
EasyTicket: A Ticket Routing Recommendation Engine
for Enterprise Problem Resolution

Qihong Shao, Yi Chen
Arizona State University

{qihong.shao, yi}@asu.edu

Shu Tao, Xifeng Yan, Nikos Anerousis
IBM T. J. Watson Research Center

{shutao, xifengyan, nikos}@us.ibm.com

ABSTRACT
Managing problem tickets is a key issue in IT service in-
dustry. A large service provider may handle thousands of
problem tickets from its customers on a daily basis. The ef-
ficiency of processing these tickets highly depends on ticket
routing—transferring problem tickets among expert groups
in search of the right resolver to the ticket. Despite that
many ticket management systems are available, ticket rout-
ing in these systems is still manually operated by support
personnel. In this demo, we introduce EasyTicket, a ticket
routing recommendation engine that helps automate this
process. By mining ticket history data, we model an enter-
prise social network that represents the functional relation-
ships among various expert groups in ticket routing. Based
on this network, our system then provides routing recom-
mendations to new tickets. Our experimental studies on
1.4 million real-world problem tickets show that on average,
EasyTicket can improve the efficiency of ticket routing by
35%.

1. INTRODUCTION
Motivation: Managing problem tickets is a key issue in IT
service industry. Every day, the help desk or call center of
service providers, e.g., IBM, AT&T, and VISA, may receive
thousands of phone calls and emails from their customers
who are seeking technical supports. The reported problems
range widely from login failure, application crash, to bro-
ken transactions. The efficiency of resolving these problems
is a critical measurement to the productivity of a service
provider.

The process of problem resolution is reflected by the life
cycle of problem tickets. A ticket is opened as soon as
a problem is reported, and routed among various expert
groups until it reaches a resolver group that can solve the
problem and close the ticket. Table 1 shows a lifecycle of
a sample ticket routed among multiple groups before it was
solved. As one can see, the efficiency of problem resolution
hinges critically on that of ticket routing.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

ID Time Entry

28120 2007-05-14 New Ticket: DB2 login failure
28120 2007-05-14 Transferred to Group SMRDX
28120 2007-05-14 Contacted Mary...
28120 2007-05-14 Transferred to Group SSDSISAP
28120 2007-05-14 Status updated ...
28120 2007-05-15 Transferred to Group ASWWCUST
28120 2007-05-15 Web service checking
28120 2007-05-18 Could not solve the problem.
...
28120 2007-05-18 Transferred to Group SSSAPHWOA
28120 2007-05-22 Resolved

Table 1: A sample ticket lifecycle

Today, many ticket management systems provide a col-
laborative platform where users and support personnel can
interact in real time to report, diagnose and resolve tickets.
However, ticket routing in these systems are often still man-
ually decided by the support personnel. Making wise deci-
sions in problem routing is extremely challenging in practice
due to two factors: (1) the great diversity of reported prob-
lems and (2) the large number of expert groups to choose.
For example, a set of ticket data obtained from IBM has
553 problem categories and involves more than 50 groups
in resolving problems in each category. It is not uncommon
that due to the limited knowledge and experience, a ticket
is mistakenly transferred to a group that cannot solve the
problem, which leads to a long routing sequence and exces-
sive delay.

In this demo, we introduce EasyTicket, a recommendation
engine that improves the efficiency of ticket routing (hence
problem resolution) by mining the historical ticket resolution
sequences.

Typically a problem ticket contains two types of infor-
mation: (1) ticket content that includes problem descrip-
tion and diagnostic data, (2) routing sequence that shows
how it was routed between different groups. In the sam-
ple ticket shown in Table 1, the entries compose the ticket
content, while the extracted group names 〈SMRDX, SSDSISAP,
ASWWCUST, SSSAPHWOA〉 form its routing sequence. Our study
here focuses only on routing sequences. As shown in this
demo, mining the routing sequences alone can significantly
improve the overall efficiency of ticket routing.

Problem Definition: We now briefly describe the data
model and define the problem of ticket routing recommen-
dation. A problem ticket can be represented by a tuple with
two components, (τ, G(k)), where τ is the ticket content and
G(k) is the routing sequence. Let G = {g1, g2, . . . , gn} be the

1436

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

set of all expert groups. The routing sequence of a ticket can
be written as G(k) = 〈g(1), g(2), . . . , g(k)〉 (g(i) ∈ G), in which
a ticket is first issued to g(1), then transferred in the order
of g(2), g(3), . . . , g(k). A step in G(k) is a ticket transfer from
one group to another. A ticket (τ, G(k)) is open if none of the
groups in G(k) can resolve it. Correspondingly, a ticket is
closed if the last group in G(k), i.e., g(k), solved the problem,
and in this case, the routing sequence is called a resolution
sequence.

The problem of ticket routing recommendation is specified
as follows:

Input: A database of historical ticket resolution sequences
DS and an open problem ticket (τj , Gj).

Output: Rankings of gi (gi ∈ G) as the next group that
the open ticket should be transferred to.

Objective: To improve the overall efficiency of problem
resolution, measured by the Mean number of Steps To Re-
solve (MSTR) a set of m open tickets:

T =

∑m
j=1 |Gj |

m
. (1)

Approach: With an in-depth analysis, we find that the
majority of local ticket transfer decisions were logically cor-
rect. Intuitively, the group holding a ticket generally can
make a correct decision on selecting the next group to be
the most likely problem resolver, based on its knowledge of
the skills and expertise of the related groups. Such relations
between different groups form a “social network” that often
exists in enterprise problem resolution [3, 1]. However, a few
local mis-routing decisions often result in long resolution se-
quences.

To avoid such mis-routings, we build a model that cap-
tures the social network between the expert groups, by min-
ing the local ticket transfer decisions recorded in the resolved
tickets in each problem category. The obtained model is
probabilistic, because the connections between a group and
the other are uncertain, even with respect to solving a spe-
cific type of problems. Using this probabilistic model, we
can guide future ticket routing toward the group that is
most likely to resolve the problem.

Our method is based on Markov modeling, which is a nat-
ural choice to capture the likelihood of a group to be a trans-
fer target given the previous groups [2]. Let each Markov
state represents a group, the transition probabilities between
these states capture the local decisions, i.e., the likelihood
of a group to be a transfer target, given the previous groups
that have processed the ticket. There are several challenges
in applying Markov model in this problem. What kind of
group transitions should be captured by the model? What
should be the optimal order of the derived Markov model?
How should the model be used to guide ticket transfer?

In our study, we address the above challenges and de-
velop a system that generates ticket routing recommenda-
tions. Following its recommendations, the MSTR of new
tickets can be greatly reduced, compared to that based on
human decisions. More details can be found at [4].

2. SYSTEM ARCHITECTURE
The architecture of the EasyTicket system is presented

in Fig. 1. Historical Ticket Database collects and organizes
historical tickets from different ticket management systems.
Then the Sequence Extractor extracts ticket resolution se-
quences from this database in building a Sequence Database.

Historical Ticket Database

Sequence Extractor

Markov Model
Generator

Ticket Routing
Advisor

Historical Tickets

Resolution Sequences

Sequence Database

New Open Ticket

Figure 1: System architecture for EasyTicket

Markov Model Generator builds the Markov model that cap-
tures the social network that reflects the relationships be-
tween different expert groups. Finally, for an open ticket,
Ticket Routing Advisor provides routing recommendations
based on the developed model and the current routing se-
quence of the ticket.

2.1 Markov Modeling
We first extract routing sequences from problem tickets,

e.g., sequence pattern 〈SMRDX, SSDSISAP, ASWWCUST, SSSAPHWOA〉
from the sample ticket in Table 1. Since the problems of dif-
ferent categories have different characteristics, we build up
a hybrid Markov model for historical resolution sequences
in each individual problem category, where the category of
a problem ticket is typically assigned by the help desk that
receives the problem report.

Let us use S(k) to denote the set of groups in G(k), i.e.
S(k) = {g(1), g(2), ..., g(k)}. The number of instances with a
set of group transfers S(k) is denoted as N(S(k)); and the
number of instances of transferring a ticket to group gi after
being processed by S(k) is denoted as N(gi, S(k)). We can
estimate P (gi|S(k)) by

P (gi|S(k)) =

{
N(gi, S(k))/N(S(k)) if N(S(k)) > 0,
0 otherwise.

(2)
Our model is built based on all intermediate transfer steps

in ticket resolution sequence. We define J(τ, gi) = 1 if the
problem τ should go through group gi (i.e., the problem can
be either solved or correctly routed by gi), and 0 otherwise.
Then, Eq. (2) is evaluated as

P (gi|S(k)) = P (J(τ, gi)|S(k)). (3)

The order of a Markov model determines how many past
states are considered to predict the future state of the pro-
cess. To determine the “optimal” order of a Markov model,
we consider the conditional entropy of the training data and
evaluate the entropy of the next group g conditioned on a

1437

E

D

C

0.03

0.45

0.5

0.35

0.3

B

H

I

0.6

0.3

0.1

0.7

0.3

1

0.65

F

0.1

G

0.02

(1)

0.25

0.35

0.750.45

0.55

1

J

A

0.8 0.1

(2)

0.25

(3)

(4)

(b) 2nd order probability table(a) VMS Routing Steps

 Figure 2: Example of VMS algorithm

given set of past groups S(k), which is denoted as H(g|S(k)):

H(g|S(k)) = −
∑

S(k)∈Gk

P (S(k))
∑
g∈G

P (g|S(k)) log P (g|S(k))

(4)
Specifically, users can set a threshold θ to determine the

optimal order k, where k is set as the smallest value that
satisfies

H(g|S(k))−H(g|S(k+1)) < θ. (5)

2.2 Routing Recommendation: VMS Algorithm
Our Markov model captures the likelihood that a ticket

would be transferred to a group, given the past group trans-
fer information. The next issue is how to use it to make ef-
fective ticket routing recommendations, so that a new ticket
can be transferred to its resolver group as quickly as possible.
Note that the right resolver group for a ticket is unknown at
the beginning of ticket routing. What we know is the initial
group that a problem ticket was assigned by the help desk
according to the reported problem symptoms.

We introduce a heuristic search algorithm, called Variable-
order Multiple active state Search (VMS). It maintains a
visited group set, Lv, and a candidate group set, Lc, which
consists of the unvisited neighbors of all groups in Lv. It
selects a group from Lc in each iteration and expands Lv,
until the resolver group is found. VMS first checks all avail-
able transfer probabilities P (g|S(k)), S(k) ⊆ Lv, for all group
sets visited in the past. Then, it selects the next group g∗

that maximizes the transfer probability from S(k),

g∗ = argmaxg P (g|S(k)), ∀g ∈ Lc, S(k) ⊆ Lv. (6)

Example 1: Fig. 2 (a) shows a sample Markov model,
where the value on each edge is the 1st-order transfer prob-
ability between groups, estimated by Eq. (2), and the 2nd-
order transition probabilities are listed in Fig. 2 (b). Assume
that we decide the optimal order k = 2 using Eq. (5).

Suppose an incoming ticket is initially assigned to group
A and the expected resolver group is F . The VMS algo-
rithm works as follows. Starting from the initial Lv = {A},
since only the 1st-order model is applicable at this time,
the algorithm transfers the ticket to group C and updates
Lv to {A, C}. Now the algorithm has the choices of us-
ing either 1st- or 2nd-order Markov model. We find that
the highest conditional probability in the 2nd-order model,
P (E|A, C) = 0.6, is greater than that in the 1st-order model,
P (D|A) = 0.45. So the algorithm chooses E as the next

group, since the 2nd-order model predicts with higher con-
fidence. In Fig. 2, we use dashed thick line to represent
this transfer. From group E, P (F |E) = 0.75 is the high-
est conditional probability for all candidate groups in Lc,
even compared to 2nd-order probabilities, hence F is se-
lected next. Thus, the VMS algorithm finally reaches the
resolver group F in 4 steps: A → C → E → F .

3. EVALUATION AND DEMONSTRATION
Evaluation: Toward our goal of improving problem resolu-
tion, we built the EasyTicket prototype system using Java
and DB2.

We evaluated our system on a set of 1.4 million tickets in
553 problem categories, collected from IBM’s problem man-
agement system between Jan 1, 2006 and Dec 31, 2006. The
dataset is partitioned into training and testing sets. We first
built the Markov models based on the training set. Then for
each ticket in the testing set, given its initial group assign-
ment, we applied the proposed VMS algorithm to generate
routing recommendations. The effectiveness of our system
is evaluated by comparing the resolution sequences resulted
from EasyTicket recommendations with the ones by human
decisions.

Table 2 shows the MSTR for testing tickets in five prob-
lem categories, as well as the overall MSTR for all problem
categories. The fourth column is the improvement gained
by using EasyTicket. It clearly shows the effectiveness of
EasyTicket in improving the efficiency of ticket routing: it
reduces the overall MSTR from 3.94 (based on human de-
cisions) to 2.58. In particular, EasyTicket can effectively
shorten the resolution sequence of those complex tickets that
are likely to be mis-routed and cause most customer dissat-
isfaction. We also test the sensitivity of our approach with
respect to the size of training set, time-variability of tickets,
and diversity of problem categories. The results show that
our solution consistently achieves good performance.

EasyTicket is not only effective, but efficient. For each
problem category, it builds the proposed Markov model in
less than 1 second, and the time for generating ticket routing
recommendations is in average less than 1 ms per ticket.

Category Human ET % reduction
ADSM 5.37 3.23 37.99%
AIX 4.89 2.78 43.15%
BIOS 4.49 2.94 34.52%
DB2 4.78 2.57 46.23%
WINDOWS 3.93 2.86 27.23%

All 553 Categories 3.94 2.58 34.52%

Table 2: MSTR for different problem categories:
human decisions vs. EasyTicket(ET) recommenda-
tions.

Demonstration: To use EasyTicket, the user first specifies
a problem category (e.g., DB2, Windows), and the history
period to build the Markov model. Based on the specifica-
tion, our system will automatically extract the resolution se-
quences from the history data, build and visualize the model.
For example, Fig.3 (a) shows a screen shot of EasyTicket,
which is a graphic presentation of the derived Markov model
for DB2 problems, where each node represents an expert
group and an edge represents a possible transfer between

1438

ASDG

ASSAPMMLC

WWRDX

ASEPIMIS

SSDSISAP

SSAPHWOA

SMRDX

ASWWCUST

ASPCBPSH

ASPWCSPC

NIEGSCUG

DRINAIXSP

DRTSDBASE

SMGNAGWA

SSOSGSAP

DRAIX

(a)Markov Model (b)Case study

Figure 3: User interface of EasyTicket

the groups. As discussed earlier, this model represents the
enterprise social network that captures the functional rela-
tionships among expert groups.

For problem ticket resolution, EasyTicket supports two
modes: recommendation and simulation. For the former,
it provides the user a ranked list of recommended groups
to route the testing ticket. The user can either choose one
of the recommended groups, or check all relevant groups
involved in the corresponding problem category and select
the next group based on her own judgement. For the latter,
the user specifies the initial group of a testing ticket and asks
EasyTicket to automatically route the ticket until it reaches
the resolver group.

To compare EasyTicket and human decision-based ticket
routing, we provide a routing comparison module. For a user
specified problem ticket, our system will graphically high-
light both the routing made by human decisions and the
one recommended by EasyTicket. For instance, the com-
parison for a sample problem ticket is illustrated in Fig.
3(b). Nine different expert groups (nodes marked black and
gray in the figure) were involved in resolving this sample
ticket based on human decisions. Using EasyTicket, only
three groups (nodes marked black) are involved to resolve
the ticket: 〈SMRDX, SSDSISAP, SSSAPHWOA〉. We can see that
the inefficiency of human decision-based routing is due to
two wrong local decisions that transferred the ticket from
SMRDX to DRINAIXSP and from SMRDX to ASWWCUST.

Why this work is interesting to the database com-
munity? This work introduces a new problem domain to
the database community—enterprise problem management.
With the IT industry transforming into a service-oriented in-
dustry, problem management has played an important role
in driving its growth. In problem management, enterprises
often need to develop applications to effectively manage
large sets of problem ticket data, and more importantly,
derive business intelligence by mining the data. These ap-
plications need to not only be able to keep up with the
increasingly large data volume, but also be computationally
efficient for on-line usage in many cases.

The ticket routing recommendation engine introduced in

this work is an example of such applications. Following
this work, there are several potential extensions that are
related to data management and data mining research. For
instance, to fully exploit the information recorded in ticket
content, text mining techniques may be applied to enhance
our social network model and further improve the efficiency
of ticket routing. Furthermore, the social network model
built in this study can not only be used for ticket rout-
ing, but for discovering organizational issues, performance
benchmarking, etc., in the effort of improving enterprise
problem management in general.

The ticket routing problem is also related to web usage
mining, where association rules and sequential patterns are
applied to ease web access and improve the website design
(our Markov model shares the similar idea with association
rules). Unfortunately, in web usage applications, the model
is hard to evaluate, while in ticket resolution sequence min-
ing, the model we built can be evaluated accurately. We be-
lieve resolution sequence data provides us a good platform to
experiment and demonstrate the usage and the effectiveness
of sequence mining.

4. ACKNOWLEDGMENTS
This research was supported in part by NSF grant IIS-

0740129 and IIS-0612273. We would like to thank Weiwei
Xu and Yichuan Cai for their valuable input to the system.

5. REFERENCES
[1] Christopher S. Campbell, Paul P. Maglio, Alex Cozzi,

and Byron Dom. Expertise identification using email
communications. In CIKM ’03.

[2] W. Gaaloul, S. Bhiri, and C. Godart. Discovering
workflow transactional behavior from event-based log.
In Proc 12th Int’l Conf. CoopIS, 2004.

[3] Henry Kautz, Bart Selman, and Mehul Shah. Referral
web: combining social networks and collaborative
filtering. 1997.

[4] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and
Nikos Anerousis. Efficient ticket routing by resolution
sequence mining. In Proc. ACM SIGKDD, 2008.

1439

