
A Revival of Integrity Constraints for Data Cleaning

Wenfei Fan1,2,†,∗ Floris Geerts1,† Xibei Jia1,†
1University of Edinburgh 2Bell Laboratories

wenfei@{inf.ed.ac.uk, research.bell-labs.com} fgeerts@inf.ed.ac.uk xibei.jia@ed.ac.uk

Abstract
Integrity constraints, a.k.a. data dependencies, are being
widely used for improving the quality of schema. Recently
constraints have enjoyed a revival for improving the quality
of data. The tutorial aims to provide an overview of recent
advances in constraint-based data cleaning.

1. An Overview
Real world data is often dirty: inconsistent, inaccurate,

incomplete and/or stale. Recent statistics reveal that enter-
prises typically expect data error rates of approximately 1%–
5%, some above 30%. It is reported that dirty data costs us
businesses 600 billion dollar annually, and that erroneously
priced data in retail databases alone costs us consumers $2.5
billion each year. It is also estimated that data cleaning ac-
counts for 30%-80% of the development time and budget in
most data warehouse projects. While the prevalent use of
the Web has made it possible to extract and integrate data
from diverse sources, it has also increased the risks, on an
unprecedented scale, of creating and propagating dirty data.

In light of these, there has been increasing demand for
data quality tools, for effectively detecting and repairing er-
rors in the data. To this end, integrity constraints yield a
principled approach to improving data quality.

Integrity constraints are almost as old as relational
databases themselves. A variety of constraint formalisms
have been proposed [7], and have been being widely used
to improve the quality of schema. Recently constraints have
enjoyed a revival, for improving the quality of data.

We provide an overview of recent advances in constraint-
based data cleaning. We argue that classical constraints
often need to be revised or extended in order to capture
more errors in real-life data, and to match, repair and query
inconsistent data. The tutorial draws materials from over
80 references; only the most relevant ones are included here.

2. Improving Data Quality: An Overview
Data quality has been studied in distinct areas: in statis-

tics since the 1960s, in management since the 1980s, and in
computer science with renewed interests since the 1990s [2].

∗Adjunct professor, Harbin Institute of Technologies.
†Supported in part by EPSRC EP/E029213.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

It is often measured in terms of consistency, accuracy, com-
pleteness, and timeliness, etc. We present a brief overview
of data quality issues. A complete survey of data quality is
beyond the scope of this tutorial (see [2] for a survey).

Research activities. Research on data quality has been
mostly focusing on (a) error correction, a.k.a. data imputa-
tion, (b) object identification, a.k.a. record linkage, merge-
purge, data deduplication and record matching, and (c) pro-
filing, to discover meta-data from sample data. There is also
an intimate connection between data quality and data inte-
gration, data standardization, data acquisition, cost estima-
tion, schema evolution, and even schema matching.

A variety of approaches have been put forward to tackle
these problems: probabilistic, empirical, rule-based, and
logic-based. There have also been a number of commercial
tools, most notably ETL tools (extraction, transformation,
loading), as well as research prototype systems, e.g., Ajax,
Potter’s Wheel, Artkos, and tools from Telcordia.

Constraint-based data cleaning. These methods follow
the logic-based approach, by specifying the semantics of data
in terms of integrity constraints. Constraint-based methods,
declarative in nature, have shown promise as a systematic
method for reasoning about the semantics of the data, and
for deducing and discovering rules for cleaning the data and
identifying objects, among other things.

Constraint-based data cleaning has mostly focused on
two topics, introduced in [1]: repairing is to find another
database that is consistent and minimally differs from the
original database; and consistent query answering is to find
an answer to a given query in every repair of the original
database, without editing the data. Constraints have also
been recently studied for object identifification [10].

In this tutorial we present two extensions of traditional
dependencies, for data repairing (Section 3) and object iden-
tification (Section 4), respectively. We refer the reader to [5]
for recent survey on consistent query answering.

3. Adding Conditions to Constraints
Constraints adopted for detecting inconsistencies are

mostly traditional dependencies such as functional depen-
dencies (fds) and inclusion dependencies (inds). These con-
straints are required to hold on entire relation(s) and of-
ten fail to capture errors commonly found in real-life data.
We circumvent these limitations by considering extensions of
fds and inds, referred to as conditional functional dependen-
cies (cfds) and conditional inclusion dependencies (cinds),
respectively, by additionally specifying patterns of seman-
tically related values; these patterns impose conditions on
what part of the relation(s) the dependencies are to hold
and which combinations of values should occur together.

Conditional functional dependencies [8]. An exam-
ple cfd is customer([cc = 44, zip] → [street]), which asserts

1

1522

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

that for customers in the UK (cc = 44), zip code deter-
mines street. It is an “fd” that is to hold on the subset
of tuples that satisfies the pattern cc = 44. It is not a
traditional fd since it is defined with constants and is not
required to hold on the entire data set. Another example
cfd is customer([cc = 01,ac = 908, phn] → [street, city =
‘mh’, zip]). It asserts that for any two US customers, if they
have area code 908 and have the same phn, then they must
have the same street and zip, and moreover, city must be
mh. From the above it is clear that cfds, when used to
specify the consistency of data, i.e., to characterize errors
as violations of these dependencies, are able to capture more
inconsistencies than their traditional fd counterparts.

Conditional inclusion dependencies [4]. Consider two
relations, book and CD, specifying customer orders of books
and CDs, respectively. For schema matching or data clean-
ing, one might want to specify inclusion relationships from,
e.g.,CDs to book. However, while indeed there exist inclu-
sion dependencies, they only hold under certain conditions,
i.e., they are in the form of cinds. An example cind is
(CD(album, price, genre =‘a-book’) ⊆ book(title, price, format
=‘audio’)), which asserts that for each CD tuple t, if its
genre is ‘a-book’ (audio book), then there must be a book
tuple t′ such that title and price of t′ agree with album and
price of t; and moreover, the format of t′ must be ‘AUDIO’.
Like cfds, these constraints are required to hold on a subset
of tuples satisfying certain patterns. They are specified with
data values and cannot be expressed as standard cinds.

4. Extending Constraints with Similarity
Esstential to data cleaning and data integration is object

identification: it is often necessary to identify tuples from
one or more relations that refer to the same real-world ob-
ject. This is nontrivial since the data sources may not be
error free or may represent the same object differently.

A key issue for object identification concerns how to de-
termine matching keys and rules [2], i.e., what attributes
should be selected and how they should be compared in or-
der to identify tuples. Constraints can help here in automat-
ically deriving matching keys and rules, and thus improve
match quality and increase the degree of automation.

Consider two data sources: card(c#, ssn, fn, ln, addr,
phn, email, type), and billing(c#, fn, ln, addr, phn, email,
item, price). Here a card tuple specifies a credit card (c#
and type) issued to a person identified by ssn, fn, ln, addr,
phn and email. A billing tuple indicates that a transaction of
a card of number c#, issued to a holder (fn, sn, addr, phn
and email). Given an instance (Dc, Db) of (card, billing), for
fraud detection, one has to ensure that for any tuple t ∈ Dc

and t′ ∈ Db, if t[c#] = t′[c#], then t[Y] and t′[Y] refer to
the same holder, where Y = [fn, ln, addr, phn, email].

Consider the following matching rules. (a) If t[phn] and
t′[phn] match, then t[addr] and t′[addr] should refer to the
same address (even if t[addr] and t′[addr] might be radically
different). (b) If t[email] and t′[email] match, then t[fn, ln]
and t′[fn, ln] match. (c) If t[ln, addr] and t′[ln, addr] are
identical and t[fn] and t′[fn] are similar w.r.t. a similarity
operator ≈, then t[Y] and t′[Y] match. Then, from these
one can deduce the following, referred to relative candidate
keys (rcks), as an extension of relational keys:

rck1: ([email, addr], [email, addr] ‖ [=, =])
rck2: ([ln, phn, fn], [ln, phn, fn] ‖ [=, =,≈]) /* ≈: similarity */

Here rck2 asserts that if t[ln, phn] and t′[ln, phn] are iden-

tical and if t[fn] and t′[fn] are similar, then t[Y] and t′[Y]
match; similarly for rck1. Hence instead of comparing the
entire Y lists, one can inspect the attributes in rck1 or rck2:
if t and t′ match on rck1 or rck2, then so do t[Y] and t′[Y].

The derived rcks improve match quality: when t and t′

differ in some pairs of attributes, e.g., ([addr], [addr]), they
can still be matched via other attributes, e.g., ([ln,phn,fn],
[ln,phn,fn]). In other words, true matches may be identified
by derived rcks, even when they cannot be found by the
given matching rules from which the rcks are derived.

In contrast to traditional candidate keys, rcks are defined
in terms of both equality and similarity; further, they are
defined across multiple relations, rather than on a single
relation. Moreover, to cope with unreliable data, rcks adopt
a semantics very different from its traditional counterpart.

5. Constraints in Data Cleaning Tools
While constraints should logically become an essential

part of data-cleaning tools, we are not aware of any commer-
cial tools with this functionality. To show that constraints
can be effectively used in data cleaning, we present Seman-
daq [9], a research prototype system for data repairing. Se-
mandaq supports (a) specifications of cfds, (b) automatic
detections of cfd violations, based on efficient sql-based
techniques [8, 4], and (c) repairing, i.e., given a set of cfds

and a dirty database, it finds a candidate repair that mini-
mally differs from the original data and satisfies the cfds [6].
We show how the user can inspect and modify this repair,
and how these manual changes affect the repair.

6. Open Problems and Emerging Applications
The study of constraint-based data cleaning has raised as

many questions as it has answered. A number of open ques-
tions have to be settled. (a) The interaction between error
correction and object identification. (b) Database repairs
in master data management. (c) Scalable repairing algo-
rithms with performance guarantee (precision and recall).
(d) Incremental repairing methods. (e) xml data cleaning.
(f) Integration of constraint-based methods with probabilis-
tic databases and incomplete information management. (g)
Managing dirty sources in data exchange and integration.

7. References
[1] M. Arenas and L. E. Bertossi, and J. Chomicki. Consistent

query answers in inconsistent databases. In PODS, 1999.
[2] C. Batini and M. Scannapieco. Data Quality: Concepts,

Methodologies and Techniques. Springer, 2006.
[3] L. Bravo, W. Fan, F. Geerts, and S. Ma. Increasing the

expressivity of conditional functional dependencies without
extra complexity. In ICDE, 2008.

[4] L. Bravo, W. Fan, and S. Ma. Extending dependencies with
conditions. In VLDB, 2007.

[5] J. Chomicki. Consistent query answering: Five easy pieces.
In ICDT, 2007.

[6] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving
data quality: Consistency and accuracy. In VLDB, 2007.

[7] R. Fagin and M. Y. Vardi. The theory of data dependencies
- An overview. In Proc. ICALP, 1984.

[8] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Condi-
tional functional dependencies for capturing data inconsis-
tencies. TODS, to appear.

[9] W. Fan, F. Geerts, and X. Jia. SEMANDAQ: A data qual-
ity system based on conditional functional dependencies. In
Proc. VLDB, 2008, demo.

[10] W. Fan, X. Jia, and S. Ma. Object identification based on
dependencies. Unpublished manuscript.

2

1523

