
Prefix Based Numbering Schemes for XML:

Techniques, Applications and Performances
Virginie Sans, Dominique Laurent
ETIS – CNRS ENSEA Univ Cergy-Pontoise

F-95000 Cergy Pontoise
+33 1 34 25 66 35

{virginie.sans, dominique.laurent}@u-cergy.fr

ABSTRACT

Commonly used in network routing, programming, classification

and knowledge representation systems, labeling schemes have

also interested the XML community. We thus motivate and

describe numbering schemes, their applications, and the trade off

between storage capacities and runtime performance.

We present a taxonomy of numbering schemes for XML based on

the types of supported queries (ancestor, adjacent, etc), the

encoding technique, and whether the scheme offers robustness

properties according to updates. We describe some of the

numbering techniques proposed for XML. We focus on prefix-

based schemes. We give a qualitative comparison of the existing

numbering schemes, discussing their advantages and drawbacks.

Then, we compare their storage requirement and performances.

Finally, we consider the new research directions that are likely to

benefit from numbering scheme techniques.

1. INTRODUCTION
Labeling schemes are widely employed for different purposes as

network routing [31], programming [30, 32, 33], classification

and knowledge representation systems [23, 34], and have regained

interest with XML techniques [8, 11, 13].

One of the most interesting properties of XML is its capability

of representing hierarchical data, and with this property come two

requirements that are decision and reconstruction [14]. The

decision requirement aims to decide if two nodes satisfy a binary

relation such as ancestor, adjacent, etc, and the reconstruction

requirement allows reconstructing a tree starting from a set of

nodes. Decision and reconstruction can be achieved more

efficiently if the document/tree is associated to a numbering

scheme.

Several numbering schemes have been proposed in the past

[1-22], and can be divided into two families, namely interval

based schemes and prefix based schemes. We recall the basics of

these families below.

1.1 Interval Based Schemes

The most representative work related to the interval based

schemes family is the work by Li and Moon [3]. In this work, the

authors propose a technique whereby identifiers are represented as

intervals. Using the various related containment predicates, this

technique aims to determine if there exists a relationship

ascendance/precedence between two given nodes. To that

purpose, a pair (order(x), size(x)) is associated to each node x in

the document in such a way that, for every child node y of x,

order(x) < order(y) and order(y) + size(y) ≤ order(x) + size(x).

 Therefore, we have the following property

[order(y), order(y) + size(y)] ⊂ [order(x), order(x) + size(x)]

if and only if y is the child of x.

When inserting a child to an existing node, it is always

possible to find an interval that satisfies the property above. The

computation of a new interval for a sibling between two nodes

depends on the available remaining space.

A similar approach has been proposed in [19], where sectors

are used instead of intervals. The major difficulty of such

techniques is to choose the initial size of intervals to minimize the

storage cost and to avoid frequent recomputation. The BIRD

proposal [14] improves performance with a specific algorithm for

choosing the values of size(x). The work of [23] uses float values

for defining intervals. Even if the robustness issue is solved, the

representation of float values in memory requires integer values.

Then, the problem is clearly that the number of integer values

between two floats is finite [24, 25], and this entails that interval

based schemes robustness depends on the size of intervals and on

the integer representation in memory.

1.2 Prefix Based Schemes
Prefix-based schemes directly encode the father of a node in a

tree, as a prefix of its label using for instance a depth-first tree

traversal. The simplest algorithm is the Dewey Decimal Coding

(DDC) widely used by librarians [23]. Dewey encoding is

illustrated in Figure 1.(a). Let A be a tree with root r and u a node

of A. A node n of A is associated with an identifier of the form

key(n).pos(n), where key(n) and pos(n) are defined as follows:

• If n is the root r of A then key(n) = 1 and pos(n) is

undefined.

• Otherwise, assuming that n is the ith child of node v, we

have: pos(n) = i and key(n) = key(v).pos(v)

In this approach, labels for a tree A can be computed in time linear

in the number of nodes in A. Other prefix schemes have been

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

VLDB ’08, August 24-30, 2008, Auckland, New Zealand.

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

VLDB ’08, August 24-30, 2008, Auckland, New Zealand.

Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

1564

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

proposed, namely LSDX, FLEX, ORDPATH, Gabillon et Al.,

Khaing et Al. [16, 26-29]. These schemes are presented in this

paper.

A particular sub-class of prefix based scheme is the bit-vector

based scheme set, whereby the identifier of a node is seen as a

vector of bits. A bit value 1 at a given position identifies a node in

a lattice, and each node inherits the bits of its ancestors in a top-

down encoding. Several bit vector schemes have been proposed in

the literature [32, 33, 34].

1.3 Motivation of the Work
Both interval and bit-vector encoding schemes were initially

designed to determine the parent-child relationship between two

given nodes. The major advantages of bit-vector schemes are that

(i) the decision process uses a bit comparison and runs in constant

time, and (ii) the construction time is linear. However, bit-vector

schemes are inappropriate for various XML applications in which

updates occur frequently. Interval based schemes are more

efficient in the case of XML maintenance, but the major difficulty

is, as mentioned above, to choose the initial size of interval, so as

to minimize the storage cost and to avoid frequent recomputation.

Many XML applications handle dynamic data that are

frequently updated or queried via XPath or XQuery. With the

amount of available data, it is not always possible to determine in

advance the size of the data and the number of updates. So, both

interval and bit-vector schemes are not appropriate for encoding

large dynamic XML data. Prefix schemes appear to be more

appropriate. They are used for XML maintenance [28, 35], DBMS

systems [26, 27, 29], and XML data indexing [16].

 Although each of these techniques have been shown

appropriate for specific applications, as far as we know, these

techniques have not been compared to each other. Only

comparisons of interval based techniques versus static prefix

based schemes have been studied [10, 5]. Our contribution is to

compare existing prefix based works by means of an experimental

and analytical evaluation.

The paper is organized as follows. Section 2 presents a brief

taxonomy of numbering schemes for XML. In Section 3, we

review the main prefix based labeling schemes in terms of our

taxonomy. Section 4 describes our experimental evaluation of

selected schemes, in terms of their efficiency in decision and

reconstruction and of their storage consumption. Finally, in

Section 5, we consider future research directions that are likely to

benefit from numbering schemes.

2. TAXONOMY
Numbering schemes are classified according to the following four

criteria: structure, expressivity, performance and robustness.

2.1 Structure
An XML document is commonly represented as a tree, but new

features like XLink and cross-references between documents tend

to consider a graph structure instead of a tree structure.

2.2 Expressivity
In [30], numbering schemes are used to decide if a relation of

precedence holds between two elements. In this work, the author

also studies the order maintenance problem in case of updates in a

list (insertion, deletion). In the case of XML, as we consider trees,

it not sufficient to consider the order maintenance problem for

lists only. Indeed, queries on XML documents are built using

path-expressions based on languages like XPath/XQuery or

XSLT. It is then necessary to explore the following axes that are

possible with existing path-expressions: ancestor, ancestor-or-self,

attribute, child, descendant, descendant-or-self, following,

following-sibling, namespace, parent, preceding, preceding-

sibling, and self.

2.3 Performance
The performances of various encoding and optimization

techniques are of course different from each other. In this paper,

we compare performances according two criteria, namely the time

required for the computation of identifiers of a given XML

document, and the space for storing these identifiers.

2.4 Robustness
Renumbering might be necessary in case of updates. Numbering

schemes are then divided into two sub-classes: static numbering

schemes and dynamic numbering schemes. The robustness of a

scheme is the property to support updates without renumbering.

In Figure 1(a), we give an example of Dewey encoding

technique. Assume that a node is to be inserted on the right of

node 1.1 or 1.2 (see Figure 1(b)). Clearly, no identifier is left for

the new node. In this case, the scheme is called static, since it

requires a complete recomputation of the identifiers. Such

schemes, that require recomputation in the presence of updates,

are considered as not robust [20, 13, 16, 18].

On the other hand, dynamic schemes limit the number of

recomputations. They are divided into two families:

• Range limited robustness techniques, according to which the

frequency of relabeling depends on the number of available

identifiers. This family is mainly composed of interval and

region based schemes [30, 3].

Figure 1. Dewey numbering scheme

1565

• Persistent techniques according to which relabeling is

required only for a very limited subset of update operations.

For example, the insertion of a parent node in a prefix

scheme [28, 29].

Update operations to be considered on XML documents are the

following:

• Insertion of a node or of a sub-tree. Insertion can be made

on the left/right of a node (for siblings), below a node (child

nodes) or above (insertion a new parent for example).

• Deletion of a node or of a sub-tree. The position of a

deletion is specified as given above in the case of insertion.

• Modification. Modification of a node does not affect its

position, therefore this case is out of the scope of the paper.

• Move. A move operation is managed as a deletion operation

followed by an insertion.

Some numbering schemes are affected by collisions. A collision

happens when the identifier of a newly inserted node already

exists in the document. Even though a collision can be predicted,
the recomputation of the whole set or a subset of identifiers is
required. Moreover, such a prediction can be time consuming.

In this paper, we study prefix based schemes according to the

criteria mentioned above. However prefix based schemes are only

dedicated to tree structures. So, the structure dimension is out of

the scope of our work. Consequently, we consider the other three

criteria, that is expressivity, performance and robustness.

In the next section, we present successively the techniques

introduced by Cohen et Al., LSDX, Khaing et Al., Gabillon et Al.,

and those called Flex Keys and ORDPATH.

3. OVERVIEW OF EXISTING

APPROACHES

3.1 Cohen et Al. [5]
In [5], a naive prefix numbering scheme based on bits is

considered. Each node n is assigned a binary string, denoted by

key(n), which represents its position among its siblings. Then,

given a path from the root to any node of a tree, each node is

assigned the concatenation of all identifiers of the successive

nodes encountered. Figure 2(a) illustrates this approach in the

case of a tree composed of four nodes: the root and its three

children.

Of course, if the construction of the keys of sibling nodes is

achieved using consecutive bit strings, renumbering is necessary

when inserting a new sibling node (except when the new node is

to be inserted on the right of the last sibling). To cope with this

problem, Cohen’s scheme reserves some identifiers for later

insertions. For example, in Figure 2(b), the children of the root

node are labeled with 0, 10 and 110. In this case, the insertion of a

new node e between nodes c and d node can be achieved without

any renumbering, since e can be assigned the key 1110.

More generally, the key of the ith node among its siblings is

built up with (i – 1) bits equal to 1 followed by 0.

Moreover, in this case, it can be seen that a bit to bit

comparison allows determining the sibling and the precedence

relationships.

3.2 LSDX [16]
LSDX numbering scheme has been proposed by Duong et Al.

[16]. The LSDX identifier of a node n denoted by Lsdx(n), is of

the form prefix(n).str(n), where:

• prefix(n) is the concatenation of level(n) and code(n).

level(n) is the depth of n, and of code(n) concatenates

code(v) and str(v) where v is the parent node of n,

• str(n) is a string that identifies n among its siblings.

An example of LSDX labeling is given in Figure 3. More

generally, let A be a tree whose root is denoted by r. We assume

that level(r) = 0 and str(r) is the character a. Then, Lsdx(r) = 0a,

because code(r) does not exist as r has no parent. For every child

vi of r, level(vi) = level(r) + 1 = 1 and str(vi) is a character which

enables to identify the position of this child among its siblings

When a node w is inserted as a sibling of u, the authors give

the following rules for the computation of Lsdx(w):

Figure 2. Cohen et Al. and naive numbering schemes

Figure 3. LSDX numbering scheme

1566

• level(w) = level(u)

• code(w) = code(u)

• If w is inserted on the left of node u, and if u has no left

sibling, then str(w) = astr(u). Figure 3(b) shows an

example of this case where u is the node e, in which

case Lsdx(w) = 2ab.ab.

• If w is inserted between node u and node v, then str(w)

is chosen so as str(u) < str(w) < str(v),. (see Figure3(b)

and the nodes identified by 1a.bb and 1a.bbb). If str(u)

ends with z, then str(w) = str(u)b.

Although this technique allows identifying ascendant/descendant

relationships, collisions may occur.

For example, referring to Figure 4, the root node has 4

children b, c, d, e respectively identified by 1a.b, 1a.z, 1a.zb, 1a.zc.

Now, assume that we insert a node between c and d, and another

one between g and e. According to the given rules, both nodes

should be assigned the same identifier, namely 1a.zbb . To prevent

collisions, renumbering is possible but the authors have not

proposed any clue on when such renumbering is necessary.

3.3 Khaing et Al. [26]
Mixing numbers and characters to create identifiers has also been

proposed by Khaing et Al. [26]. If n is a child of v, the identifier

associated to n, denoted by ID(n), is of the form prefix(n).code(n),

where:

• code(n) is the concatenation of a character, denoted by

car(n), and a number denoted by number(n)

• prefix(n) is the concatenation of the level of n in A and

code(v)

The code and the level of the root r of A are code(r) = a1 and

level(r) = 0, respectively. As shown in Figure 5(a), if u1 and u2 are

respectively the first and second child of r, we have: ID(r) = 0a1,

ID(u1) = 1a1.a1 and ID(u2) = 1a1.b1.

When a node u is inserted as a sibling of v and a child of w,

the authors propose the following rules for the computation of

ID(u):

• If u is inserted on the left of v, and if v has no left

sibling, then ID(u) = prefix(u).code(u) is such that

prefix(u) = prefix(v) and code(u) is the concatenation of

car(v) and (number(v) - 1). Figure 5(b) shows this case

for node i associated with 2a1a1.a0.

• If u is inserted on the right of v, and if v has no right

sibling, then ID(u) = prefix(u).code(u) is such that

prefix(u) = prefix(v) and code(u) is the concatenation of

car(v) and (number(v) + 1). Figure 5(b) shows this case

for node l associated with 1a1.b2.

If u is inserted between two sibling nodes v and v2, one of the

previous two rules is applied, depending on the implementation.

In our example (see Figure 5), node j can be associated with

identifier 1a1.b0 or 1a1.a2, depending on the implementation.

We note that collisions can also occur in this approach. For

example, assume that the first rule above is applied. Then,

inserting successively two nodes v1 and v2 on the left of a node

identified by 1a1.a1, associates them with 1a1.a0 and 1a1.a-1,

respectively. Then, assuming that a third node v3 is inserted

between v1 and v2, the first rule states v3 is assigned the identifier

1a1.a-1, which is a case of collision.

3.4 Gabillon et Al. [27]
In Gabillon et Al. [27], the root of the tree is assigned the

identifier (0, 1, 1), and the other nodes are associated with triples

defined as follows: A node u, child of v, is identified by the triple

(level(u), code(v), code(u)) such that:

Figure 4. LSDX Collision

Figure 5. Khaing et Al. Numbering Scheme

1567

• level(u) is the level of u,

• code(u) is a pair of integers (nu, du)

• code(v) is the code of v, i.e., a pair (nv, dv)

If u is a node such that code(u) = (i, 1), then u is the ith node at

level 1. An example of this technique is given in Figure 6.

In [27], the authors give the following rules for the insertion

of a node w (see Figure 6(b)):

• If w is the first node at level 1, then code(w) = (1, 1)

• If w is inserted on the left of u with code(u) = (i, j) and

if u has no left sibling, then code(w) = (i - j, j),

• If w is inserted on the right of u with code(u) = (i, j) and

if u has no left sibling, then code(w) = (i + j, j)

• If w is inserted between u and v such that code(u) = (i,

j) and code(v) = (k, h), then code(w) = (a, b) where a

= (i.h + k.j)/d, b = (2.h.j)/d, and d = GCD((i.h + k.j),

(2.h.j)).

Although this technique never requires renumbering, large

memory storage is needed for its implementation. We shall come

back to this issue in the evaluation section.

3.5 FLEX Keys [28]
FLEX [28] is the acronym of Fast Lexicographical Keys. As

shown in Figure 7(a), the Flex identifier of a node n, denoted by

Flex(n), is simply b if n is the root of the tree, and otherwise,

Flex(n) is of the form prefix(n).str(n), where:

• prefix(n) = Flex(v), where v is the parent node of n,

• str(n) identifies n among its siblings n.

During the first labeling, the string part of the first child is the

character b in order to allow future insertions on the left. The rules

for creating the string part of Flex identifiers are the same as those

for the str component in LSDX [16]. Denoting by Flex(u) the flex

identifier of a node u, the properties of the Flex identifiers are:

• If prefix(u) is a substring of prefix(v), then u is an

ancestor of v.

• If prefix(u) = prefix(v), then u and v are sibling.

• More generally, if Flex(u) < Flex(v) according to the

lexicographical ordering, then u appears before v in the

document.

Robustness is the major property of this technique, because

renumbering is required in limited cases. Indeed, renumbering is

only required when a node is inserted as a parent, in which case

all child nodes identifiers of the new node must be recomputed.

To the best of our knowledge, no collision problem has been

reported, when using this technique.

Figure 6. Gabillon et Al. numbering scheme

Figure 7. Flex Keys

Figure 8. ORDPATH Numbering Scheme

1568

3.6 ORDPATH [29]
ORDPATH [29] is a robust technique implemented in commercial

applications like Microsoft SQL Server for execution plan or

indexation optimization. As shown in Figure 8(a), the ORDPATH

identifier of a node n, denoted by Ordpath(n), is simply 1 if n is

the root of the tree, and otherwise, Ordpath(n) is of the form

prefix(n).ord(n), where:

• prefix(n) = Ordpath(v), where v is the parent node of n,

• ord(n) is an integer that identifies n among its siblings.

During the first labeling, only odd positive numbers are used as

values for ord(n).

This technique is particularly efficient to encode the parent-

child relationship and the sibling relationship. For example, 1.3.1

is a child of 1.3, and 1.3.1 and 1.3.5 are siblings. Moreover, 1.3.1 is

a left sibling of 1.3.5.

If u is inserted as a sibling of v, the authors propose the

following rules for the value of ord(u):

• ord(u) = (ord(v) + 2), if u is inserted on the right of v

and if v has no right sibling. (see Figure 8(b) and the

node labeled 1.7).

• ord(u) = (ord(u) - 2), if u is inserted on the left of v

and if v has no left sibling. (see Figure 8(b) and the

node labeled 1.-1).

• ord(u) = ((ord(u) + ord(u'))/2).1 if v is inserted

between the two nodes v and v'. Notice that, since

ord(u) and ord(u') are odd, ((ord(u) + ord(u'))/2) is

even. (see Figure 8(b), and the node labeled 1.2.1).

We note that, given a node n, the previous rules imply that the

number of dots in Ordpath(n) followed by an odd number is the

level of n in the tree.

In our example, identifiers are represented in string formats.

However, the authors propose an optimized encoding technique,

according to which all numbers appearing in the ORDPATH

identifiers are represented by bit strings of a fixed length. We

refer to the original paper [29] for more details.

As for Flex Keys, ORDPATH requires recomputation only for

parent node insertion.

4. EVALUATION
We have implemented the various numbering schemes recalled

previously in Java 1.4.2 and we have used the Sun Microsystems

parser, SAX. We have created our own set of XML files, the DTD

of which is inspired by bib.dtd of the XQuery Uses cases, where

the XML document is a collection of authors elements. We built

our own dataset instead of using benchmark tool such as XMark,

in order to run tests with different but known values for the

breadth and the depth of the documents.

We note that, as the performances of ORDPATH depend on

the implementation of the optimized encoding, we have evaluated

both possibilities. On the charts, ORDPATH and ORDPATH2

stand respectively for the non optimized and the optimized

version. Moreover, we present Dewey encoding as a reference,

because it is the most commonly known technique.

Our experiments were performed on a Pentium IV 1.3G with

1024MB RAM, and running the Windows XP OS. We have

considered the impact of the depth and breadth of the XML

document on the time for generating labels and on the space taken

by these labels.

Figure 10. Time evaluation / Depth – constant breadth

Figure 9. Time evaluation / breadth

1569

Figure 11. Time evaluation / Depth – constant breadth

Figure 12. Time evaluation / Depth – constant breadth

4.1 Time Analysis

4.1.1 Breadth Influence
Our first experiment evaluates the required time to generate labels

for various datasets that were generated as described above. First,

we examine what we call monotonic depth documents. These

documents are collections that have the same depth, but in which

the number of elements in the collection ranges from 1 to 50,000.

Results of this experiment are displayed in Figure 9.

We can see that Flex is the least time consuming technique.

Dewey and ORDPATH are not that far from Flex with a

computation time below 2,000 s (Breadth = 3.5×105 nodes); the

worst case is Gabillon et Al scheme.

4.1.2 Depth Influence
Our second evaluation considers deep documents. The total depth

of the tree ranges from 5 to 500, and for each depth value, the tree

may contain 50 up to 5,000 nodes. We also experimented up to

30,000 nodes, but we obtained the same conclusion. Our results

are represented in Figures 10-12.

Dewey, Flex and ORDPATH are clearly the best techniques.

However, comparing the overall performances of Flex and

ORDPATH, Flex appears to be a bit more efficient among

dynamic techniques. However, the gain in time is not significant

and, as will be seen next, Flex requires more storage space than

ORDPATH. Consequently, we consider that ORDPATH is

preferable to Flex.

We note that, comparing according to the depth of documents,

Gabillon et Al. technique does not show good time performance

for any type of files. It should also be emphasized that Khaing et

Al. and LSDX are more efficient for deep documents.

4.2 Storage Analysis
In this section, we are interested in the storage requirement of the

numbering techniques. Storage is important for some applications

that have little capacities, such as embedded systems, or mobiles

and PDAs. To quantify how much the breadth affects the storage,

we evaluated the techniques using the same documents as in

previous section.

4.2.1 Breadth Influence
Figure 13 displays the size of the identifiers versus the breadth of

the document.

Flex uses string whereas ORDPATH (optimized or not) uses

bits or numbers, which is more efficient regarding the storage

requirement. It should be stressed that with optimization

possibilities, ORDPATH is generally the best technique for the

storage of identifiers. On the other hand, the approach of Gabillon

et Al. is inappropriate in terms of space consumption for small

files, but shows better storage performance for large documents.

4.2.2 Depth Influence
The depth of the document can have a significant impact on the

size of the identifiers. Figures 14-16 list the experiments we run

on the various techniques and documents.

Even if Flex is the quickest technique compared to

ORDPATH, the exact performance for storage differences vary

dramatically with the depth of the document. We observe the

same trend on the depth and time as on the depth and space for

Gabillon et Al. Due to the length of strings used in LSDX

proposal, the experiments show that this technique requires a lot

of space for storing identifiers when the document breadth

increases. We also notice that Cohen numbering scheme requires

little storage space, but the time needed to compute the identifiers

is generally significant (see Figure 9).

1570

4.3 Synthesis

In Table 1, we summarize the qualitative and quantitative

performances of presented algorithms :

• the time and space performance

• the ratio between time and space performance

• the relationship supported for a decision process

• the existence of collision and renumbering

In Table 1, we assess the numbering techniques according to the

considered criteria using marks ranging from A (best) down to E

(worst). The main observation on the ratio time/space is that the

Flex and ORDPATH time requirements are comparable.

Figure 14. Space evaluation / depth

Figure 15. Space evaluation / breadth

Figure 16. Space evaluation / breadth

We end this section by noting that, in case of collision, as

renumbering is necessary, the performances of the different

approaches are directly related to the evaluation presented

previously. This explains why no experiments have been

performed in this respect.

5. CONCLUSION AND FUTURE WORK
In this paper, we have provided a taxonomy on numbering

schemes for XML documents. We reviewed various numbering

schemes known from the literature and classified them in terms of

our taxonomy. We present the results of extensive evaluation

experiments, for which these various schemes have been

implemented and applied to multi-scale XML documents.

With the integration of heterogeneous contents, many

challenges arise. For example, a node can be referenced in several

documents (XREF, XLINK), in such a way that each document

can be seen as a sub-graph of a XML collection. Specific

numbering schemes for graph structure need to be explored.

Managing tree and graph structures might be a real challenge for

numbering schemes. It is also important to develop

comprehensive optimization techniques for existing numbering

schemes, in order to fit small or mobile systems (PDA, mobile

phone). We note in this respect that, except ORDPATH, no other

technique offers optimization possibilities.

Acknowledgements
The authors would like to thank Feroz Mohamad for his help

during the experiments.

Figure 13. Space evaluation / depth

1571

REFERENCES
[1] Santoro N., Khatib R., Labeling and implicit routing in

networks. The Computer Journal, 28 (1985), 5-8.

[2] Agrawal, R., Borgida, A., Jagadish, H. V., Efficient

Management of Transitive Relationships in Large Data and

Knowledge Bases, In Proc. SIGMOD Conf., 1989, 253-262.

[3] Li, Q., Moon, B., Indexing and Querying XML Data for

regular Path expressions, In Proc. VLDB Conf., 2001, 361-

370.

[4] Grustr, T., Accelerating XPath Location Steps, In Proc.

SIGMOD Conf., 2002, 109-120.

[5] Cohen, E., Kaplan, H., Milo, T., Labeling Dynamic XML,

In Proc. PODS Conf., 2002, 271-281.

[6] Kha, D. D., Yoshikawa, M., Uemura, S., A Structural

Numbering Scheme for XML Data, In Proc. Worshops

Xmldm, Mdde, and YRWS on Xml-Based Data Management

and Multimedia Engineering-Revised Papers, 2002, XX-

YY..

[7] Takharu, E., Toshiyuki, A., Yoshikawa O., Shunsuke U., A

robust XML Node Numbering Scheme and its Management,

IEIC Technical Report (Institute of Electronics, Information

and Communication Engineers) Vol 102 n°208, (2002), 85-

90.

[8] Wang H., Park S., Fan W., Yu., P., ViST: A dynamic index

method for querying XML data by tree structures, In Proc.

SIGMOD Conf., 2003, 110-121.

[9] Wu, X., Lee, M.L, Hsu, W., A prime number labeling

scheme for dynamic ordered XML Trees, In Proc. ICDE

Conf., 2004, 66-78.

[10] Yu, X.J., Luo, D., Meng, X., Lu, H., Dynamically Updating

XML Data : Numbering Scheme revisited, In WWW: Internet

and Web Information System, 7, 2004, 5-26.

[11] Böhme, T., Rahm, E., Supporting efficient streaming and

insertion of XML data in RDBMS, In Proc. Int. Workshop

Data Integration over the Web (DIWeb), 2004, 70-81.

[12] Yi, C., Mihaila, G., Bordawekar, R., Padmanabhan, S., L-

Tree: A Dynamic Labeling Structure for Ordered XML Data,

In Proc. Current Trends in Database Technology - EDBT

Workshops, LNCS 3268, 2005, 209-218.

[13] Kha, D., Yoshikawa, M., Uemura, S., A Structural

Numbering Scheme for processing Queries by Structure and

Keyword on XML Data, IEICE Transactions on Information

Systems, 2004, 361-372.

[14] Weigel, F., Schulz, K.U., Meuss, H., The BIRD Numbering

Scheme for XML and Tree Databases, Deciding and

Reconstructing Tree Relations using efficient Arithmetic

Operations , Database and XML Technologies, LNCS 3671,

2005, 49-67.

[15] Peleg, D., Informative labeling schemes for graphs,

Theoretical Computer Science, 340(3), 2005, 577-593.

[16] Duong, M., Zhang, Y., LSDX : A New Labeling Schema for

Dynamically Updating XML Data, In Proc. ADC Conf.,

2005, 185-193.

[17] Silberstein, A., He, H., Yi, K., Yang, J., BOXes: Efficient

Maintenance of Order-Based Labeling for Dynamic XML

Data, In Proc. ICDE Conf., 2005, 285-296.

[18] Abiteboul, S., Alstrup, S. ,Kaplan, H., Milo, T., Rauhe ,T.,

Compact Labeling Scheme for Ancestor Queries, SIAM J.

Comput., 2006, 547-556.

[19] Thonangi, R., A concise labeling scheme for XML data, In

Proc. COMAD Conf., 2006, XX-YY.

[20] Bremer, J.M, Gertz, M., An efficient XML Node

Identification and Indexing Scheme, Technical Report CSE-

2003-04, University of California at Davis, 2003.

[21] Li, H., Li, L., A DTD-Conscious Sparse Numbering Scheme,

In Proc. of Computer and Information Technology Conf.

(CIT), 2004, 295-302.

[22] Fisher, D.K, Lam, F., Shui, W.M., Wong, R.K., Dynamic

Labeling schemes for ordered XML Based on Type

Information, In Proc. ADC Conf., 2006, 59-68.

[23] Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J.,

Shekita, E., Zhang, C., Storing and Querying Ordered XML

Using a relational database System, In Proc. SIGMOD Conf.,

2002, 204-215.

[24] Amagasa, T., Yoshikawa, M., Uemura, S., QRS: A Robust

Numbering Scheme for XML Documents, In Proc. ICDE

Conf., 2003, 705-707.

[25] Ren, J., Yin, X., Guo, X., A Dynamic Labeling Scheme for

XML Document, In Journal of Communication and

Computer, 3(5), 2006, 61-65.

[26] Khaing, A., Thein, N. L., A Persistent Labeling Scheme for

Dynamic Ordered XML Trees, In Proc. Conf. on Web

Intelligence, 2006, 498-501.

Table 1. Summary of prefix based techniques

1572

[27] Gabillon, A., Fansi, M., A persistent labelling scheme for

XML and tree databases, In Proc. SITIS Conf., 2005, 110-

115.

[28] Deschler, K., Rundensteiner, E., MASS: A Multi-axis

Storage structure for Large XML Documents, In Proc. Conf.

on Information and Knowledge Management, 2003, 520-

523.

[29] O'Neil, P., O'Neil, E., Pal, S., Cseri, I., Schaller, G.,

Westbury, N., ORDPATHs: Insert-Friendly XML Node

Labels., In Proc. SIGMOD Conf., 2004, 903 - 908.

[30] Dietz, P. F., Maintaining order in a linked list. In Proc.

STOC Conf., 1982, 122-127.

[31] Gavoille C., Peleg, D, Compact and localized distributed

data structures. Journal of Distributed Computing, Special

Issue for the Twenty Years of Distributed Computing

Research, 2003, 111-120.

[32] Wirth, N., Type extensions. ACM Trans. on Programming

Languages and Systems, 10(2), 1988, 204-214.

[33] Krall, A., Vitek, J., and Horspool., N., Near optimal

hierarchical encoding of types. In 11th European Conf. on

Object Oriented Programming (ECOOP'97), 1997, 128-145.

[34] Aït-Kaci, H., Boyer, R., Lincoln, P., and Nasr, R. Efficient

implementation of lattice operations. ACM Trans. on

Programming Languages and Systems, 11(1), 1989, 115-

146.

[35] Dang-Ngoc., T.T., Sans, V., Laurent, D., Classifying XML

Materialized views for their maintenance on distributed Web

sources. In Proc EGC Conf., RNTI 2005, 433-444.

1573

