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ABSTRACT
We present EASE, an effective and versatile keyword search
engine that enables users to easily access the heterogenous
data composed of unstructured, semi-structured and struc-
tured data, without the need of learning XPath/XQuery
or SQL languages. EASE addresses a challenge in keyword
search that has been neglected in the literature: how to
efficiently and adaptively process keyword queries on the
heterogenous data. To provide such capability, EASE mod-
els unstructured, semi-structured and structured data as
graphs, summarizes the graphs, and constructs graph in-
dices instead of using traditional inverted indices for effec-
tive keyword search. EASE adopts an extended inverted in-
dex to facilitate keyword-based search, and employs a novel
ranking mechanism for enhancing search effectiveness.

1. INTRODUCTION
Keyword search is a proven and widely popular mecha-

nism for querying document systems and the World Wide
Web. Recently, it has even been extensively applied to ex-
tract useful and relevant information from the Internet. Fur-
thermore, the database research community has also recog-
nized the benefits of keyword search and has been introduc-
ing keyword search capability into relational databases [1, 2,
5, 10, 11], XML databases [3, 6, 7, 8, 13], graph databases
[4], and heterogenous data sources [9, 12].

Although many prior works of keyword search over tex-
tual documents (e.g., HTML documents) have been pro-
posed, the existing web search engines (e.g., Google) always
produce a list of individual pages as results and cannot in-
tegrate information from multiple interrelated pages to an-
swer keyword queries meaningfully. In the event that there
are no pages that contain all the keywords, they will re-
turn pages with some of the input keywords ranked by rele-
vancy. Even if two or more interrelated pages contain all the
keywords, the existing methods cannot integrate the pages
into one relevant and meaningful answer. For example, to
search for conferences covering the topic of “Information
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Integration” held in “Auckland” in 2008, one may issue a
keyword query of “Conference 2008 Auckland Information

Integration” to a search engine such as Google. As we all
know, the venue of VLDB 2008 is “Auckland” and “Information
Integration” is one of its major research topics. Yet sur-
prisingly, the homepage of VLDB 2008 is neither in the top 10
results nor even in the first 100 answers. Why? The reason is
that VLDB 2008 splits its information into several pages me-
thodically. The page of Important Date contains the key-
words “2008, Conference” while “Information Integration”
is contained in the Call For Paper page. Such data lin-
eage problem also persists in most recently proposed com-
munity information management platforms, DBLife∗.

Accordingly, the next-generation web search engines re-
quire link-awareness, or more generally, the capability of in-
tegrating correlative information items that are linked through
hyperlinks. Meanwhile, the efficiency of keyword search
on structured and semi-structured data remains a challeng-
ing problem. This is so because the traditional approaches
have always employed the inverted index to process key-
word queries, which is effective for unstructured data but
inefficient for semi-structured and structured data. As the
inverted index is inadequate for identifying the “best” an-
swers with complex structural information, which is rather
rich in XML documents or relational databases.

To the best of our knowledge, very few existing works
could be universally applied to unstructured data (e.g., tex-
tual documents), semi-structured data (e.g., XML docu-
ments), structured data (e.g., relational databases) and graph
data. Therefore, providing both effective and efficient search
ability over such heterogeneous collections within a single
search engine remains a big challenge. As it is, the structure
of the data, such as the potentially hierarchical embedding
in XML documents, is not fully exploited for answering key-
word queries. It is also not taken into account for result
ranking in most search engines. Consequently, current im-
plementations focus on either IR-style search to meaning-
fully rank the results but ignore the rich structural informa-
tion, or DB-style search to discover answers by identifying
structural relationships but employ a very straightforward
ranking mechanism.

This less-than-ideal situation calls for a framework for in-
dexing and querying over large collections of unstructured,
semi-structured or structured data, and adaptive ranking of
the results retrieved over those heterogeneous data. In this
demonstration, we propose EASE, an Efficient and Adaptive
keyword Search Engine, to address these problems. EASE

∗http://dblife.cs.wisc.edu/
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is in line with the current trend of seamlessly integrating
databases (DB) and information retrieval (IR) techniques.
EASE seamlessly integrates efficient query evaluation and
adaptive scoring for ranking results. From the DB point of
view, EASE provides an efficient algorithmic basis for scal-
able top-k-style processing of large amounts of heterogenous
data for the discovery of rich structural relationships. EASE
works by employing an adaptive, efficient and novel graph
index beyond the inverted index. From the IR viewpoint,
EASE integrates an effective ranking mechanism to improve
search effectiveness.

To summarize, EASE has several salient features compared
with existing keyword search engines:

• To the best of our knowledge, EASE is the first search
engine that efficiently and versatilely processes key-
word queries on heterogenous data sources composed
of unstructured, semi-structured and structured data.

• EASE employs an effective graph index as opposed to
the inverted index to improve search efficiency.

• EASE adopts a novel ranking mechanism for effective
keyword search by taking into account both the struc-
tural compactness of answers from the DB viewpoint
and the textual relevancy from the IR point of view.

• EASE uses a simple and yet efficient indexing mecha-
nism to index the structural relationships between the
transformed data. The index is amenable to the de-
ployment of existing top-k ranking methods.

• Empirical evaluation shows that EASE generates search
results with significantly improved precision and recall
compared with the existing approaches. EASE also
achieves high search efficiency, and outperforms exist-
ing state-of-the-art methods significantly.

2. EASE

2.1 r-Radius Steiner Graph
EASE models unstructured data (e.g., textual documents),

semi-structured data (e.g., XML databases) and structured
data (e.g., relational databases) as graphs, where the nodes
are respectively documents, elements and tuples, and the
edges are respectively hyperlinks, parent-child relationships
(or IDREFS) and primary-foreign-key relationships.

Inspired by the Steiner tree problem [2], which finds the
Steiner trees from the database graph, EASE introduces
Steiner graph problem, which identifies Steiner graphs as an-
swers. Different from Steiner trees, Steiner graphs preserve
much more complex structural information, such as circles.

As Steiner graphs with a larger radius† are not so mean-
ingful and relevant to queries as users are generally frus-
trated by large and complex graphs, EASE introduces the
concept of r-radius graph, which is the subgraph with ra-
dius no larger than a given threshold r.

Given an r-radius graph G and a keyword query K. A
node in G is called a content node if it directly contains some
input keywords in K. Node s in G is called a Steiner node
if there exist two content nodes, u and v, and s is on the
path between u and v (s may be u or v). The subgraph of G
†
The radius of a graph is the minimum value of r(u) for any node u,

where r(u) is the maximal distance from u to any other node.

Table 1: A Publication Database

Authors PapersAuthor-Paper
AID PID

Paper-Reference
PID

Schema

citedPID

Authors Paper-Reference Author-Paper

AID Name
a1 J. Shanmugasundaram
a2 L. Guo
a3 V. Hristidis
a4 Y. Papakonstantinou
a5 A. Balmin

PID citedPID
p1 p2
p2 p3
p3 p4
p4 p5
p5 p6

AID PID
a1 p1
a1 p2
a2 p1
a3 p4
a3 p5
a4 p5
a4 p6
a4 p7
a5 p6

Papers
PID Title

p1 Topology Search over Biological Databases
p2 XRANK: Ranked Keyword Search over XML Documents
p3 Bidirectional Expansion for Keyword Search on Graphs
p4 Finding top-k Answers in Keyword Proximity Search
p5 Efficient IR-Style Keyword Search over Relational Databases
p6 Keyword Proximity Search on XML Graphs
p7 DISCOVER: Keyword Search in Relational Databases

p3

p4 p5 p6 p7

a3 a4 a5

p1 p2

a1 a4a2

Figure 1: The Graph Model for the Publication
Database in Table 1

composed of the Steiner nodes and associated edges is called
an r-radius Steiner graph. Accordingly, EASE addresses the
problem of identifying the r-radius Steiner graphs.

For example, consider the database in Table 1. We model
it to a graph G as illustrated in Figure 1. Given a query
“IR,Hristidis” on the database in Table 1, we compute
the Steiner graph composed of p4,p5 and a3 with associated
edges between them as an answer. This differs from the
Steiner tree (i.e., p5−a3) of prior studies, which can cause
the loss of meaningful information, especially in databases
with complicated structures.

Accordingly, we can take the r-radius Steiner graphs that
contain all or a portion of the input keywords as answers, as
the r-radius Steiner graphs are very compact and meaning-
ful. Moreover, EASE will identify the top-k highest ranked
r-radius Steiner graphs as the answer.

It is a big challenge to identify the r-radius Steiner graphs
in a large graph. The efficiency and advantages of using in-
verted indices for facilitating the computation of the “best”
answers for online keyword queries are well recognized. How-
ever, the inverted indices are not effective for discovering the
much richer structural relationships existing in databases
with complicated structures. It is therefore important to
be able to efficiently and effectively discover these struc-
tural relationships, and index them for fast and accurate
response. Intuitively, a straightforward way is to enumerate
all the combinations of keywords, compute the correspond-
ing r-radius Steiner graphs for each combination, and index
these graphs. However, it is prohibitively expensive to dis-
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cover all these structures since the number of combinations
of all keywords in real databases is very large.

As an alternative, we propose an effective strategy to dis-
cover a portion of the r-radius graphs such that the number
of which is proportional to the number of nodes in the graph,
and we only need to index and materialize these graphs.
More importantly, all of the r-radius graphs can be effec-
tively identified through the indexed ones. Moreover, the
r-radius Steiner graphs can be efficiently extracted on the
fly. Interested readers refer to [12] for more details.

To facilitate efficient retrieval of r-radius graphs, we con-
struct a novel graph index. The entries of the graph index
are terms contained in the graph and each entry preserves
the r-radius graphs that contain the term. To construct the
graph index, we first extract r-radius graphs, then for each
term ki, we keep the set of all r-radius graphs that contain
ki, denoted as Iki , i.e., Iki={Gr|Gr contains ki, where Gr is
an indexed r radius graph.}.

To process a keyword query K={k1,k2,...,km}, we first
retrieve the set Iki of those r-radius graphs which contain
ki based on the graph index, and then union every Iki to
compute ∪m

i=1Iki , which is the set of r-radius graphs that
contain all or a portion of the keywords in K‡. Finally, we
extract the r-radius Steiner graphs by removing the non-
Steiner nodes from the corresponding r-radius graphs, and
rank the results to return the top-k answers.

2.2 Ranking
The basic idea of the ranking method used in the existing

literature is to first assign each r-radius graph a score using
a standard IR-ranking formula (or its variants), and then
combine the individual scores by using a score aggregation
function (e.g., SUM) to obtain the final score. For example,
the TF·IDF-based IR-style ranking function weights an r-
radius Steiner graph by considering textual relevancy in IR
literature, which takes into account term frequency (tf), in-
verse document frequency (idf) and normalized document
length (ndl). tf and idf are well employed to rank doc-
uments in the IR literature while ndl is used to normalize
document length as a longer document has a higher likeli-
hood to contain many more keywords. Equation 1 gives the
TF·IDF-based IR-style ranking function.

ScoreIR(ki,SG) =
tf(ki,SG) ∗ idfki

ndlSG
(1)

Although the TF·IDF-based ranking methods are efficient
for textual documents, they are inefficient for semi-structured
and structured data. From the IR perspective, traditional
textual relevancy is important. However, due to our use
of graph in modeling, the ranking of graph data becomes
equally if not more important, and the structural compact-
ness of r-radius Steiner graphs is the essence of the compar-
ison. This is so because identifying rich structural relation-
ships should be at least as important as discovering more
keywords, and in some cases, even more crucial. Therefore,
we propose a novel ranking function by incorporating struc-
tural compactness from the DB point of view.

Intuitively, when an r-radius Steiner graph SG is more
compact, SG is more likely to be meaningful and relevant.
Accordingly, the structural compactness score should be larger.
As such, the compactness of SG should include the following

‡
If we consider “AND” predicate, we merge each Iki

to compute
∩m

i=1Iki
, which is the set of r-radius graphs that contain all keywords.

parameters: i) the structural compactness between content
nodes in SG, and ii) the structural relevancy between in-
put keywords w.r.t. SG. We note that when the length of
a path between two content nodes is larger, the relevancy
between them is smaller. Further, there may be multiple
paths between two content nodes, and we should consider
all of them. Based on the above rationale, we propose Equa-
tion 2 to score the overall structural compactness between
any two content nodes:

Sim(ni, nj) =
∑

ni!nj

1

(|ni ! nj |+ 1)2
(2)

where ni ! nj denotes the path between ni and nj and
|ni ! nj | denotes the number of nodes in the path.

Although the structural compactness between two con-
tent nodes can measure the structural relevancy of r-radius
graphs, it cannot evaluate the structural relevancy among
input keywords, which captures the phrase-based relevancy
between input keywords. It follows that a smaller distance
between input keywords indicates a higher structural rele-
vancy between them. This is particularly so for keywords
in the same node that will represent a phrase. We therefore
propose Equation 3 to capture this parameter.

Sim(< ki, kj > |SG) =
1

|Cki ∪ Ckj |
∑

ni∈Cki
; nj∈Ckj

Sim(ni, nj)

(3)
where Cki denotes the set of all the content nodes that con-
tain ki in SG, and |Cki | denotes the number of nodes in Cki ,
which is used to normalize the structural relevancy between
two input keywords. Consequently, a larger overall struc-
tural compactness score of SG indicates that SG is more
likely to be relevant and meaningful to K.

By taking into account both document relevancy from the
IR perspective and structural compactness/relevancy from
the DB perspective to capture structural relationships, we
present a more accurate function for scoring r-radius Steiner
graphs as given in Equation 4.

Score(K,SG) =
∑

1≤i<j≤m

Score(< ki, kj > |SG) (4)

where

Score(< ki, kj > |SG) =Sim(< ki, kj > |SG)∗
(ScoreIR(ki,SG) + ScoreIR(kj ,SG))

(5)

Score(<ki, kj>|SG) measures the overall relevancy score
of <ki, kj> in SG based on the structural compactness/relevancy
and IR scores. Note that, Sim(<ki, kj>|SG) is taken as the
weight of the sum of two IR scores, i.e., ScoreIR(ki,SG) and
ScoreIR(kj ,SG). A larger Sim(<ki, kj>|SG) means that ki

and kj are more relevant w.r.t. SG, and thus, the overall
score of <ki, kj> in SG is expected to be larger.

2.3 Indexing
EASE also employs an extended inverted index (EI-Index)

for facilitating keyword-based search.
Given any two keywords ki and kj in the graph, and

an r-radius graph SG, the scores of ScoreIR(ki,SG) and
ScoreIR(kj ,SG) in Equation 1 and Sim(<ki, kj>|SG) in Equa-
tion 3 share the key feature that they can be pre-computed
and materialized off-line. Based on this observation, we can
materialize Score(<ki, kj>|SG) into EI-Index.
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Table 2: EI-Index: An Extended Inverted Index
Paired-Keywords <r-radius Graph, Score>

<Database, DISCOVER> Gr
p5

,1.53

<Database, Papakonstantinou> Gr
p5

,0.38; Gr
p4

,0.19

<Database, Relational> Gr
p5

,0.85; Gr
p3

,0.35; Gr
p4

,0.34

<DISCOVER, Papakonstantinou> Gr
p5

,0.54

<DISCOVER, Relational> Gr
p5

,1.95

<Papakonstantinou, Relational> Gr
p5

,0.57; Gr
p4

,0.28

<· · · , · · ·> · · ·

Data  Analyzer

Textual
Documents

XML Relational
Data

Indexer

Graph
Indices

Parser
Keyword
Queries

Matcher

Result Generator
Ranked
Results

Figure 2: The Architecture of EASE

Different from the traditional inverted index, the entries
of EI-Index are paired-keywords (combinations of two key-
words), and the value of each entry is the r-radius graphs
that contain the paired-keywords and the corresponding scores.
For example, we can construct the EI-Index of the graph in
Figure 1 as illustrated in Table 2.

To answer a keyword query K={k1,k2,· · · ,km}, we first re-
trieve the r-radius graphs for every paired-keywords <ki, kj>
according to EI-Index, and then compute the scores of every
relevant r-radius graph according to Equation 4. Finally,
we rank the results and return the top-k r-radius Steiner
graphs with the highest scores by refining the correspond-
ing r-radius graphs. Moreover, we introduce an effective
technique of progressively identifying the top-k answers. We
employ threshold based techniques [12] to identify the top-k
answers on top of our EI-Index.

3. IMPLEMENTATION
The system architecture of EASE is illustrated in Figure

2. The Data Analyzer parses the input unstructured, semi-
structured and structured data, and models them as graphs.
The Indexer incrementally constructs the graph indices.
Once a user issues a query, Parser parses it and Matcher ac-
cesses the indices to retrieve the r-radius graphs that match
the query. Finally, Result Generator outputs the ranked
top-k search results by refining the r-radius graphs.

We have implemented EASE in Java. It takes user input
keywords and textual documents(e.g, HTML documents,
PDF, WORD, PPT, etc.), XML documents, and relational
data as input, and returns results that match the input key-
word queries. The empirical study of EASE in comparison
with existing methods has been presented in [12]. Exper-
iments show that EASE significantly outperforms state-of-
the-art methods in search quality measured by precision,
recall and F-measure, as well as search efficiency.

4. DEMONSTRATION
What is the goal of the demo? Through the demo,

we present a challenge of keyword search over heteroge-
nous data: how to effectively and versatilely answer key-
word queries on unstructured, semi-structured and struc-
tured data. The development and demonstration of EASE

show the following promising features: i) EASE provides an
effective and adaptive search engine for heterogenous data;
ii) EASE improves the search efficiency by adopting the
novel graph index; iii) EASE improves the search quality
by employing a novel ranking mechanism which seamlessly
integrates the structural compactness of answers from DB
viewpoint and the textual relevancy from IR point of view.

What will be shown in the demo? EASE provides a
web-based interface (http://dbgroup.cs.tsinghua.edu.cn/EASE/)
which allows users to specify data and keyword queries for
retrieval. Various sample textual documents (e.g., DBLife),
XML documents (e.g., DBLP), relational data (e.g., IMDB),
and the mixed heterogenous data are provided. Moreover,
users can select different values of k to retrieve the top-k
relevant results. In the demonstration, besides demonstrat-
ing the functionalities of EASE, we present the design and
architecture we employ in developing the system.
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