
H-Store: A High-Performance, Distributed Main Memory
Transaction Processing System

Robert Kallman
Hideaki Kimura

Jonathan Natkins
Andrew Pavlo

Alexander Rasin
Stanley Zdonik
Brown University

{rkallman, hkimura,
jnatkins, pavlo, alexr,
sbz}@cs.brown.edu

Evan P. C. Jones
Samuel Madden

Michael Stonebraker
Yang Zhang

Massachusetts Institute of
Technology

{evanj, madden,
stonebraker,

yang}@csail.mit.edu

John Hugg
Vertica Inc.

jhugg@vertica.com

Daniel J. Abadi
Yale University

dna@cs.yale.edu

ABSTRACT
Our previous work has shown that architectural and appli-
cation shifts have resulted in modern OLTP databases in-
creasingly falling short of optimal performance [10]. In par-
ticular, the availability of multiple-cores, the abundance of
main memory, the lack of user stalls, and the dominant use
of stored procedures are factors that portend a clean-slate
redesign of RDBMSs. This previous work showed that such
a redesign has the potential to outperform legacy OLTP
databases by a significant factor. These results, however,
were obtained using a bare-bones prototype that was devel-
oped just to demonstrate the potential of such a system. We
have since set out to design a more complete execution plat-
form, and to implement some of the ideas presented in the
original paper. Our demonstration presented here provides
insight on the development of a distributed main memory
OLTP database and allows for the further study of the chal-
lenges inherent in this operating environment.

1. INTRODUCTION
The use of specialized data engines has been shown to

outperform traditional or “one size fits all” database sys-
tems [8, 9]. Many of these traditional systems use a myriad
of architectural components inherited from the original Sys-
tem R database, regardless if the target application domain
actually needs such unwieldy techniques [1]. For example,
the workloads for on-line transaction processing (OLTP)
systems have particular properties, such as repetitive and
short-lived transaction executions, that are hindered by the
I/O performance of legacy RDBMS platforms. One obvious
strategy to mitigate this problem is to scale a system hor-
izontally by partitioning both the data and processing re-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

sponsibilities across multiple shared-nothing machines. Al-
though some RDBMS platforms now provide support for
this paradigm in their execution framework, research shows
that building a new OLTP system that is optimized from
its inception for a distributed environment is advantageous
over retrofitting an existing RDBMS [2].

Using a disk-oriented RDBMS is another key bottleneck
in OLTP databases. All but the very largest OLTP applica-
tions are able to fit their entire data set into the memory of
a modern shared-nothing cluster of server machines. There-
fore, disk-oriented storage and indexing structures are un-
necessary when the entire database is able to reside strictly
in memory. There are some main memory database systems
available today, but again many of these systems inherit the
architectural baggage of System R [6]. Other distributed
main memory databases have also focused on the migration
of legacy architectural features to this environment [4].

Our research is focused on developing H-Store, a next-
generation OLTP system that operates on a distributed clus-
ter of shared-nothing machines where the data resides en-
tirely in main memory. The system model is based on the
coordination of multiple single-threaded engines to provide
more efficient execution of OLTP transactions. An earlier
prototype of the H-Store system was shown to significantly
outperform a traditional, disk-based RDBMS installation
using a well-known OLTP benchmark [10, 11]. The results
from this previous work demonstrate that our ideas have
merit; we expand on this work and in this paper we present
a more full-featured version of the system that is able to
execute across multiple machines within a local area clus-
ter. With this new system, we are investigating interesting
aspects of this operating environment, including how to ex-
ploit non-trivial properties of transactions.

We begin in Section 2 by first providing an overview of
the internals of the H-Store system. The justification for
many of the design decisions for H-Store is found in ear-
lier work [10]. In Section 3 we then expand our previous
discussion on the kinds of transactions that are found in
OLTP systems and the desirable properties of an H-Store
database design. We conclude the paper in Section 4 by
describing the demonstration system that we developed to
explore these properties further and observe the execution
behavior of our system.

1496

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

Figure 1: H-Store system architecture.

2. SYSTEM OVERVIEW
The H-Store system is a highly distributed, row-store-

based relational database that runs on a cluster on shared-
nothing, main memory executor nodes.

We define a single H-Store instance as a cluster of two
or more computational nodes deployed within the same ad-
ministrative domain. A node is a single physical computer
system that hosts one or more sites. A site is the basic oper-
ational entity in the system; it is a single-threaded daemon
that an external OLTP application connects to in order to
execute a transaction. We assume that the typical H-Store
node has multiple processors and that each site is assigned
to execute on exactly one processor core on a node. Each
site is independent from all other sites, and thus does not
share any data structures or memory with collocated sites
running on the same machine.

Every relation in the database is divided into one or more
partitions. A partition is replicated and hosted on a multiple
sites, forming a replica set.

OLTP applications make calls to the H-Store system to
repeatedly execute pre-defined stored procedures. Each pro-
cedure is identified by a unique name and consists of struc-
tured control code intermixed with parameterized SQL com-
mands. An instance of a store procedure initiated by an
OLTP application is called a transaction.

Using these definitions, we now describe the deployment
and execution schemes of the H-Store system (see Figure 1).

2.1 System Deployment
H-Store provides an administrator with a cluster deploy-

ment framework that takes as input a set of stored proce-
dures, a database schema, a sample workload, and a set of
available sites in the cluster. The framework outputs a list
of unique invocation handlers that are used to reference the
procedures at runtime. It is possible to introduce new pro-
cedures into the system after the cluster is deployed; this,
however, results in poorer performance as the database’s
physical design will not be optimized for procedures that
are not known at deployment (see Section 3.2).

Internally the deployment framework generates a set of
compiled stored procedures and a physical database layout
used to instantiate a new H-Store cluster. We currently as-
sume that the administrator provides the framework with a
pre-planned database layout. Future versions of the frame-
work will include an automatic database designer that gen-
erates an optimized layout using strategic horizontal parti-
tioning, replication locations, and indexed fields.

A compiled stored procedure in the system is comprised

of multiple distributed skeleton plans, one for each query
in the procedure. Each plan’s sub-operations are not spe-
cific to database’s distributed layout, but are optimized us-
ing common techniques found in non-distributed databases.
Once this first optimization phase is complete, the compiled
procedures are transmitted to each site in the local cluster.
At runtime, the query planner on each site converts skeleton
plans for the queries into multi-site, distributed query plans.
This two-phase optimization approach is similar to strate-
gies used in previous systems [3]. Our optimizer uses a pre-
liminary cost model based on the number of network com-
munications that are needed to process the request. This
has proven to be sufficient in our initial tests as transaction
throughput is not affected by disk access.

2.2 Runtime Model
At execution time, the client OLTP application requests

a new transaction using the stored procedure handlers gen-
erated during deployment process. If a transaction requires
parameter values as input, the client must also pass these to
the system along with the request. We assume for now that
all sites are trusted and reside within the same administra-
tive domain, and thus we trust any network communication
that the system receives.

Any site in an H-Store cluster is able to execute any OLTP
application request, regardless of whether the data needed
by a particular transaction is located on that site. Unless all
of the queries’ parameter values in a transaction are known
at execution time, we use a lazy-planning strategy for cre-
ating optimized distributed execution plans. If all of the
parameter values are known in the beginning, then we per-
form additional optimizations based on certain transaction
properties (see Section 3.1).

When a running transaction executes a SQL command,
it makes an internal request through an H-Store API. At
this point, all of the parameter values for that query are
known by the system, and thus the plan is annotated with
the locations of the target sites for each query sub-operation.
The updated plan is then passed to a transaction manager
that is responsible for coordinating access with the other
sites. The manager transmits plan fragments to the ap-
propriate site over sockets and the intermediate results (if
any) are passed back to the initiating site. H-Store uses a
generic distributed transaction framework to ensure serializ-
ability. We are currently comparing protocols that are based
on both optimistic and pessimistic concurrency control [5,
12]. The final results for a query are passed back to the
blocked transaction process, which will abort the transac-
tion, execute more queries, or commit the transaction and
return results back to the client application.

The data storage backend for H-Store is managed by a
single-threaded execution engine that resides underneath the
transaction manager. Each individual site executes an au-
tonomous instance of the storage engine with a fixed amount
of memory allocated from its host machine. Multi-site nodes
do not share any data structures with collocated sites, and
thus there is no need to use concurrent data structures.

3. DATABASE PROPERTIES
Just as with disk-oriented databases, the performance of

distributed main memory databases is dependent on the
data placement strategies and supporting data structures
of the physical database design. But because OLTP sys-

1497

tems repeatedly execute the same set of transactions, the
design can be optimized to execute just these transactions
while completely ignoring ad hoc queries. H-Store supports
the execution of the latter, but it provides no guarantees
that the queries are executed in a timely manner. With this
in mind, in the following section we discuss different classes
of transactions for our system model; these classes have ex-
ploitable properties that enable us to execute them more
efficiently than general transactions. We then describe the
challenges in designing a database for H-Store that facilitate
these classes.

3.1 Transaction Classes
We described in our previous paper a set of special case

transaction classes that are found in constrained tree ta-
ble schemas for OLTP applications [10]. We now provide a
more concise description of two of these classes and briefly
discuss how H-Store generates an optimal execution strat-
egy for each. Because a query can have unknown parameter
values at deployment, the distributed query planner can-
not always determine the transaction class before execution
time. We plan to investigate the usefulness of probabilistic
optimization techniques that estimate the values of these
parameters and infer the target site using the cardinality of
the columns referenced in the query.

Single-sited Transactions: A transaction is single-sited
if all of the queries contained within it can be executed on
just one computational site in the cluster. Although the
transaction is sent to two or more sites for execution (due
to replicated data), it does not require intermediate results
from any other site. This transaction class is the most de-
sirable since it does not need to use undo logs, concurrency
control mechanisms, or communication with other sites, be-
yond that which is required for replication.

When H-Store receives a single-sited transaction request,
the site that receives the request will transfer execution con-
trol along with any compiled plans over to one of the target
sites. This new site begins processing the transaction and
executes the queries at that site instead of the site where the
request was originally made. The overhead from transfer-
ring a request between two sites is offset by the performance
gains made from avoiding cross-site network communication.

One-shot Transactions: A transaction is one-shot if it
cannot execute on a single-site, but each of its individual
queries will execute on just one site (not necessarily all the
same site). Unlike single-sited transactions, we assume that
the outputs of queries in one-shot transactions are not used
as input to subsequent queries in the same transaction. H-
Store performs a simple optimization technique if a trans-
action is declared one-shot: the request is transferred to the
most accessed site for that transaction instance in the same
manner as is done with single-sited transactions.

3.2 Physical Layout
There are two conflicting goals in any H-Store database

design: the ability to execute transactions as quickly as pos-
sible versus the need to maintain system availability. To
achieve the former, a transaction invocation needs to execute
on as few sites as possible, thereby minimizing the amount
of cross-site messaging between transaction managers. Ob-
vious strategies include replicating frequently accessed or

read-only tables on all sites and collocating tables that are
joined often together on the same site. More complex de-
signs can involve horizontal partitioning schemes where re-
lated data partitions are collocated together or that parti-
tion tables more than once using multiple attributes. The
problem of choosing a layout scheme becomes exceedingly
difficult when deciding which of these policies should take
precedence and which procedures to optimize over others.

Furthermore, because H-Store does not keep any data in
non-volatile storage, it must rely on strategic data distribu-
tion schemes in order to maintain high-availability. Previous
literature introduced the concept of k-safety in distributed
database systems, where k is defined as the number of node
failures a database is designed to tolerate [7]. If k is set
too low for an H-Store deployment, than a small number of
node failures will render the entire system inoperable. Con-
versely, if k is too high, then the nodes may not have enough
memory to store their copies of the data and can reduce the
overall system throughput.

Because we will need to generate intelligent layouts for
arbitrary schemas and workloads, the development of an
automatic database designer is an area of current research.

4. DEMONSTRATION
To illustrate how the database properties discussed in the

previous section affects the performance of a distributed
OLTP system, we will demonstrate the H-Store system ex-
ecuting on a cluster. We use the TPC-C benchmark’s set
of transactions, database schema, and pre-generated data
as our target domain [11]. When the demonstration system
is started, the benchmark workload application connects to
each of the sites and begins making transaction execution
requests to the H-Store system. The frequency of each trans-
action is defined by the benchmark weights, but the distri-
bution of the requests made to the sites is random. The
demonstration executes in two distinct operational modes:
(1) a pre-generated workload with fixed parameter values or
(2) a randomly generated workload mode with randomized
values. The pre-generated workloads allow the user to di-
rectly compare the performance results of different layout
schemes. The random mode records the workload as it is
generated on-the-fly for future playback. It also allows the
user to modify the workload characteristics, such as the fre-
quency that a site receives transaction requests.

4.1 Workload Controller
We provide a graphical interface on a separate machine

that allows users to dynamically observe the execution and
performance details of a running H-Store system. As shown
in the mock-up in Figure 2, this interface provides a heads-
up display on the internal message passing and query plan
execution in the cluster. The user is allowed to throttle
the operating speed of the entire H-Store system and to
manually execute a specific stored procedure in isolation.

The workload controller also provides a historical view
of the number of transactions executed per second. This
timeline view shows aggregate statistics for each operation
performed in the system, such as number of rows examined,
total number of network messages, and the size of those
messages. The user switches the scope of this view based
on stored procedure invocation handlers or query operation
types in order to view the performance of the system compo-
nents. This enables a direct comparison of different layout

1498

Figure 2: The graphical interface of the H-Store con-
troller allows users to dynamically change properties
of the running sample application and change the
physical layout of the database.

schemes and workload generation parameters.

4.2 Database Layout Loader
The main focus of our demonstration is to show the impact

of differing physical layouts for an H-Store database, and
how these layouts affect the execution properties of trans-
actions. Every site in the demonstration cluster is loaded
with a set of pre-planned database designs that allow users
to observe the implications of various layout schemes. The
quality of a particular database layout is based on the num-
ber of transactions per second that the cluster can execute.

For each of the three attributes listed below, we generate
a separate database design for TPC-C’s nine table schema
using a manual designer tool. These three designs repre-
sent the optimal layout for their corresponding attributes.
We also generate a fourth “control” layout where each ta-
ble is replicated in a random manner on two sites. Each
database design only uses a single B-Tree index for each ta-
ble based on that table’s primary key and replicated sets
that are sorted on the same column. We ensure that each
database layout has a base failure tolerance of one node (k -
safety = 1). Although placing tables joined by a foreign key
together on the same site improves execution performance,
we ignore this optimization strategy in our demonstration.

Table Replication: Every read-only table is replicated on
all sites. This design highlights the execution speed gained
from avoiding extraneous network communication, thereby
shortening the execution time of transactions.

Data Partitioning: All tables are divided horizontally into
four distinct partitions that are stored on two separate sites.
As opposed to the previous table replication layout scheme,
which promotes shorter transaction execution times, this
layout demonstrates how concurrent transactions execute in
parallel if the data is sufficiently partitioned.

K-Safety: This layout is generated using a horizontal par-
titioning scheme with a k -safety factor of two. It is not
possible to replicate all of the tables in the database on any
one site, since the total size of the database is larger than
the available memory on a node. We therefore use a replica-
tion factor of two and partition each table into equal parts

based on its primary key. Every site is given a unique set of
three partitions per table, thus preventing any pair of two
sites from holding the only copies of a partition.

At any time during workload execution, the user is able
to halt the running system, flush the database, and re-load
a different layout scheme. Every reload of the database is
considered a new workload session, and the system keeps
track of the execution results of each session for later review.

5. REFERENCES
[1] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin,

K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R.
Putzolu, I. L. Traiger, B. W. Wade, and V. Watson.
System R: relational approach to database
management. ACM Trans. Database Syst.,
1(2):97–137, 1976.

[2] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L.
Heytens, K. B. Kumar, and M. Muralikrishna.
Gamma - a high performance dataflow database
machine. In VLDB ’86, pages 228–237, 1986.

[3] W. Hong and M. Stonebraker. Optimization of
parallel query execution plans in xprs. In PDIS ’91,
pages 218–225, 1991.

[4] H. V. Jagadish, D. F. Lieuwen, R. Rastogi,
A. Silberschatz, and S. Sudarshan. Dali: A high
performance main memory storage manager. In VLDB
’94, pages 48–59, 1994.

[5] I. Lee and H. Y. Yeom. A single phase distributed
commit protocol for main memory database systems.
In IPDPS ’02, page 44, 2002.

[6] A.-P. Liedes and A. Wolski. SIREN: A
memory-conserving, snapshot-consistent checkpoint
algorithm for in-memory databases. In ICDE ’06,
page 99, 2006.

[7] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik. C-Store: A column-oriented dbms. In
VLDB ’05, pages 553–564, 2005.

[8] M. Stonebraker, C. Bear, U. Cetintemel,
M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos,
J. Lifter, J. Rogers, and S. B. Zdonik. One size fits
all? part 2: Benchmarking studies. In CIDR ’07,
pages 173–184, 2007.

[9] M. Stonebraker and U. Cetintemel. ”one size fits all”:
An idea whose time has come and gone. In ICDE ’05,
pages 2–11, 2005.

[10] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In VLDB ’07, pages 1150–1160, 2007.

[11] The Transaction Processing Council. TPC-C
Benchmark (Revision 5.9.0).
http://www.tpc.org/tpcc/spec/tpcc current.pdf,
June 2007.

[12] A. Whitney, D. Shasha, and S. Apter. High volume
transaction processing without concurrency control,
two phase commit, sql or c. In Int. Workshop on High
Performance Transaction Systems.

1499

