of data retrieval, the scheme offers a
significant support for extensibility. In fact, most often there
is no meaningful order between sibling classes, therefore, a
new subclass may obtain the next ordinal for the current
maximum. In case of a deletion one simply invalidates a
given class label. An alternative is to track these ordinals
and reuse them later. Since, in our scenario, these opera-
tions are relatively rare, the first option is more applicable.
Interestingly, when one considers an ordered hierarchy tree,
OrdPath provides efficient insertion routines for arbitrary
positions. In particular, adding new classes at the left end
of all subclasses of a given class is implemented by using
negative values and insertion between any two existing sub-
classes is performed by careting in ([13]). On the whole,
in both scenarios of unordered and ordered hierarchy trees,
any renumbering of existing classes is avoided, as well as,
manipulations in the associated wide table.

Addresses in a hierarchy are introduced as a new SQL
type, HierarchyId, and deployed as a respective CLR sys-
tem type. Values are internally treated as binary columns.
The fact that the logical ordering of addresses is preserved
in the physical representation is crucial for building indices
and statistics on such columns. To support the consid-
ered scenarios, we defined a specific operation that is inter-
nally rewritten before relational processing takes place. The
fact that a column H1 is a descendant of H2 is expressed
by H1.IsDescendant(H2) and after translation becomes the
range predicate:

H2 >= H1 and H2 <= H1.DescendantLimit().

The method DescendantLimit returns a binary string
that is greater than any child of the node H1 and smaller
of any its sibling H, for which H > H1. For the sake of
brevity, the encoding of a particular class is handled by the
notation encoding(class).

In our example, all rows belonging to the content type
Offer can be obtained by the following query:

Table 2: A sparse vector format

Header
Column Column Value

Values
buckets ids position

SELECT *
FROM ListItem
WHERE ContentType.IsDescendant(encoding(’Offer’))

4. SPARSE STORAGE
A large number of columns and sparseness are two in-

trinsic properties of flexible schemas. Indeed, if we deal
with the clustered case, a wide table groups heterogeneous
entities that share common characteristics in logical subta-
bles. In consequence, each subtable introduces new proper-
ties and increases a total number of columns. Furthermore,
since each subschema makes use of a fraction of all defined
columns, the whole table becomes sparse. Similarly, unclus-
tered schemas have extensible property spaces, while only
few properties pertain to each tuple.

As argued in [3], sparse wide-tables require an efficient
storage mechanism that would handle a huge overhead of
meaningless null values and, thus, ensure scalability. In fact,
the majority of contemporary databases use a classical posi-
tional storage. It assumes that values are held always on the
same positions resulting from a fixed order and size in sys-
tem catalogs. It guarantees fast access to each value, how-
ever, it also uses all assigned space to represent each empty
value. The modification proposed in PostgreSQL maintains
a bitmap of null values in each row and saves on additional
space when a column is empty. This benefit is traded off
more expensive computation of a value position. Although
this is much more economical, both approaches use non-zero
space to store null values and do not scale for large num-
ber of columns. This problem can be overcome by using an
interpreted storage. We indicate major differences between
a sparse data format implemented in SQL Server and the
approach proposed in [3].

Users may need to store data of different characteristics
in a single table. Therefore, interpreted storage is enabled
together with positional storage for fixed- and variable-size
data. A column can be marked as sparse, which implies that
it belongs to the interpreted part. This part, referred here
to as a sparse vector, is stored as a complex variable-size
column of the format sketched in Tab. 2.

As it was discussed, in wide tables, only few columns are
present in each row. Note that they can be represented by
column-value pairs, while the rest is implicitly equal to null.
In [3], the pairs are held in a list. This approach remains
efficient when the actual number of populated columns is
small. However, tuples that belong to classes at lower levels
of a hierarchy may suffer from linear access complexity. We
address this issue with two simple optimizations. First of all,
it is very likely that columns introduced with a type were
added together and their identifiers have close values. For
fast negative response, the sparse vector contains buckets
that refer to identifier ranges. Based on the ranges one can
quickly check if a column is populated or not. Otherwise,
the sorted column identifiers are searched with the binary
search algorithm. If found, a respective position associated
with the column id is used to retrieve a value from the data
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Table 3: A result set for “SELECT *” in our exam-
ple

ContentT Coll Ord Created Own SparseColumnSet

Document 0 0 10/2/07 Rick

< Author > Rick
< /Author >
< FileSize > 30k
< /FileSize >

Picture 0 0 11/3/07 Katie
< Size > M1
< /Size >

part.

5. SPARSE COLUMN SET
Even if a large number of sparse columns is stored effi-

ciently, processing may still remain a challenge. Since each
sparse column is treated as a regular column in query pro-
cessing and transport, as long as a user knows which columns
to specify, a wide table can be easily processed by referencing
these columns. However, when one deals with unstructured
data or operates on data from multiple logical subtables at
the same time, it is hard to decide which columns are neces-
sary. Also, inevitably, only some of them are populated for
each row.

Given such a request of heterogeneous data, let us con-
sider a traditional way of retrieving all available columns
with a “SELECT *” query. As it was pointed out, the ones
that are actually present may vary from row to row causing
an overhead in two ways. First, a result set is sparse. If we
still provided every sparse column as other regular columns,
a client would end up obtaining all columns defined for every
row, even though they are not interesting. Moreover, many
of them may not be even populated in the result set at all.
Second, uploaded column metadata can be extremely no-
ticeable for OLTP workloads, when a few rows are retrieved
at a time.

Instead of proposing an efficient strategy for sending a
format of a wide result set, SQL Server implements the idea
of a sparse column set, which makes a physical sparse vec-
tor be accessible through a special computed column of a
schemaless XML type. Sparse vector is seen as a flat docu-
ment, where names of populated columns are used as tags
to store respective values. A sparse column set can be re-
ferred explicitly by a user and is implicitly returned with all
regular columns for the “*” case. Note that processing on
a client side becomes also more efficient. The XML docu-
ment can be easily interpreted to get values of underlying
columns, instead of looping over a possibly large number of
sparse columns.

Let us assume that the type hierarchy in our example is
wide and all columns introduced at lower levels are marked
as sparse. For a request of all items created after ′1/1/07 ′,
one obtains the result set in Tab.3.

Data manipulation is another powerful application for a
sparse column set. In case of bulk operations, it is inconve-
nient and inefficient to specify all columns explicitly. In fact,
only the columns meaningful for each row should be pro-
cessed. To achieve this goal, a sparse column set is treated
as updatable. Let us consider the following template that al-
lows us to populate any logical subtable by providing values

of sparse columns with a sparse column set:

INSERT INTO T(ContentType,SparseColumnSet)
VALUES (′Picture′,
′ <Desc>Fall</Desc><Size>M2</Size>′)

Last but not least, heterogeneous definitions of logical
subtables result in statements of different patterns, when
columns are specified explicitly. This fact is particularly ad-
verse in terms of parameterization and caching. Also here,
common templates with a sparse column set ensure compile
time savings.

6. DATA INDEXATION
Although heterogeneous collections are represented by a

single wide table, queries are issued against logical subtables.
Therefore, the system is expected to provide efficient data
retrieval structures at this implicit level.

While designing a proper indexation solution for the flexi-
ble schema scenario, one encounters two evident challenges.
First of all, new secondary structures cannot add signifi-
cant storage overhead on the base table. Second, when
a large number of columns is indexed, data manipulation
becomes expensive. Note that, if one considered classic in-
dices for this purpose, either storage or DML execution time
would increase linearly with the number of defined indices
([17]). Given a scale and time-critical requirements of dy-
namic OLTP applications, this solution would not be ac-
ceptable.

Both problems stated above are a direct consequence of
natural sparseness of wide-tables. As it was pointed out,
only a fraction of null values that belong to logical subtables
is meaningful and, thus, interesting for retrieval, whereas the
vast majority remains not applicable. One of the solutions is
to use a sparse index ([6]) that takes into account only non-
null values. It is highly economical in terms of storage and,
in case of an update of a row, only indices including affected
rows are maintained. A noticeable drawback is that a sparse
index cannot be treated as an equivalent of a regular index
for a logical subtable. In particular, it does not cover rows
with meaningful null values, which limits its usability, e.g.
back-joins, seeking missing values, etc. To overcome these
issues, we incorporated the more general approach of partial
indexation ([18]), that is represented in our framework by
a filtered index. Syntactically, the feature is surfaced by
allowing a WHERE clause in the index definition, as follows:

CREATE INDEX inx ON table(indexed columns)
WHERE p(predicate columns)

The WHERE clause is orthogonal to other index qualifiers
such as partitioning, included columns or fill factor. The
predicate p specifies a subset of rows that are to be stored
in the index.

In the remainder of this section, we present an overview on
the feature, more details on implementation and use cases
can be found in our previous work ([17]).

6.1 Querying
Regular indices support data retrieval in several ways, like

efficient scans, seeks or providing tuples in a desirable order.
The same properties hold for filtered indices as well, how-
ever, their application is restricted to a subset of a base table
specified by a predicate.
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In the clustered scenario, one uses a discriminating col-
umn to distinguish particular classes. As it was explained
above, it is sufficient to use equality conditions to indicate
class membership in flat collections, whereas, for hierarchies,
it is appropriate to use range predicates that address a given
inheritance subtree. Coming back to our sample schema, let
us create a filtered index on the column DateSent for rows
in the class Offer.

CREATE INDEX inx ON ListItem(DateSent)
WHERE ContentType.IsDescendant(encoding(’Offer’))

Every query that requests tuples from this range can po-
tentially make use of this index. Precisely, an index can
be used when its predicate subsumes (matches) the query’s
predicate, i.e. the index has entries for all the rows required
to answer the query. Logic inferences are performed by the
matching engine component ([17]). As soon as the subsump-
tion is proved the index is treated as any other index in
optimization. The whole logic is executed only when index
candidates are considered, thus, the presence of a predicate
has almost no effect on plan compilation. At the same time,
it is often the case that a query requests exactly the range of
rows referenced in an index and applies an additional resid-
ual predicate, which allows us to scan the whole index and
simplify the whole predicate.

6.2 Maintenance
Data manipulation changes a content of a base table and,

in consequence, it requires maintenance of all dependant sec-
ondary structures. In particular, a regular index on changed
columns has to be updated regardless of the rows that are
affected. However, in case of partial indexation, there are
opportunities for significant savings.

In SQL Server, in order to process DML statements like
regular queries, the changes to be applied to a base table
are modeled by a set of rows called a delta stream ([10]).
As far as execution is concerned, the number of possible
actions that can be performed on an index for each tuple is
different from a classic case. Namely, an entry is inserted
(deleted) only if new (original) values satisfy the index’s
predicate. The case of updates is more complex, since one
may need to insert, delete, update or ignore a row depending
on if a predicate is met for old and new values (see [17] for
details). This logic is implemented by preceding a relevant
update operator with a filter, which selects rows satisfying
the index’s predicate.

During plan generation it is often the case that a delta
stream is characterized by some constraint, e.g. explicit as-
signment list or predicates. This information may be used
to infer that the predicate of a given index is contradictory
or tautological and simplify maintenance. Note that, if it
can be proved that none of rows of a delta stream affects an
index, we skip it in maintenance. Similarly, one may omit
putting a filter before an update operator for an index that is
guaranteed to be always affected. The necessary inferences
are also made by means of the matching engine.

On the whole, maintenance cost for a filtered index as
compared to a regular one is much lower due to fewer data
accesses. This effect is even stronger if the index’s predicate
is selective in a considered delta stream. However, additional
overhead is introduced in terms of CPU due to evaluation
of a filtering expression. In certain cases it is possible to
eliminate this overhead and at the same time greatly reduce

the size of the execution plan. It is worth to emphasize that,
although general, the approach is especially efficient for im-
plementing flexible schemas. First of all, predicates are very
simple, thus, not expensive to evaluate. Second, regular up-
dates address contents of logical subtables and do not change
the discriminating column. In consequence, filtered indices
logically not related to a target subtable are eliminated from
a plan thanks to contradictions. Also, indices that pertain
only to this subtable are treated as regular indices and a
maintenance plan does not have to be instrumented with
additional filters.

7. FILTERED STATISTICS

7.1 General Idea
Any state of the art database engine maintains statisti-

cal information describing the data distribution of individ-
ual columns or set of columns in a table. These optimizer
(or distribution) statistics are crucial for cardinality esti-
mation and selection of efficient execution plans. Distribu-
tion statistics are on entire tables. For example, statistical
information on the Created column describes the distribu-
tion of the creation time stamp across all rows stored in
the ListItem table. As discussed above, queries on hetero-
geneous collections stored in wide tables are in fact queries
against logical subtables. Therefore, distribution informa-
tion on all rows in a wide table is inadequate. Since queries
are against logical subtables, it is desirable to maintain dis-
tribution statistics on these subtables. This follows the jus-
tification used for filtered indices.

Due to space limitations, we provide only an overview
on the feature and emphasize its role for a flexible schema
implementation.

7.2 Statistics Creation
Analogously to the creation of filtered indexes we ex-

tended the syntax for statistics creation allowing a WHERE
clause to specify the subset of rows we want to define statis-
tics on:

CREATE STATISTICS s ON table(column1, column2, ...)
WHERE p(predicate columns)

As with filtered indexes, the WHERE clause is orthogonal
to other statistics specifiers (e.g. sample rate). Columns
referenced in the predicate need not to be a subset of the
columns we create statistics on; but they need to be from the
same table, which implies that filtered statistics are single
table statistics.

Internally, an unfiltered create statistics statement is im-
plemented by a (potentially sampled) scan of the underlying
table. Filtered statistics are created using the same scan-
ning/sampling infrastructure. Before a row is considered
for the filtered statistics, the filter predicate is evaluated and
only qualifying rows are used to calculate the data distribu-
tion. If there is a (potentially filtered) index that provides
required columns as well as subsumes a filter predicate, it
will be used to reduce the I/O overhead for the statistics
query.

As with regular (unfiltered) indexes, SQL Server will cre-
ate statistics as a side effect of an index create. Conse-
quently, the creation of a filtered index, implies the creation
full scan filtered statistics with the same filter expression.
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7.3 Use in Cardinality Estimation
To understand how the optimizer exploits filtered statis-

tics, we give a very brief introduction on the usage of un-
filtered statistics. Any table column referenced in a query
predicate or group by expression is considered interesting for
statistics loading. If statistics do not exist on a column in
question and the auto creation of statistics is enabled, SQL
Server will create these statistics on the fly. Let us consider
a predicate on two columns of the ListItem table (Fig. 2):

Author = ′Pam′ and
ContentType.IsDescendant(encoding(′Offer′)).

The system will load, after potentially auto-creating, statis-
tics on Author and the OrdPath encoding of ContentType.
After estimating the selectivity of the partial expression Au-
thor = ′Pam′, this selectivity is applied to the statistics on
the OrdPath encoding of ContentType and vice versa. To do
this, we have to assume statistical independence of Author
and ContentType. We load the full table statistics on the
Author column, estimate how many of the rows qualify for
Author = ′Pam′ and then apply the estimated selectivity
of the ContentType predicate to this estimate.

If we have filtered statistics on Author with the filter pred-
icate ContentType.IsDescendant(encoding(′Author′)), there
is no need to apply the estimated selectivity of this predicate
to the statistics on Author. Whenever we load statistics on
a column we consider the query predicate and load filtered
statistics for which the filter predicate subsumes the query
predicate. In other words, the set of rows defined by the
query predicate is a subset of rows defined by the statistics
filter predicate. In case of multiple matching filtered statis-
tics, we choose the one defining the smallest subsuming set.

Importantly, in case the query predicate specifies a true
subset of the rows specified by a subsuming filter predi-
cate, we still need to apply the partial (or residual) pred-
icate. For example, let us consider the query predicate
ContentType.IsDescendant(encoding(′Offer′)) and use statis-
tics valid for rows in two sibling classes with the filter pred-
icate:

(ContentType.IsDescendant(encoding(′Offer′)) or
ContentType.IsDescendant(encoding(′Invoice′))).

We use these statistics, since they subsume the set of rows
specified by the query predicate, but we still have to apply
the residual ContentType.IsDescendant(encoding(′Offer′)) to
the statistics.

7.4 Refresh
Incremental maintenance of distribution statistics is pro-

hibitively expensive. Therefore, the system tracks the num-
ber of changes (inserts, updates, deletes) to a column and
uses heuristics to decide when statistics are considered stale
and need to be refreshed. If the automatic statistics refresh
is enabled on the database, the system will recalculate the
statistics during query optimization whenever stale statistics
are detected. This automatic update of statistics is typically
sample based. The system uses a set of heuristics to deter-
mine the sample size. In case of filtered statistics the same
logic applies. However, when determining the sample size,
we take the filter selectivity into account. To guarantee a
statistically meaningful sample size we ”boost” the sample
size by the filter selectivity.

Highly selective filter predicates could pose a problem,
since we often would end up doing a full scan of the base
table to achieve a statistically useful sample. In most cases
we expect a filtered index associated with respective filtered
statistics. In this case calculation of full scan statistics can
be done very efficiently by scanning the filtered index instead
of the unfiltered base table.

7.5 Beyond Flexible Schemas
Filtered statistics have applications beyond flexible schema

implementations. One very common problem with distribu-
tion statistics is the assumption of statistical independence.
As alluded to in the example above, estimating the selec-
tivity of a more complex predicate is done by combining
the estimates of individual basic predicates. All state of
the art query optimizers assume statistical independence of
the individual selectivities to calculate the combined selec-
tivity. This assumption is often violated (sparse columns
which contain values for only a small set of values in the
discriminating column are a good example) and, in conse-
quence, cardinality estimates can be arbitrarily bad. This
problem can be alleviated with filtered statistics. In par-
ticular in cases where a column is discriminating and has
only a small set of possible values, it is possible to create fil-
tered statistics for some or all values (in the example above
we would create filtered statistics for each possible Content-
Type value).

8. LARGE SCALE
In a normalized model for a heterogeneous collection meta-

data are partitioned between separate narrow tables. How-
ever, if one chooses a flexibility of wide tables, equivalent
metadata of roughly the same size are tied to a single ta-
ble. This triggers significant metadata scaling issues that
have not been addressed by state of the art RDBMSs. A
potentially large number of columns and dependant struc-
tures requires a cautious implementation of DDL routines
and economical metadata loading in plan generation.

Note that, in order to execute a statement, one requires
only a subset of columns from each considered table, i.e. the
columns needed for plan generation. More precisely, this set
contains all the columns referenced in the query, identified
during algebrization, and these referenced in the structures
used in the whole process. The key is to predict, which
objects can be potentially useful and avoid loading unneces-
sary information or operating on large column collections in
optimization. In particular, for SELECT queries, one loads
columns from a query, interesting statistics, matchable and
useful indices and materialized views. For DML, additional
columns in affected dependant structures are also necessary.
In case of wide tables, such selective approach usually de-
creases the number of columns visible in compilation by or-
ders of magnitude.

Numerous statistics can be another source of deficiency
in querying wide tables. Their number grows quickly, even
if we assume only few for each logical subtable, and makes
loading time a substantial factor. Moreover, although unfil-
tered statistics are loaded once, filtered ones may be scanned
many times for various predicates considered in the opti-
mization process. At the same time, for a particular query,
one is interested in data distribution for a small number of
interesting columns. Therefore, it is much more efficient to
take an appropriate indexing strategy and seek directly to
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relevant statistics entries.
SQL Server ensures efficient handling of OLTP workloads

for up to 300k columns, where at most 1k is non-sparse, 1k
indices and 300k statistics. However, our experiments show
that, in many cases, it scales well even beyond these limits.

9. PREVIOUS WORK
Flexible schemas deal with a problem of representing a

heterogeneous and extensible collection of entities. This
problem can be addressed with a classical vertical property
bag, a solution proposed by Agrawal in [2]. Propositions for
tuple reconstruction in this approach were covered in [2, 7].

Wide tables as a solution for heterogeneous collections
were broadly discussed in [6] which contains a proposition in
terms of storage, indexation and searching. Also, the idea of
discovering a hidden schema by means of clustering was put
forward. An interesting application of the design to store
data extracted from semi-structured web pages was covered
in [8]. The flexible schema scenario as a generalization of flat
collections to hierarchical entity sets was introduced in [17].
Also, the importance of an easily extensible data model, in
which instances are not strictly limited by class definitions
was strongly emphasized in [14].

Interpreted storage for horizontal property bags was pro-
posed in [3]. The concept was supported with an experi-
mental comparison against positional and bitmap-only ap-
proaches implemented in PostgreSQL. In contrast to our
method, non-null values are stored in a list, which leads to
reduced performance. Column store is an alternative way of
dealing with sparse tables ([1]).

Partial indexation was introduced by Stonebraker in [18,
19]. In general, the solution has been considered to index
interesting values understood as non-default, exceptional,
frequently queried ([16],[18]) or non-uniformly distributed
([15]). In result, further research ideas for costing and ad-
vising useful indices were described ([18],[15],[16]). For wide
tables, a specific case of sparse indices, that target only non-
null values, was recommended in [6]. Finally, a detailed
presentation of filtered indices in SQL Server and their ap-
plication to the flexible scenario can be found in [17].

The labeling scheme OrdPath was introduced in [13] as
a compressed representation of node location in an XML
document. An interesting application for efficient imple-
mentation of multilingual semantic matching was proposed
in [12]. By analogy, we employed this convenient idea to
class hierarchies in flexible schemas. Alternative labelings
of XML data were discussed in [20, 11].

To the best of our knowledge there is no previous work on
partial statistics per se. A problem can be handled by the
concept of creating statistics on views ([9]) or an alternative
approach discussed in [4] and [5]. However, due to a general
character, they may suffer from an unnecessary overhead.
We believe that our simpler solution suites better the con-
sidered use cases. Also, to some extent, the problem can
be addressed by any model that takes into account corre-
lation between columns, e.g. multi-dimensional histograms.
Nonetheless, such approaches cannot benefit from the pres-
ence of a hidden schema and may behave less economical.

10. EXPERIMENTAL RESULTS
The goal of experiments is to verify performance of our

package for a hierarchical flexible schema. A real world sce-

nario is modeled by means of the prototypical content and
collaboration application described in Sect. 2. Two classes
of experiments have been performed. First, we measure the
performance of each of our extensions in isolation towards
standard relational solutions existing in SQL Server and,
second, evaluate the performance impact of the whole inte-
grated package.

In both classes of experiments we used a data generator
referred here as SharepointLite. This specialized tool is able
to create and populate databases statistically equivalent to
the ones in deployed Sharepoint installations. As a result,
synthesized sparse data gives insights on the behavior of
real system without copying terabytes of database files or
storing business sensitive data in a test environment. For
the purpose of these experiments we used statistical data
reflecting our largest internal Sharepoint database. A de-
tailed description of data generation is a complex process
and is beyond the scope of this paper.

In order to measure the performance characteristics of the
proposed extensions, we used dynamic management views, a
mechanism of the server, that provides concise statistics on
query processing. We chose the execution time of a query as
our main performance determinant for two reasons. First,
it aggregates performance benefits from different sources,
like query plan improvement, less number of disk operations
etc. Second, execution time is the measure actually experi-
enced by an end user. All experiments are run in single user
mode, as we believe our extensions have insignificant impact
on concurrent query execution and parallelism would only
introduce additional test-to-test variation increasing mea-
surement noise.

For a better picture of the systems behavior in the target
environment, results are presented for both cold and warm
data. The comparison shows how sensitive the solution is
to existing caching mechanisms. For this reason, we use
hardware with sufficient main memory to fit each of the
used datasets in cache, namely, an 8-processor Intel Xeon
MP 2.8 GHz with 4 GB of RAM.

10.1 Isolated Benchmarks
As a baseline experiment we implemented a traditional de-

sign that resulted in a database with multiple tables. There
were four tables for each tested number of columns — two
with regular and two with sparse columns. Of each two ta-
bles one was used to query and one to insert data. SQL
Server supports only up to 1k regular columns, thus, we
included tables with a large number of sparse columns with-
out corresponding tables with the same number of regular
columns.

SharepointLite was used to populate each of the query ta-
bles with the same set of 50k rows containing only 10 mean-
ingful columns (of which around 80% values were non-null).
In other words, each row represents an entry in a single log-
ical subtable for a leaf content type, where 10 columns are
meaningful. In a complete wide-table the remaining columns
would be used in other rows to store data for other content
types. Note that we decided to include some null values
in meaningful columns as this reflects a real-world situa-
tion. Different column types were involved. The summary
of these types together with a respective number of instances
is listed in Tab. 4. The execution time was averaged over
several runs for testing workloads.

Our first isolated test used a query selecting the first
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Data type Number of instances
DATETIME 1
FLOAT 3
NVARCHAR(255) 3
GUID 1
INT 2

Table 4: Column types used in tests

10 columns from a table. This is equivalent to retrieving
all rows of a specified content type, when the meaningful
columns for this list is known upfront. The results for cold
data are shown in Fig. 3.

SELECT column1, . . . , column10 FROM T1

Figure 3: Querying individual columns (cold data)

The next test considered insertions of meaningful columns
known upfront with data from a query table (Fig. 4). In
order to limit potential noise from random I/O operations,
we made sure that the data was loaded into memory before
we accessed it.

INSERT INTO T2(column1, . . . , column10)
SELECT column1, . . . , column10 FROM T1

Figure 4: Inserting individual columns

Fig. 5 presents results for cold data, when a query se-
lects all columns from each table. This reflects an operation

in which the type of affected rows is not known, for exam-
ple, administrative or generic operations, like backup, copy,
move etc. In case of tables with sparse columns, the query
resulted in one XML value of a sparse column set for each
row, while in case of regular tables, a conventional matrix
of all columns and rows was returned.

SELECT * FROM T1

Figure 5: Querying all columns (cold data)

Accordingly, a complementary test looked at an insertion
of data using all columns in a table (Fig. 6). For sparse
columns it was performed by means of a sparse column set.
Again, we made sure that the data was loaded in memory
before we used it.

INSERT INTO T2
SELECT * FROM T1

Figure 6: Inserting all columns

The last experiment for sparse columns repeated all the
queries with warm data (Fig. 7). For a sparse column set,
the results were similar to those obtained with cold data,
but the query retrieving individual columns showed an in-
teresting difference covered further in this section.

The results of the performed experiments are very appeal-
ing. Performance of practically all operations on sparse ta-
bles scale well, showing flat lines up to the tested maximum
of 100k number of columns. Query and insert via individual
columns have exactly the same execution time for all sizes of
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Figure 7: Querying individual columns (warm data)

tables, while column set operations present a slight depen-
dency on it. We believe this is because translation of XML
to/from sparse vector needs to access columns’ metadata,
which is stored in a B+-Tree; despite the fact that the num-
ber of metadata accesses depends on the number of used
columns only, the expected time for a single access depends
logarithmically on the size of the tree. However, its impact
on overall performance is marginal. In fact, retrieval of all
columns from a 100k column table is only 9.5% slower than
from a 10 column table.

Another interesting observation is that the storage bene-
fits from the use of a sparse vector predominated the addi-
tional time spent on parsing when the percentage of null val-
ues in a row reached 70% or more. The only exception was
the insert operation via column set, which has the tipping
point placed at 97%. This could be caused by inefficiencies
in the XML parser used to translate a sparse column set
into a sparse vector. It is also worth noting that querying
warm data via individual columns doesn’t show any serious
disadvantage from using sparse columns for any non-null to
null ratio. Performance for sparse and regular columns stays
within 1% from each other for data with less than 80% null
values. Beyond this threshold sparse storage querying be-
comes much more efficient.

Benchmarks for filtered indices are not included in this
paper, since the results presented in [17] refer to the same
usage patterns and were performed for a similar synthetic
data set. They prove the validity of filtered indexes to sup-
port fast data retrieval in a flexible schema environment.
Nevertheless, the impact of filtered indexes on query perfor-
mance is still evaluated for the integrated scenario.

The introduction of the HierarchyId data type plays a cru-
cial role for data processing in flexible schemas. We believe
that the most important property of this data type is its
theoretical lack of dependency on the depth of the hierar-
chy. To measure this, we created a simple hierarchy with 10
levels and 100 elements at each level. Then, we implemented
this hierarchy using a traditional relational representation of
parent-child dependency and a recursive function testing if
an element is an ancestor of another element. On the other
hand, the same hierarchy was implemented by means of the
HierarchyId data type. For cold data, we run a simple query
counting all elements from a given level that are descendants
of a certain top-level element (Fig. 8).

The results are very clear — not only for all queries op-

Figure 8: Querying hierarchy using relational rep-
resentation and HierarchyId data type

erating on children (below level 1) the performance of the
implementation with HierarchyId was definitely dominating
over the traditional one and it was never slower. The re-
sults indicate that switching from a traditional model to
the HierarchyId-based model does not introduce any perfor-
mance risk.

10.2 Integrated Scenario
The second class of experiments refer to the integrated

scenario that measures the aggregated impact of all imple-
mented extensions on the performance of our prototypical
schema. The data model follows our main example and is
evaluated with queries that involve particular features.

SharepointLite was employed to synthesize a flexible schema
with our prototypical type hierarchy (Fig. 1) containing 1k
random user lists with exactly 1k different properties. Each
type was associated with a respective HierarchyId value. We
also created and populated a table to store a content type
hierarchy in a parent-child relational format. Determining
whether a given content type is a child of another given one
was performed by a widely-known recursive T-SQL function
IsAncestor(). Note that, in the traditional implementation,
the same content type identifiers generated by HierarchyId
were used. Then, two wide tables to store heterogeneous
items were defined, one with regular and one with sparse
columns. In the latter case, only 1,000 columns referring to
class properties were sparse, whereas common columns re-
mained marked as regular. Both tables were populated with
the same 25k rows of random data.

As the last step of the test setup we created indices on
both tables. We modeled a real world situation when some
subset of the content types is queried very often and there’s
a need to index some of its properties. In our tests we de-
cided to index the CreateTime property of all Documents.
For the regular table approach, we created a regular index
containing CreateTime and ContentType columns. For the
sparse table scenario we created filtered indices on the same
columns, but with a relevant predicate. We also created
corresponding indices on the ContentType column itself, a
regular one on the regular table and a filtered one on the
sparse table.

We could see the first benefits from using the proposed
extensions even before we ran any queries. The storage space
savings were significant (Tab. 5).
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Table 5: Sizes (in bytes) of database objects in reg-
ular and extended schemas

Object Regular Extended
Main table 88, 383, 488 15, 826, 944
Index on ContentType 1, 056, 768 106, 496
Index on ContentType

1, 261, 568 155, 648
and CreateTime

The first query selects all properties stored in a given list
from the type Contacts without considering subtypes and
cannot use any index (Fig. 9):

SELECT
FirstName, LastName, Phone1, ...

FROM T
WHERE

ListId = LISTID AND
ContentType = encoding(′Contact′)

Figure 9: Query selecting all properties from all
Contacts in a single list

The second query is similar, but the type Invoice is consid-
ered and indices are employed, regular indices for the regular
table and filtered indices for the sparse one (Fig. 10).

Figure 10: Query selecting all properties from all
Invoices in a single list

The last query in our integrated tests requests all proper-
ties from the Invoice content type from the ten newest list
items of this content type (including subtypes) in the table.
For the table with our extensions we replaced the hierarchy
function with a simple predicate, enabled by using Hierar-
chyId. Moreover, we did not want the query to operate on
indices only, thus, we included a predicate on the FileSize
column to force the query plan to join and filter out some
table rows. We chose this column, as it was not included in
any index. The results can be found in Fig. 11.

SELECT TOP 10
Author, Reviewer, FileSize, CreateTime, . . .

FROM T
WHERE

ContentType.IsDescendant(encoding(’Invoice’)) AND
FileSize < 0

ORDER BY CreateTime

Figure 11: Query selecting ten newest Invoices (in-
cluding subtypes) from all lists in the wide table

In the case of isolated benchmarks, we find the results of
the integrated tests very encouraging. All queries we ran
using our extensions show a significant improvement over
the regular ones. This was especially evident for cold data,
where sparse columns require much less disk reads. But even
for warm data the table scan query was twice as fast.

The third query which incorporated all the described ex-
tensions proves that the framework is well-optimized for the
considered scenario. In fact, we observe two orders of mag-
nitude speed-up for cold data and three orders of magnitude
one for warm data. Almost all the improvement is due to
the combination of the HierarchyId data type and filtered
indices. While HierarchyId allowed us to replace an expen-
sive recursive function with a simple range predicate, the
use of filtered indices eliminated the majority of data rows
in a table from even being considered in the result. The
combination of those two factors has brought a new quality
to the performance of querying flexible schema data in the
relational model.

11. CONCLUSIONS
In this paper we have presented a package of relational fea-

tures, implemented in Microsoft SQL Server 2008, that sup-
port applications with flexible schema, and demonstrated
their efficiency through a number of experiments.

1299



In the relational approach, we view flexible schema by
means of a potentially very wide table to store dynamic,
hierarchical collections of entities. The shape of a hierarchy
and granularity of collections defines a spectrum of data
heterogeneity that goes from a few independent subtables
embedded in the wide table, each with a strong schema and
data homogeneity, all the way to individual rows that are
unrelated to others in terms of structure or usage by the
application. This utilization pattern emerges naturally in a
number of applications, including content and collaboration.

The conceptual relational model can certainly cover the
definition and manipulation of such a table, in terms of ex-
pressivity. However, typical RDBMS implementations as-
sume both a limited number of columns and certain ho-
mogeneity in the data contents across a table, which align
very well with traditional applications, but fail to efficiently
support this new utilization pattern. Our focus in this pa-
per has been on presenting a complete set of primitives that
enable efficient and convenient manipulation of data on flex-
ible schema tables. The package is made up of four related
groups of features: (1) support for a large number of columns
through sparse storage and column sets; (2) support for hier-
archical relationships within a table; (3) support for efficient
query processing for subtables through filtered indices and
statistics; (4) economical loading of metadata to ensure in-
dependence of plan generation and execution from the total
numbers of columns and structures defined in a table. Our
experiments demonstrate the efficiency of these techniques
for the target usage. The current server’s limits are 300k
sparse columns, 1k indices and 300k statistics in a table.

The proposed features extend the relational platform to
efficiently cover a new, broad spectrum of applications while
preserving traditional data management services.
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