
AJAXSearch: Crawling, Indexing and Searching Web 2.0
Applications ∗

Cristian Duda
ETH Zurich
Switzerland

dudac@inf.ethz.ch

Gianni Frey
ETH Zurich
Switzerland

freygi@student.ethz.ch

Donald Kossmann
ETH Zurich
Switzerland

donaldk@inf.ethz.ch

Chong Zhou
†

Honghuan Univ. of Science
and Technology, China

zhouc@inf.ethz.ch

ABSTRACT
Current search engines such as Google and Yahoo! are prevalent
for searching the Web. Search in dynamic pages, however, is ei-
ther inexistent or far from perfect. AJAX and Rich Internet Ap-
plication are such applications. They are increasingly frequent on
the Web (in YouTube, Amazon, GMail, Yahoo!Mail) or mobile de-
vices and are offering a high degree of interactivity to the user,
by seamlessly loading content from the server without the need to
refresh the page. Current search engines cannot correctly index
AJAX applications. This produces false positives and false neg-
atives, because search engines do not understand the application
logic that loads content dynamically. Crawling an AJAX applica-
tion is a difficult problem. Since the user invokes events on the
page, crawling must identify the differentapplication statesgen-
erated by the client-side logic. This demo sets the stage for this
new type of search and shows that a search engine for AJAX can
be built. Among others, the challenges, as opposed to traditional
search engines, are: automatically identifying states by triggering
events, efficiently crawling application states, avoiding the invoca-
tion of potentially very numerous events, scalability in the number
of events, duplicate elimination of states, result presentation and
aggregation, ranking. The demo presents the AJAX search engine:
crawler, indexer and query processor, applied on a real application
and showcases challenges and solutions.

1. INTRODUCTION
Currently, Google and other search engines are the usual way

to search the World Wide Web. A big part of the Web pages can
be indexed and retrieved with good quality. However, the Web is
changing. More and more applications are dynamic by nature and
include a lot of client-side and client-server interactivity: Javascript
applications, AJAX applications, Rich Internet Applications are al-

∗The work presented in this paper was partly supported by the Na-
tional Competence Center in Research on Mobile Information and
Communication Systems NCCR-MICS, a center supported by the
Swiss National Science Foundation - grant number 5005-67322.
†Work performed at ETH Zurich, Switzerland, supported by China
Scholarship Council.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Application
Data IndexApplication

Model

Result
Result
Result

Crawling Indexing
Searching &
AJAXRank

Result
Aggregation

Index

AJAX "Links" to:
URL+
App.State +
DOM Element

App. StatesTransition Graph

Results

Figure 1: Architecture of AJAXSearch.

ready handling much of the data on the web and on portable de-
vices, provinding a high degree of interactivity to the user.

Current search engines fail to index these applications correctly.
AJAX Applications run partly on the client, embedding a lot of
functionality in a single page, under the same URL. Current search
engines do not index these pages since they do not understand the
application logic: the application hasstates, and events causetran-
sitionsbetween states. Furthermore, all states are identified by the
single URL of the page, and this is incompatible with the traditional
search model of the web. Current search engines will produce false
positives by considering all applications as a single page, or false
negatives by ignoring the parts exposed only through client-side
scripting. Currently, search in AJAX applications is done by cus-
tom search engines developed by the application provider or by
exposing the data to the traditional search engines, based on agree-
ments. If search is possible, it is hard-coded and expensive to im-
plement. Small providers cannot afford this luxury.

We address this problem: we implement AJAXSearch: an AJAX-
aware search engine. Just as a traditional search engine, it contains
a crawler, indexer and query processor, as shown in Figure 1, but
the components are are adapted to AJAX. Our first implementation
focuses on AJAX sites without user input, thus avoiding the already
studied domain of the “hidden web”.
Technical challenges:The challenges to address when building an
AJAX search engine are:
(i) generating application states by invoking numerous events.
(ii) identifying duplicate states.
(iii) maintaining context information; reconstructing application states.
(iv) ranking results.
(v) state explosion in case of too numerous events.

The demo shows each component of the AJAX search architec-
ture. The main aspects are highlighted for two applications: a news
reader and Yahoo!Mail, a well-known AJAX application.

2. ARCHITECTURE
As mentioned in Section 1, an enhanced search engine capable

of reading AJAX applications has the architecture seen in Figure 1.
The AJAX Crawler has the role of identifying application states.

First, events are invoked automatically on the initial page. Events
are extracted from each page, in code such asonclick=..., the JavaScript
code is invoked, and a new state is subsequently created.

1440

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

Crawling Model. The result of crawling is a specialapplication
model. This is an annotated automaton, containing all states and
transitions, as shown in Figure 2. Each node is an application state
and each edge is a transition. The annotations mark the source (i.e.,
the element that triggers the event, e.g., “<div id=1>”), the event
(e.g., ‘dblclick’), the target(s) (i.e., all affected elements) and action
(i.e., the type of change, e.g., target.innerHTML=newcontent).
Crawling Challenges.The crawler uses a breadth-first approach.
The first challenges are completeness and closeness of the applica-
tion model. Usually, there is a limited number of different events
and different states that can be invoked. Otherwise, a maximum
depth limit can be set. The second challenge is to decide if two
generated states are identical. Currently, we create a new state
whenever a transition generates a new DOM tree and we com-
pare the content with that of existing states in order to detect dupli-
cates. The next challenge is maintaining context information. Dur-
ing crawling, all Javascript variables are maintained as part of the
state. The last challenge is crawling personalized content (such as
Yahoo!Mail). We require here minimum intervention from the user
(user and password) in order to access her content. This scenario is
realistic for enterprise-only crawling or user-specific crawling.
Crawling Optimizations. We are currently exploring more opti-
mizations, in particular, caching, avoiding states that do not affect
caching, and more similarity measures. TheCrawling scenario of
the demo reflects this component and allows to inspect the DOM
tree, the variables, and to invoke events on the current state.

State 3State 1 State 1

Source
Event
Target
Action

Source
Event
Target
Action

next next

prev prev

Figure 2: Application Model of an AJAX application.

The Indexer reads the application model and builds an enhanced
inverted file with the AJAX-specific information on the state and
element containing each keyword. The Query Processor uses the
index to process keyword queries. Results are returned in the gran-
ularity of states: i.e., URL, state, and element containing the de-
sired keywords. We will use the extended element information also
for ranking purposes. TheIndexingscenario showcases this.

The Query Processor. The index that was previously built can
be queried. Keyword queries can be processed, and they returnap-
plication states. In particular, we also return the element (i.e., the
part of the page) where the keyword occurred. TheAJAXSearch
scenario of the demo reflects the search component and how search
actually delivers better results than Google does. Furthermore, re-
sults are ranked according to their participation in the application
and to the importance that the user gives to this state.

Result Aggregation.An additional challenge for search is how
to present results to the user, especially if they are too granular.
Another one is how to reconstruct the application state, including
context information. Therefore, several result presentation strate-
gies are explored, in particular grouping similar results based on
the occurrence of keywords in multiple states, in the same element.
The demo presents this in theResult Aggregationscenario.

Personalization.One can argue that an automatic approach can
lead to indexing a too large number of states, some of which might
be irrelevant. In particular, independent events may lead to a large
number of states with many similarities. We made a first step to-
wards defining rules, in the idea of therobots.txtprovided by web
site developers for guiding search engines. The demo shows how

Figure 3: AJAXNews: What does a traditional engine see?

the number of indexed states can decrease when application logic
is specified declaratively, in thePersonalizationscenario.

3. DEMONSTRATION
We crawl, index and search AJAX Applications in order to show

the advantage of a full AJAX Indexing approach.

3.1 The AJAX Applications
In our demo we use two applications described below.

Application 1: AJAXNews. The news reader AJAXNews is a
custom-built application residing at [3]. It has several pieces of
news loaded from the server and changed through two buttons (next
and previous) or through a side-menu as shown in Figure 3. This
application can be used for testing (since it can be customized),
and for showing the quality of ranking. Furthermore it illustrates
how grouping strategies for the result can be used in order to avoid
generating a large number of superfluous states.
Application 2: Yahoo! Mail. We chose Yahoo!Mail [12] as the
first test on a real AJAX Application. Yahoo! Mail is an E-mail
client. Since it uses text, it is easier to approach than, for exam-
ple, Google Maps. The E-mail client also displays the calendar of
the user and news along with the messages, using AJAX. Yahoo!
Mail has a custom search engine but only on messages. Crawl-
ing this application is, however, cumbersome because of frequent
application changes, and because of heavy use of Javascript, requir-
ing us to extend the openly available [9] framework that we used
for implementation. Yahoo! Mail will be used in order to show the
behavior of an AJAXSearch on a complex application. The possi-
bility for the application developer to enhance search result quality
using personalized rules will also be demonstrated.

3.2 Demo Scenarios
We showcase AJAXSearch on the two AJAX applications.

Scenario 1: Crawling.
We crawl the AJAXNews Application. During crawling, the user
can visualize how the different states are retrieved. This is shown in
Figure 4. On the left, the DOM tree of the current application state
can be inspected. On top, the individual Javascript events can also
be invoked manually by the user to generate states. The Javascript
variables can also be seen at each state. At the end, the Transition
Graph is displayed in a textual format and can be stored on disk
for later retrieval. During crawling, similar states are detecting us-
ing a hash on the content of the DOM. An additional point is that

1441

Figure 4: Crawling an AJAX Application. Displaying the
DOM.

theapplication model can grow indefinitely if events can always be
invoked. However, the AJAXNews application always ends. Oth-
erwise, a maximum limit on the number of states can be set.

Scenario 2: Indexing.
We generate the index by reading the application model and build-
ing an inverted file. The statistics of the index are displayed in the
status bar of the application. The Index can now be queried, as
shown in the next scenario.

Scenario 3: AJAXSearch.
We use either AJAXNews or Yahoo!Mail. The user can run a set of
queries on the AJAXNews and the Yahoo!Mail application.

In this scenario, the user can see how results are returned in terms
of tuples〈URL, state, element〉 and not just in terms of〈URL〉
as in traditional search. If two keywords occur in the same state but
in different elements, the Least Common Ancestor (LCA) of the
two elements is used. The application in action is shown in Figure
5. The user has several options:

• Read the paragraph abstract.

• Get the cached version of the state.

• Click on the link. Reconstitute the application state.
The first two steps are also common in traditional web search.

However, the last one is specific to AJAXSearch. An AJAX appli-
cation has a context defined by Javascript variables. Our framework
is able to recreate the state by traversing the application model built
during the crawling phase, as shown in Figure 2. However, the time
needed to fetch the result increases for each of the above options.
Reconstituting the application state is the most expensive option,
but the advantage for the user is that she can continue the naviga-
tion from that point.

Scenario 4: Traditional Search vs. AJAXSearch.
For this scenario we use the AJAXNews Application. The pur-
pose is to compare AJAXSearch with Google (a non-AJAX-aware
search engine). There are two levels of interactivity for the appli-
cation which the user can choose:
No Javascript-aware.We let the application be indexed by Google.
AJAXSearch. Full AJAX capabilities; correct results are returned.
We run a query on the AJAXNews application using Google:

newsreadersite : www.giannifrey.com

Figure 5: AJAXSearch in action. Results are links to applica-
tion states.

In case of the news application, the non Javascript-aware version
(or Google) causes a surprise to the user since only the following
content is indexed:

<h1>Newsreader</h1>
<table ...> . . . loading data . . . </table>

The reason is that the first page is also loaded using Javascript.
Google does not index the AJAXNews application correctly, but
AJAXSearch does.

Scenario 5: Result Aggregation.
We can run this scenario on either the News application or on the
Yahoo!Mail application. Search results can be very granular, since
there are many events in the application, and second because we
also return locations of an element in the page. There are therefore
several grouping strategies, specific to AJAX, that we can apply.
The user can select one the following options:
No group. This is the default option. All occurences of〈URL,
state, element, position〉 are returned.
Group by state. More occurences of the keywords can appear in
the same state, in different parts of the page structure. Returning
the elements is relevant because some parts may be more or less
important in the applications. For usability however, they can be
aggregated and only the state is returned.
Group by location. In case of occurences in many states but in
the same visual location, it is advisable to return an aggregated re-
sult based on this common location. For example, the news header
appears in all states. Returning all states may be daunting for the
user. This allows the user to see which part of the page contains
most occurrences.

Scenario 6: State Explosion.
We show an example when crawling states automatically leads to
an explosion in the number of states.

Newsreader

Calendar

next prev

next prev

Ross Perot wäre vielleicht...

VLDB...26 Aug

Figure 6: Application with two sets of independent events.
In applications such as Yahoo!Mail, several independent events

may be invoked, such as those for displaying E-mails and those

1442

Figure 7: Personalization: Correlations in the application model increase search precision and crawling performance.

for showing the user’s calendar. Both are displayed using indepen-
dent next/previous events. We can also illustrate this on the AJAX
news application shown in Figure 6, enhanced with calendar events
(application at [2]). Yahoo! Mail is shown in Figure 7. The total
number of states is then a cartesian product, as in Figure 8.

Msg1 Msg2 Msg3

Event1

Event2

Event3

Figure 8: Independent events cause a state explosion.

Searching these applications brings the following results: each
matching news item appears as many times as there are events in
the calendar. We can partially solve this problem at runtime dur-
ing grouping, but this does not avoid generating a large application
model, which causes poor crawling and indexing times.

Scenario 7: Personalization.
We can prevent indexing many states at crawling by letting the ap-
plication developer intervene. By knowing the application, she can
influence the number of indexed states by writing rules.
Example: User Defined Rule.A rule specifies a correspondence
between the pieces of structure in the model which cause a join in
the states. For example, the following rule:

//message/date < − > //calendar//event//date
specifies that the date of the E-mail message is the same as the

date of the event in the calendar. The effect in functionality is that
the user can search for messages on a given date (e.g., the messages
during “VLDB”). This is also shown in Figure 7. In this scenario,
the user can crawl, index and search the extended AJAXNews ap-
plication and/or Yahoo!Mail. The index will be smaller and only
the matching states are returned at query processing time.

At the data level, this is anouter join between the states, based
on the given condition, i.e., all states which contain the two pieces
of information are considered as one if they share the same value,
or discarded from the final application model and from index, if
the values are not the same. All states not containing the value are
still joined with the other states. Advantages: simplicity, minimal
intervention from the application provider and good quality results.

4. RELATED WORK
Searching AJAX applications has not been studied on its own

until now. There are however, several connections with literature

from the DB and IR communities. Transitions and states are a part
of movie retrieval [6]. Searching and Ranking based on structural
properties are addressed by XRank [10] or [5] in the context of
XML. Searching and grouping structural results are especially rel-
evant for XQuery [8] and XQuery Full-Text [4] but not included in
the final recommendation. [11], [1], [7] address indexing databases
for keyword search, based on given queries or constraints (joins).

5. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer:Enabling

Keyword Search over Relational Databases. InSIGMOD,
2002.

[2] AJAX News with calendar.
http://www.giannifrey.com/ajax/news.cfm?showCalendar=true.

[3] Sample AJAX News Application.
http://www.giannifrey.com/ajax/news.html.

[4] S. Amer-Yahia, C. Botev, S. Buxon, P. Case, J. Doerre,
D.McBeath, M.Rys, and J.Shanmugasundaram. XQuery 1.0
and XPath 2.0 Full-Text, W3C Working Draft, 4 April 2005.
http://www.w3.org/TR/2005/WD-xquery-full-text-
20050404/.

[5] S. Amer-Yahia, E. Curtmola, and A. Deutsch. Flexible and
efficient XML search with complex full-text predicates. In
SIGMOD, 2006.

[6] R. A. Baeza-Yates and B. A. Ribeiro-Neto.Modern
Information Retrieval. ACM Press / Addison-Wesley, 1999.

[7] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using BANKS. InICDE, 2002.

[8] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu,
J. Robie, and J. Simon. XQuery 1.0: An XML Query
Language W3C Candidate Recommendation, 3 November
2005. http://www.w3.org/TR/2005/CR-xquery-200511033.

[9] COBRA Toolkit. http://html.xamjwg.org/cobra.jsp.
[10] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.

XRANK: Ranked Keyword Search over XML Documents.
In SIGMOD, 2003.

[11] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword
Search in Relational Databases. InVLDB, 2002.

[12] Yahoo! Mail. http://mail.yahoo.com.

1443

