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ABSTRACT 

Commonly used in network routing, programming, classification 

and knowledge representation systems, labeling schemes have 

also interested the XML community. We thus motivate and 

describe numbering schemes, their applications, and the trade off 

between storage capacities and runtime performance.  

We present a taxonomy of numbering schemes for XML based on 

the types of supported queries (ancestor, adjacent, etc), the 

encoding technique, and whether the scheme offers robustness 

properties according to updates. We describe some of the 

numbering techniques proposed for XML. We focus on prefix-

based schemes. We give a qualitative comparison of the existing 

numbering schemes, discussing their advantages and drawbacks. 

Then, we compare their storage requirement and performances. 

Finally, we consider the new research directions that are likely to 

benefit from numbering scheme techniques. 

1. INTRODUCTION 
Labeling schemes are widely employed for different purposes as 

network routing [31], programming [30, 32, 33], classification 

and knowledge representation systems [23, 34], and have regained 

interest with  XML techniques [8, 11, 13].  

One of the most interesting properties of XML is its capability 

of representing hierarchical data, and with this property come two 

requirements that are decision and reconstruction [14]. The 

decision requirement aims to decide if two nodes satisfy a binary 

relation such as ancestor, adjacent, etc, and the reconstruction 

requirement allows reconstructing a tree starting from a set of 

nodes. Decision and reconstruction can be achieved more 

efficiently if the document/tree is associated to a numbering 

scheme.  

Several numbering schemes have been proposed in the past 

[1-22], and can be divided into two families, namely interval 

based schemes and prefix based schemes. We recall the basics of 

these families below. 

1.1 Interval Based Schemes  

The most representative work related to the interval based 

schemes family is the work by Li and Moon [3]. In this work, the 

authors propose a technique whereby identifiers are represented as 

intervals. Using the various related containment predicates, this 

technique aims to determine if there exists a relationship 

ascendance/precedence between two given nodes. To that 

purpose, a pair (order(x), size(x)) is associated to each node x in 

the document in such a way that, for every child node y of x, 

order(x) < order(y) and order(y) + size(y) ≤ order(x) + size(x). 

 Therefore, we have the following property 

[order(y), order(y) + size(y)] ⊂ [order(x), order(x) + size(x)] 

if and only if y is the child of x. 

When inserting a child to an existing node, it is always 

possible to find an interval that satisfies the property above. The 

computation of a new interval for a sibling between two nodes 

depends on the available remaining space. 

A similar approach has been proposed in [19], where sectors 

are used instead of intervals. The major difficulty of such 

techniques is to choose the initial size of intervals to minimize the 

storage cost and to avoid frequent recomputation. The BIRD 

proposal [14] improves performance with a specific algorithm for 

choosing the values of size(x). The work of [23] uses float values 

for defining intervals. Even if the robustness issue is solved, the 

representation of float values in memory requires integer values. 

Then, the problem is clearly that the number of integer values 

between two floats is finite [24, 25], and this entails that interval 

based schemes robustness depends on the size of intervals and on 

the integer representation in memory.  

1.2 Prefix Based Schemes 
Prefix-based schemes directly encode the father of a node in a 

tree, as a prefix of its label using for instance a depth-first tree 

traversal. The simplest algorithm is the Dewey Decimal Coding 

(DDC) widely used by librarians [23]. Dewey encoding is 

illustrated in Figure 1.(a).  Let A be a tree with root r and u a node 

of A. A node n of A is associated with an identifier of the form 

key(n).pos(n), where key(n) and pos(n) are defined as follows: 

• If n is the root r of A then key(n) = 1 and pos(n) is 

undefined. 

• Otherwise, assuming that n is the ith child of node v, we 

have: pos(n) = i and key(n) =  key(v).pos(v)  

In this approach, labels for a tree A can be computed in time linear 

in the number of nodes in A. Other prefix schemes have been 
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proposed, namely LSDX, FLEX, ORDPATH, Gabillon et Al., 

Khaing et Al. [16, 26-29]. These schemes are presented in this 

paper. 

A particular sub-class of prefix based scheme is the bit-vector 

based scheme set, whereby the identifier of a node is seen as a 

vector of bits. A bit value 1 at a given position identifies a node in 

a lattice, and each node inherits the bits of its ancestors in a top-

down encoding. Several bit vector schemes have been proposed in 

the literature [32, 33, 34]. 

1.3 Motivation of the Work 
Both interval and bit-vector encoding schemes were initially 

designed to determine the parent-child relationship between two 

given nodes. The major advantages of bit-vector schemes are that 

(i) the decision process uses a bit comparison and runs in constant 

time, and (ii) the construction time is linear. However, bit-vector 

schemes are inappropriate for various XML applications in which 

updates occur frequently. Interval based schemes are more 

efficient in the case of XML maintenance, but the major difficulty 

is, as mentioned above, to choose the initial size of interval, so as 

to minimize the storage cost and to avoid frequent recomputation.  

Many XML applications handle dynamic data that are 

frequently updated or queried via XPath or XQuery. With the 

amount of available data, it is not always possible to determine in 

advance the size of the data and the number of updates. So, both 

interval and bit-vector schemes are not appropriate for encoding 

large dynamic XML data. Prefix schemes appear to be more 

appropriate. They are used for XML maintenance [28, 35], DBMS 

systems [26, 27, 29], and XML data indexing [16]. 

 Although each of these techniques have been shown 

appropriate for specific applications, as far as we know, these 

techniques have not been compared to each other. Only 

comparisons of interval based techniques versus static prefix 

based schemes have been studied [10, 5].  Our contribution is to 

compare existing prefix based works by means of an experimental 

and analytical evaluation. 

The paper is organized as follows.  Section 2 presents a brief 

taxonomy of numbering schemes for XML. In Section 3, we 

review the main prefix based labeling schemes in terms of our 

taxonomy. Section 4 describes our experimental evaluation of 

selected schemes, in terms of their efficiency in decision and 

reconstruction and of their storage consumption. Finally, in 

Section 5, we consider future research directions that are likely to 

benefit from numbering schemes.  

2. TAXONOMY 
Numbering schemes are classified according to the following four 

criteria: structure, expressivity, performance and robustness. 

2.1 Structure 
An XML document is commonly represented as a tree, but new 

features like XLink and cross-references between documents tend 

to consider a graph structure instead of a tree structure. 

2.2 Expressivity 
In [30], numbering schemes are used to decide if a relation of 

precedence holds between two elements. In this work, the author 

also studies the order maintenance problem in case of updates in a 

list (insertion, deletion). In the case of XML, as we consider trees, 

it not sufficient to consider the order maintenance problem for 

lists only. Indeed, queries on XML documents are built using 

path-expressions based on languages like XPath/XQuery or 

XSLT. It is then necessary to explore the following axes that are 

possible with existing path-expressions: ancestor, ancestor-or-self, 

attribute, child, descendant, descendant-or-self, following, 

following-sibling, namespace, parent, preceding, preceding-

sibling, and self. 

2.3 Performance 
The performances of various encoding and optimization 

techniques are of course different from each other. In this paper, 

we compare performances according two criteria, namely the time 

required for the computation of identifiers of a given XML 

document, and the space for storing these identifiers. 

2.4 Robustness 
Renumbering might be necessary in case of updates. Numbering 

schemes are then divided into two sub-classes: static numbering 

schemes and dynamic numbering schemes. The robustness of a 

scheme is the property to support updates without renumbering. 

In Figure 1(a), we give an example of Dewey encoding 

technique. Assume that a node is to be inserted on the right of 

node 1.1 or 1.2 (see Figure 1(b)). Clearly, no identifier is left for 

the new node. In this case, the scheme is called static, since it 

requires a complete recomputation of the identifiers. Such 

schemes, that require recomputation in the presence of updates, 

are considered as not robust [20, 13, 16, 18].  

On the other hand, dynamic schemes limit the number of 

recomputations. They are divided into two families:  

• Range limited robustness techniques, according to which the 

frequency of relabeling depends on the number of available 

identifiers. This family is mainly composed of interval and 

region based schemes [30, 3]. 

Figure 1. Dewey numbering scheme 
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• Persistent techniques according to which relabeling is 

required only for a very limited subset of update operations. 

For example, the insertion of a parent node in a prefix 

scheme [28, 29]. 

Update operations to be considered on XML documents are the 

following:  

• Insertion of a node or of a sub-tree. Insertion can be made 

on the left/right of a node (for siblings), below a node (child 

nodes) or above (insertion a new parent for example). 

• Deletion of a node or of a sub-tree. The position of a 

deletion is specified as given above in the case of insertion. 

• Modification. Modification of a node does not affect its 

position, therefore this case is out of the scope of the paper. 

• Move. A move operation is managed as a deletion operation 

followed by an insertion. 

Some numbering schemes are affected by collisions. A collision 

happens when the identifier of a newly inserted node already 

exists in the document. Even though a collision can be predicted, 
the recomputation of the whole set or a subset of identifiers is 
required. Moreover, such a prediction can be time consuming. 

In this paper, we study prefix based schemes according to the 

criteria mentioned above. However prefix based schemes are only 

dedicated to tree structures. So, the structure dimension is out of 

the scope of our work.  Consequently, we consider the other three 

criteria, that is expressivity, performance and robustness.  

In the next section, we present successively the techniques 

introduced by Cohen et Al., LSDX, Khaing et Al., Gabillon et Al., 

and those called Flex Keys and ORDPATH. 

3. OVERVIEW OF EXISTING 

APPROACHES 

3.1 Cohen et Al. [5] 
In [5], a naive prefix numbering scheme based on bits is 

considered. Each node n is assigned a binary string, denoted by  

key(n), which represents its position among its siblings. Then, 

given a path from the root to any node of a tree, each node is 

assigned the concatenation of all identifiers of the successive 

nodes encountered. Figure 2(a) illustrates this approach in the 

case of a tree composed of four nodes: the root and its three 

children. 

Of course, if the construction of the keys of sibling nodes is 

achieved using consecutive bit strings, renumbering is necessary 

when inserting a new sibling node (except when the new node is 

to be inserted on the right of the last sibling). To cope with this 

problem, Cohen’s scheme reserves some identifiers for later 

insertions. For example, in Figure 2(b), the children of the root 

node are labeled with 0, 10 and 110. In this case, the insertion of a 

new node e between nodes c and d node can be achieved without 

any renumbering, since e can be assigned the key 1110. 

More generally, the key of the ith node among its siblings is 

built up with (i – 1) bits equal to 1 followed by 0.  

Moreover, in this case, it can be seen that a bit to bit 

comparison allows determining the sibling and the precedence 

relationships. 

3.2 LSDX [16] 
LSDX numbering scheme has been proposed by Duong et Al. 

[16]. The LSDX identifier of a node n denoted by Lsdx(n), is of 

the form prefix(n).str(n), where: 

• prefix(n) is the concatenation of level(n) and code(n).  

level(n) is the depth of n, and of code(n) concatenates 

code(v) and str(v) where v is the parent node of n, 

• str(n) is a string that identifies n among its siblings. 

An example of LSDX labeling is given in Figure 3. More 

generally, let A be a tree whose root is denoted by r. We assume 

that level(r) = 0 and str(r) is the character a.  Then, Lsdx(r) = 0a, 

because code(r) does not exist as r has no parent. For every child 

vi of r, level(vi) = level(r) + 1 = 1 and str(vi) is a character which 

enables to identify the position of this child among its siblings 

When a node w is inserted as a sibling of u, the authors give 

the following rules for the computation of Lsdx(w): 

 

Figure 2. Cohen et Al. and naive numbering schemes 

 

Figure 3. LSDX numbering scheme 
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• level(w) = level(u) 

•  code(w) = code(u) 

• If w is inserted on the left of node u, and if u has no left 

sibling, then str(w) = astr(u). Figure 3(b) shows an 

example of this case where u is the node e, in which 

case Lsdx(w) = 2ab.ab. 

• If w is inserted between node u and node v, then str(w) 

is chosen so as str(u) < str(w) < str(v),. (see Figure3(b) 

and the nodes identified by 1a.bb and 1a.bbb). If str(u) 

ends with z,  then str(w) = str(u)b. 

Although this technique allows identifying ascendant/descendant 

relationships, collisions may occur. 

For example, referring to Figure 4, the root node has 4 

children b, c, d, e respectively identified by 1a.b, 1a.z, 1a.zb, 1a.zc. 

Now, assume that we insert a node between c and d, and another 

one between g and e. According to the given rules, both nodes 

should be assigned the same identifier, namely 1a.zbb . To prevent 

collisions, renumbering is possible but the authors have not 

proposed any clue on when such renumbering is necessary. 

3.3 Khaing et Al. [26] 
Mixing numbers and characters to create identifiers has also been 

proposed by Khaing et Al. [26]. If n is a child of v, the identifier 

associated to n, denoted by ID(n), is of the form prefix(n).code(n), 

where: 

• code(n) is the concatenation of a character, denoted by 

car(n), and a number denoted by number(n) 

• prefix(n) is the concatenation of the level of n in A and 

code(v) 

The code and the level of the root r of A are code(r) = a1 and 

level(r) = 0, respectively. As shown in Figure 5(a), if u1 and u2 are 

respectively the first and second child of r, we have: ID(r) = 0a1, 

ID(u1) = 1a1.a1 and ID(u2) = 1a1.b1.  

When a node u is inserted as a sibling of v and a child of w, 

the authors propose the following rules for the computation of 

ID(u): 

• If u is inserted on the left of v, and if v has no left 

sibling, then ID(u) = prefix(u).code(u) is such that 

prefix(u) = prefix(v) and code(u) is the concatenation of 

car(v) and (number(v) - 1). Figure 5(b) shows this case 

for node i associated with 2a1a1.a0. 

• If u is inserted on the right of v, and if v has no right 

sibling, then ID(u) = prefix(u).code(u) is such that 

prefix(u) = prefix(v) and code(u) is the concatenation of  

car(v) and (number(v) + 1). Figure 5(b) shows this case 

for node l associated with 1a1.b2. 

If u is inserted between two sibling nodes v and v2, one of the 

previous two rules is applied, depending on the implementation. 

In our example (see Figure 5), node j can be associated with 

identifier 1a1.b0 or 1a1.a2, depending on the implementation. 

We note that collisions can also occur in this approach. For 

example, assume that the first rule above is applied. Then, 

inserting successively two nodes v1 and v2 on the left of a node 

identified by 1a1.a1, associates them with 1a1.a0 and 1a1.a-1, 

respectively. Then, assuming that a third node v3 is inserted 

between v1 and v2, the first rule states v3 is assigned the identifier 

1a1.a-1, which is a case of collision.  

3.4 Gabillon et Al. [27] 
In Gabillon et Al. [27], the root of the tree is assigned the 

identifier (0, 1, 1), and the other nodes are associated with triples 

defined as follows: A node u, child of v, is identified by the triple 

(level(u), code(v), code(u)) such that: 

 

Figure 4. LSDX Collision 

 

Figure 5. Khaing et Al. Numbering Scheme 
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• level(u) is the level of u,  

• code(u) is a pair of integers (nu, du)  

• code(v) is the code of v, i.e., a pair (nv, dv) 

If u is a node such that code(u) = (i, 1), then u is the ith node at 

level 1. An example of this technique is given in Figure 6. 

In [27], the authors give the following rules for the insertion 

of a node w (see Figure 6(b)): 

• If w is the first node at level 1, then code(w) = (1, 1) 

• If w is inserted on the left of u with code(u) = (i,  j) and 

if u has no left sibling, then code(w) = (i - j,  j), 

• If w is inserted on the right of u with code(u) = (i, j) and 

if u has no left sibling, then code(w) = (i + j,  j)  

• If w is inserted between u and v such that code(u) =   (i, 

j) and code(v) = (k, h), then code(w) = (a, b) where      a 

= (i.h + k.j)/d, b = (2.h.j)/d, and d = GCD((i.h + k.j), 

(2.h.j)). 

Although this technique never requires renumbering, large 

memory storage is needed for its implementation. We shall come 

back to this issue in the evaluation section. 

3.5 FLEX Keys [28] 
FLEX [28] is the acronym of Fast Lexicographical Keys. As 

shown in Figure 7(a), the Flex identifier of a node n, denoted by 

Flex(n), is simply b if n is the root of the tree, and otherwise, 

Flex(n) is of the form prefix(n).str(n), where: 

• prefix(n) = Flex(v), where v is the parent node of n, 

• str(n) identifies n among its siblings n. 

During the first labeling, the string part of the first child is the 

character b in order to allow future insertions on the left. The rules 

for creating the string part of Flex identifiers are the same as those 

for the str component in LSDX [16]. Denoting by Flex(u) the flex 

identifier of a node u, the properties of the Flex identifiers are: 

• If prefix(u) is a substring of prefix(v), then u is an 

ancestor of v. 

• If prefix(u)  = prefix(v), then u and v are sibling. 

• More generally, if Flex(u) < Flex(v) according to the 

lexicographical ordering, then u appears before v in the 

document. 

Robustness is the major property of this technique, because 

renumbering is required in limited cases. Indeed, renumbering is 

only required when a node is inserted as a parent, in which case 

all child nodes identifiers of the new node must be recomputed. 

To the best of our knowledge, no collision problem has been 

reported, when using this technique.  

Figure 6. Gabillon et Al. numbering scheme 

 

Figure 7. Flex Keys 

 

Figure 8. ORDPATH Numbering Scheme 
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3.6 ORDPATH [29] 
ORDPATH [29] is a robust technique implemented in commercial 

applications like Microsoft SQL Server for execution plan or 

indexation optimization. As shown in Figure 8(a), the ORDPATH 

identifier of a node n, denoted by Ordpath(n), is simply 1 if n is 

the root of the tree, and otherwise, Ordpath(n) is of the form 

prefix(n).ord(n), where: 

• prefix(n) = Ordpath(v), where v is the parent node of n, 

• ord(n) is an integer that identifies n among its siblings. 

During the first labeling, only odd positive numbers are used as 

values for ord(n). 

This technique is particularly efficient to encode the parent-

child relationship and the sibling relationship. For example, 1.3.1 

is a child of 1.3, and 1.3.1 and 1.3.5 are siblings. Moreover, 1.3.1 is 

a left sibling of 1.3.5. 

If u is inserted as a sibling of v, the authors propose the 

following rules for the value of ord(u): 

• ord(u) = (ord(v) + 2),  if u is inserted on the right of v 

and if v has no right sibling. (see Figure 8(b) and the 

node labeled 1.7). 

• ord(u) = (ord(u) - 2),  if u is inserted on the left of v 

and if v has no left sibling. (see Figure 8(b) and the 

node labeled 1.-1). 

• ord(u) = ((ord(u) + ord(u'))/2).1 if v is inserted 

between the two nodes v and v'. Notice that, since 

ord(u) and ord(u') are odd, ((ord(u) + ord(u'))/2) is 

even. (see Figure 8(b), and the node labeled 1.2.1). 

We note that, given a node n, the previous rules imply that the 

number of dots in Ordpath(n) followed by an odd number is the 

level of n in the tree.  

In our example, identifiers are represented in string formats. 

However, the authors propose an optimized encoding technique, 

according to which all numbers appearing in the ORDPATH 

identifiers are represented by bit strings of a fixed length. We 

refer to the original paper [29] for more details. 

As for Flex Keys, ORDPATH requires recomputation only for 

parent node insertion. 

4. EVALUATION 
We have implemented the various numbering schemes recalled 

previously in Java 1.4.2 and we have used the Sun Microsystems 

parser, SAX. We have created our own set of XML files, the DTD 

of which is inspired by bib.dtd of the XQuery Uses cases, where 

the XML document is a collection of authors elements. We built 

our own dataset instead of using benchmark tool such as XMark, 

in order to run tests with different but known values for the 

breadth and the depth of the documents.  

We note that, as the performances of ORDPATH depend on 

the implementation of the optimized encoding, we have evaluated 

both possibilities. On the charts, ORDPATH and ORDPATH2 

stand respectively for the non optimized and the optimized 

version. Moreover, we present Dewey encoding as a reference, 

because it is the most commonly known technique.  

Our experiments were performed on a Pentium IV 1.3G with 

1024MB RAM, and running the Windows XP OS. We have 

considered the impact of the depth and breadth of the XML 

document on the time for generating labels and on the space taken 

by these labels. 

 

 

Figure 10. Time evaluation / Depth – constant breadth 

 

Figure 9. Time evaluation / breadth 
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Figure 11. Time evaluation / Depth – constant breadth 

 

Figure 12. Time evaluation / Depth – constant breadth 

4.1 Time Analysis 

4.1.1 Breadth Influence 
Our first experiment evaluates the required time to generate labels 

for various datasets that were generated as described above. First, 

we examine what we call monotonic depth documents. These 

documents are collections that have the same depth, but in which 

the number of elements in the collection ranges from 1 to 50,000. 

Results of this experiment are displayed in Figure 9.  

We can see that Flex is the least time consuming technique. 

Dewey and ORDPATH are not that far from Flex with a 

computation time below 2,000 s (Breadth = 3.5×105 nodes); the 

worst case is Gabillon et Al scheme. 

4.1.2   Depth Influence 
Our second evaluation considers deep documents. The total depth 

of the tree ranges from 5 to 500, and for each depth value, the tree 

may contain 50 up to 5,000 nodes. We also experimented up to 

30,000 nodes, but we obtained the same conclusion. Our results 

are represented in Figures 10-12. 

Dewey, Flex and ORDPATH are clearly the best techniques. 

However, comparing the overall performances of Flex and 

ORDPATH, Flex appears to be a bit more efficient among 

dynamic techniques. However, the gain in time is not significant 

and, as will be seen next, Flex requires more storage space than 

ORDPATH. Consequently, we consider that ORDPATH is 

preferable to Flex. 

 

We note that, comparing according to the depth of documents, 

Gabillon et Al. technique does not show good time performance 

for any type of files. It should also be emphasized that Khaing et 

Al. and LSDX are more efficient for deep documents. 

4.2 Storage Analysis 
In this section, we are interested in the storage requirement of the 

numbering techniques. Storage is important for some applications 

that have little capacities, such as embedded systems, or mobiles 

and PDAs. To quantify how much the breadth affects the storage, 

we evaluated the techniques using the same documents as in 

previous section.   

4.2.1 Breadth Influence 
Figure 13 displays the size of the identifiers versus the breadth of 

the document. 

Flex uses string whereas ORDPATH (optimized or not) uses 

bits or numbers, which is more efficient regarding the storage 

requirement. It should be stressed that with optimization 

possibilities, ORDPATH is generally the best technique for the 

storage of identifiers. On the other hand, the approach of Gabillon 

et Al. is inappropriate in terms of space consumption for small 

files, but shows better storage performance for large documents. 

4.2.2   Depth Influence 
The depth of the document can have a significant impact on the 

size of the identifiers. Figures 14-16 list the experiments we run 

on the various techniques and documents. 

Even if Flex is the quickest technique compared to 

ORDPATH, the exact performance for storage differences vary 

dramatically with the depth of the document. We observe the 

same trend on the depth and time as on the depth and space for 

Gabillon et Al. Due to the length of strings used in LSDX 

proposal, the experiments show that this technique requires a lot 

of space for storing identifiers when the document breadth 

increases. We also notice that Cohen numbering scheme requires 

little storage space, but the time needed to compute the identifiers 

is generally significant (see Figure 9). 
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4.3 Synthesis 
 

In Table 1, we summarize the qualitative and quantitative 

performances of presented algorithms : 

• the time and space performance 

• the ratio between time and space performance 

• the relationship supported for a decision process 

• the existence of collision and renumbering 

In Table 1, we assess the numbering techniques according to the 

considered criteria using marks ranging from A (best) down to E 

(worst). The main observation on the ratio time/space is that the 

Flex and ORDPATH time requirements are comparable.  

 

Figure 14. Space evaluation / depth 

 

Figure 15. Space evaluation / breadth 

 

Figure 16. Space evaluation / breadth 

We end this section by noting that, in case of collision, as 

renumbering is necessary, the performances of the different 

approaches are directly related to the evaluation presented 

previously. This explains why no experiments have been 

performed in this respect. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we have provided a taxonomy on numbering 

schemes for XML documents. We reviewed various numbering 

schemes known from the literature and classified them in terms of 

our taxonomy. We present the results of extensive evaluation 

experiments, for which these various schemes have been 

implemented and applied to multi-scale XML documents.  

With the integration of heterogeneous contents, many 

challenges arise. For example, a node can be referenced in several 

documents (XREF, XLINK), in such a way that each document 

can be seen as a sub-graph of a XML  collection. Specific 

numbering schemes for graph structure need to be explored. 

Managing tree and graph structures might be a real challenge for 

numbering schemes. It is also important to develop 

comprehensive optimization techniques for existing numbering 

schemes, in order to fit small or mobile systems (PDA, mobile 

phone). We note in this respect that, except ORDPATH, no other 

technique offers optimization possibilities.  
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