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ABSTRACT
Progress in science and engineering relies on the ability to mea-
sure, reliably and in detail, pertinent properties of artifacts under
design. Progress in the area of database-index design thus relies on
empirical studies based on prototype implementations of indexes.
This paper proposes a benchmark that targets techniques for the in-
dexing of the current and near-future positions of moving objects.
This benchmark enables the comparison of existing and future in-
dexing techniques. It covers important aspects of such indexes that
have not previously been covered by any benchmark. Notable as-
pects covered include update efficiency, query efficiency, concur-
rency control, and storage requirements. Next, the paper applies
the benchmark to half a dozen notable moving-object indexes, thus
demonstrating the viability of the benchmark and offering new in-
sight into the performance properties of the indexes.

1. INTRODUCTION
With the increasing availability of accurate geo-positioning, e.g.,

using GPS receivers, and the rapid deployment of mobile devices
capable of communicating wirelessly with their surroundings, it is
fast becoming possible to track the current locations of large pop-
ulations of moving objects, e.g., individuals with mobile phones or
vehicles with on-board navigation systems. This capability opens
to a wide range of applications, including a variety of monitoring
applications, traffic control, tourist services, and mobile commerce.
Applications such as these rely on the ability to efficiently query
the current and near-future locations of moving objects. Indexing
techniques are needed in order to enable such efficient querying.

Existing spatio-temporal indexes fall short in meeting the chal-
lenges posed by the resulting indexing problem. In particular, when
indexing the e current and near-future positions of moving objects,
it becomes necessary to support querying as well as very frequent
updates efficiently. Thus, a number of techniques specifically de-
signed for indexing of the current and near-future locations of mov-
ing objects have been proposed. According to the base structure
used by such indexes, most recent work can be classified into three
main categories: (i) R-tree-based indexes, including the RUM-tree
[24], the TPR-tree [17], and the TPR*-tree [19]; (ii) B+-tree-based

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08,August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

indexes, including the Bx-tree [10] and the Bdual-tree [20]; and
(iii) quad-tree-based indexes, including STRIPES [16].

Numerous moving-object indexes exist, and they often come with
results of empirical studies that suggest that they are capable of
outperforming the competition. This renders it difficult to obtain
an overview of the advantages and disadvantages of the existing in-
dexes. It is even more difficult for the potential users of the indexes
to make a decision on which index is best suited for a specific ap-
plication. Therefore, there is a need for a benchmark that can offer
important insight into the behavior of each technique and provide
guidance on index selection and improvement.

While a few benchmarks [15, 12] exist that address the same in-
dexing problem as does this paper, these man be improved with
respect to the generation of datasets and workload, and they do not
consider a multi-user environment. This paper aims to establish a
more comprehensive benchmark than has been seen hitherto. In
particular the proposed benchmark covers a series of carefully gen-
erated datasets, a broad variety of workloads, and a standard evalu-
ation procedure. Different datasets are employed either to measure
the overall index efficiency or to simulate certain real-world scenar-
ios. The workloads generated mix updates and queries according
to the settings of several parameters. The testing procedure exhaus-
tively evaluates index performance regarding the update efficiency,
query efficiency, concurrency control, and storage requirements.

The paper also reports on the results of applying the benchmark
to six recent indexes spanning the aforementioned three categories.
No previous studies have compared this many indexes under the
same standard. The experimental results elicit the characteristics
of each index and offer input to future index development.

The paper is organized as follows. Section 2 describes the prob-
lem setting and reviews related work, focusing on benchmarks for
moving-object indexes. Section 3 introduces the state-of-the-art
moving object indexes covered in this paper. Section 4 presents the
details of the proposed benchmark. Section 5 reviews details of our
implementations of the indexes. Section 6 then reports on the ap-
plication of the benchmark to six moving object indexes. Finally,
Section 7 concludes and covers topics for further research.

2. BACKGROUND
We proceed to characterize the indexing problem considered in

the paper and then cover related work.

2.1 Setting
We assume a setting in which each moving object belonging to

large population of moving objects reports its current location to
a central server. The objective is to enable services to query the
current and near-future locations of the moving objects.

As the server needs to maintain a reasonably accurate represen-
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tation of an object’s current location, updates are assumed to be
relatively frequent. To reduce the update rate and to better support
queries on near-future locations, the current and near-future posi-
tion of an object is modeled as a linear function from time to point
locations in two-dimensional space. Such linear functions are eas-
ily obtained and are compact and thus amenable to indexing.

The indexing problem considered then becomes one of indexing
very large and highly dynamic sets of linear functions from time to
points in two-dimensional space. In this problem setting workloads
consist of frequent updates and queries, e.g., range and nearest-
neighbor, on the current and near-future positions of the moving
objects.

2.2 Related Work
Several benchmarks have been proposed for traditional spatio-

temporal databases that store static objects such as buildings and
roads. In early work, Werstein [23] proposed a set of queries to
test the temporal and three-dimensional capabilities as well as the
spatial capabilities of a database. More recently, Tzouramanis et
al. [22] proposed a benchmark for evaluating the performance of
access methods for time-evolving regional data. They compared
four types of quadtree-based spatio-temporal indexes using raster
data. These benchmarks do not apply to moving-object databases;
they target different types of data, update-operation loads, and types
of queries than do by moving object applications.

For moving-object databases, Theodoridis [21] proposed a bench-
mark that includes a database description and ten non-predictive
SQL-based queries without any experimental results. Düntgen et
al. [7] have recently proposed a benchmark, BerlinMOD, that uses
the Secondo DBMS for generating moving-object data. A scenario
is simulated where objects move within the road network of Berlin,
sampled positions from such movements are used as data. A total
of 17 carefully selected, SQL-based queries make up the workload.
This benchmark concerns the past, historical positions of moving
objects, and it targets the evaluation of complete spatio-temporal
DBMSs.

Several benchmarks exist that specifically target techniques for
the indexing of the current and near-future positions of moving ob-
jects. Myllymaki and Kaufman [15] proposed such a benchmark,
called DynaMark. Query and update performance are measured
in CPU time, as indices are assumed to be main-memory resident.
Queries on near-future positions of the moving objects are con-
sidered. More recently, Jensen et al. [12] proposed a benchmark,
called COST. Their workload generation differs substantially from
what is proposed in this paper. Notably, they assume that objects
move in Euclidean space or in a complete spatial network, and they
assume that updates occur when an objects actual location differs
from that known by the index by a chosen threshold, thus assuming
that object locations are inaccurate, but are known with guaranteed
accuracies. Our benchmark uses different actual road networks for
dataset generation, and it assume accurate positions. Finally, Tao
et al. [20] conduct a careful study of the query performance of gen-
eral primal and dual indexes, but with little focus on update perfor-
mance. None of the existing benchmarks take into account concur-
rency control issues and report on throughput.

3. MOVING-OBJECT INDEXES
We review six moving-object indexes to which we will later ap-

ply the proposed benchmark: the RUM-tree [24], the TPR-tree [17],
the TPR*-tree [19], the Bx-tree [10], the Bdual-tree [20], and STRI-
PES [16]. The TPR-tree is chosen since it is the predecessor of
more than a dozen proposals for moving object indexes. The other
five indexes have different base structures and are recent.

3.1 R-Tree With Update Memo
Traditional spatial indexes such as the R-tree [9] and the Quad-

tree [8] were designed mainly with query efficiency in mind and
implicitly assumed relatively static datasets.

However, in our problem setting, updates are very frequent due
to the need of tracking continuous movements. To render index-
ing techniques more suitable for workloads with frequent updates,
several techniques [13, 14, 4] have been proposed to improve their
update performance. A recent representative of this line of work is
the RUM-tree by Xiong et al. [24].

The RUM-tree introduces a main-memory memo that makes it
possible to avoid disk accesses for the deleting the old entry dur-
ing an update. Therefore, the cost of an update equals the cost of
an insert. In particular, object updates are ordered temporally ac-
cording to the processing time. By maintaining the update memo,
more than one entry for an object may coexist. Obsolete entries
are deleted lazily in batch mode. Garbage collection is employed
to limit the percentage of obsolete entries in the tree and to control
the size of the update memo.

Because the RUM-tree extends the R-tree, it indexes only point
locations rather than linear functions of time. For the benchmark-
ing, we will therefore apply the memo-based update technique of
the RUM-tree to the TPR*-tree described next.

3.2 TPR-Tree and TPR*-Tree
Saltenis et al. [17] proposed the TPR-tree (Time-Parameterized

R-tree) that augments the R*-tree [3] (a variant of the R-tree) with
velocities to index linear functions of time. Specifically, an object
is represented by its position as of (global) a reference time and its
velocity vector. The sides of the bounding rectangles (BRs) em-
ployed are also functions of time, and the BRs are chosen so that
they bound all the contained moving objects or BRs at any time in
the future (including the current time).

If no updates occur on a TPR-tree, its BRs will expand, and
query and update performance will deteriorate. When updates oc-
cur, objects are placed in the BRs that then now fit into, and BRs
that have grown too much are tightened.

Tao et al. [19] have proposed the so-called TPR*-tree, which is a
variant of the TPR-tree. The TPR*-tree uses the same data structure
as the TPR-tree, but applies different algorithms for maintaining
the index. In particular, the algorithms aim to optimize time-range
queries rather than timeslice queries, as done by the TPR-tree. And
while the TPR-tree makes decisions on where to insert an object on
a level-by-level basis, the TPR*-tree puts more work into insertions
and makes more global decisions. In addition, the TPR*-tree is
more aggressive than the TPR-tree when it comes to the tightening
of BRs—while tightening costs I/O, it may save I/O subsequently.

3.3 Bx-Tree and Bdual-Tree
It is well-known that the R-tree, as well as structures based on

the R-tree, is prone to low update efficiency when compared to
structures such as the B+-tree. The problem is that BRs tend to
overlap, which results in multiple (partial) paths from the root to
the leaf level being explored during the deletion that occurs in con-
nection with an update. This, serves as motivation for exploring
B+-tree-based techniques for the indexing of moving objects. An-
other source of motivation is the fact that B+-trees are already sup-
ported widely in existing DBMSs, promising easier integration into
existing systems of B+-tree-based techniques.

The first B+-tree-based index, called the Bx-tree, was proposed
by Jensen et al. [10]. The Bx-tree uses a specific data transforma-
tion to map linear functions, which may be viewed as points in four-
dimensional space, to points in one-dimensional space that can be
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indexed by a B+-tree. First, a linear function is mapped to the point
location that it returns when given a specific near-by time as argu-
ment. Then a space-filling curve (e.g., the Peano or Hilbert curve)
is applied to obtain a one-dimensional point. A partitioned B+-tree
is used where updated positions that occur at approximately the
same time go into the same partition.

To support queries, original queries are subjected to transforma-
tions that counter the data transformations. These transformations
involve query window enlargements that depend on the velocities
of the objects indexed, the number of partitions,and the query time;
a transformed query is created for each partition in the B+-tree.

To reduce the adverse effects on performance of velocity skew
and outliers on performance, Jensen et al. [11] equip the Bx-tree
with more careful query enlargement algorithms.

Yiu et al. [25] have recently proposed the Bdual-tree, which aims
to utilizes velocity information to obtain better query performance.
The Bdual-tree uses a four-dimensional Hilbert curve to map both
location and velocity vectors to one-dimensional point. One Bdual-
tree is composed of two B+-trees, and these two trees swap states
every so-called maximum update interval (the maximum time du-
ration between any pair of updates issued by any object). Each
internal entry in the Bdual-tree is associated with a set of moving-
object rectangles (MORs). Each MOR is square in size and has
continuous Hilbert values corresponding to the keys stored in the
subtrees of the entry. These MORs can be treated as BRs as used in
the TPR-tree, and hence the query algorithms of the TPR-tree can
be applied to the Bdual-tree with minor modifications. However,
this query algorithm is not based on that of the B+-tree and is thus
more difficult to integrated into existing database systems.

3.4 STRIPES
As the Bdual-tree, STRIPES, by Patel et al. [16], is a dual in-

dex that indexes both location and velocity data. In particular,
STRIPES maps two-dimensional moving objects to four-dimen-
sional points and indexes them by a PR bucket quad-tree [18]. The
arrangement promises efficient updates and less efficient queries
because a node in STRIPES may contain an arbitrarily small num-
ber of entries, meaning that relatively may pages need to be ac-
cessed to obtain a query result. The low page utilization may also
leads to a large space consumption. To alleviate these problems,
the authors suggest to store a leaf node with occupancy at most
50% in half of a page and leaf nodes with over 50% occupancy in a
full page. However, such an arrangement not only complicates the
concurrency control mechanism, but also make the integration into
a DBMS more difficult.

4. BENCHMARK
The goal of the benchmark is to extensively evaluate important

aspects of a moving-object index. To do so, we carefully design the
datasets and workloads to be used, and we propose a standard eval-
uation procedure. This section presents the details of these aspects.

4.1 Datasets and Workload Generation
Our benchmark considers object locations in the space domain

of 100, 000 × 100, 000 m2, which is sufficient to simulate objects
moving in various environments such as small and large cities. We
generate three types of datasets: uniformly distributed, Gaussian
distributed and road-network-based datasets.

Uniformly Distributed Dataset . The initial locations of objects
are uniformly distributed in the space domain, and their speeds and
directions are randomly chosen. Specifically, an object’s speed is
randomly selected fromNsp + 1 candidate speeds ranging from 0

to the maximum speedvmax, i.e.,{0, vmax/Nsp, 2vmax/Nsp, . . . ,
vmax}. An object issues updates according to an update frequency
parameterfup, which indicates how many updates are issued for an
object within the maximum update intervaltmu. The default value
of fup is 1, denoting that each object is updated once everytmu

time duration.
An update contains the current location of the object, a randomly

generated velocity, and the time of the update. The object’s current
location in an update is computed from its previously updated lo-
cation so that the object moves continuously. The uniform datasets
are used for investigating the overall performance of a moving ob-
ject index and the effect of various factors on the index efficiency.

Gaussian Distributed Dataset. The Gaussian distributed datasets
aims to capture scenarios where objects (e.g., vehicles) cluster around
certain locations of interest such as prominent landmarks and shop-
ping centers. Objects tend to slow down when approaching these
locations and hence their positions follow a Gaussian-like distribu-
tion.

To generate such datasets, we first randomly select a set of (static)
points as locations of interest, referred to as hotspots. Around
each hotspot, we define multiple speed zones as rings. Each speed
zone has a speed limit proportional to its distance to its hotspot,
so that inner zones have lower speeds than outer ones. A speed
zone also defines the update frequency, i.e., an object updates more
frequently if it moves with higher speed.

An object is initially placed at a positionp near a randomly se-
lected hotspot. The distance from the object to the hotspot follows a
Gaussian distribution. To ensure that objects follow a Gaussian dis-
tribution as time elapses, we generate the updates as follows. First,
we find the speed zone that an object is located in and obtain a speed
range [vl, vh] and the update frequencyfup accordingly. Then we
generate a new positionpup around the same hotspot according to
the same Gaussian distribution and check whetherpup is within the
distance range [vl · tmu/fup, vh · tmu/fup] to p, wheretmu/fup is
the estimated time between two updates. Ifpup is not in the above
range, we regeneratepup until it satisfies the constraint. Finally, we
compute the speed of the object asv = (pup − p) · fup/tmu. The
update is of the form〈p, v, t〉, wheret is the current time. The next
update of this object will be issued when the object reachespup or
enters a new speed zone. Subsequent updates are generated in the
same way.

Road-Network-Based Dataset. This type of dataset is generated
based on a digital representation of a real road network. We use the
network-based moving object generator of Brinkhoff [5] with some
modifications in order to accommodate the needs of our bench-
mark.

The digital road network data used derives from the TIGER/Line
files [2]. Specifically, a road is a polyline, i.e., a sequence of con-
nected line segments. An object is initially placed on a randomly
selected road segment and then moves along this segment in a ran-
domly selected direction. The speed is generated in the same way
as for uniformly distributed datasets. When the object reaches the
end of the segment, an update is issued, and the object continues
moving along another randomly selected connected segment. Each
object is required to issue at least one update withintmu.

Query Workloads. The query workloads consist of predictive
queries with query times that range from the current time andtmu

time units into the future. Two fundamental types of queries are
considered. One is the range query that retrieves all objects whose
locations fall within a rectangular region at the query time (times-
lice). The other is thek nearest neighbor (kNN) query that retrieves
k objects for which no other objects are nearer to the query object
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at the query times.

4.2 Performance Evaluation Procedure
Our benchmark evaluates both time and space efficiency of an

index in single-user and multiple-user environments. Four metrics
are used: (i) the number of I/Os, (ii) CPU time, (iii) the size of an
index on disk, and (iv) throughput (response time). The last metric
is only used in multiple-user environments.

For each dataset, an index is initialized during the firsttmu time
units and then runs for another2tmu time units. Considering that
tmu restricts the maximum time interval between the updates of
an object, all objects must have been inserted into the index after
the initialization phase, i.e., the firsttmu time units. Updates are
issued according to the update frequency parameterfup. A batch
of 100 queries are issued everytmu/10 timestamps. We record
the average index size and average query and update costs during
the latter2tmu time units. For each index, we study the following
aspects.

A1 Data size. The number of objects varies from 100K to 1M.

A2 Time effect. Each index runs for another5tmu after the ini-
tialization round. The update and query costs are averaged
and collected for everytmu/10 ts (“ts” is short for times-
tamp.).

A3 Maximum object speed. The maximum speed varies from
10m/ts to 100m/ts.

A4 Update frequency. The update frequencyfup varies from 1
to 10, which means that each object updates for 1 to 10 times
duringtmu.

A5 Range query size. All range queries in the query workload
are square-shaped with sizes varying from 1,000×1,000m2

to 10,000×10,000m2.

A6 Number of neighbors. The number of neighborsk of the
kNN queries ranges from 10 to 100.

A7 Predictive query length. The predictive time of the queries
varies from 0 totmu.

A8 Buffer size. An LRU buffer of 50 pages are used by default.
When the size of the LRU buffer is varied, it varies from 0
to 1024KB, i.e., from 0 to 256 pages when the page size is
4KB.

A9 Disk page size. The page size varies from 1K to 8K, which
covers the general cases of most existing operating systems.

When Gaussian distributed datasets are used, we aim to observe
the effects of the numbers of hotspots, i.e., the numbers of clusters
in the datasets. The datasets are expected to be skewed when there
are few hotspots and near-uniform when there are large numbers of
hotspots.

A10 Number of hotspots. The number of hotspots varies from 1
to 10000.

For the road-network-based datasets, one additional experiment
is introduced to observe the effect of the network size.

A11 Road network size. The size of a road network is defined
as the sum of its nodes and edges. Three real digital roan
networks are used: the Oldenburg (OL) city map has 6,105
nodes and 7,035 edges; the Singapore (SG) city map has
11,414 nodes and 15,641 edges; and the San Francisco (SA)
city map has 175,343 nodes and 223,308 edges.

In a multi-user environment, updates and queries are intermixed
according to a proportion, which is different from the single-user
environment where queries are issued everytmu

10
timeunits. We use

a multi-threaded program to simulate multiple users. The workload
is first placed in a thread pool and then randomly distributed to
each thread. The performance figures returned are throughput and
response time. In addition to the aforementioned experiments, we
examine two more aspects.

A12 Update/query ratio. The ratio varies from 1:100 to 10,000:1.
This wide range of ratios covers many real scenarios, from
query-intensive ones to update-intensive ones.

A13 Number of threads. The number of threads varies from 1 to
256.

Table 1 summarizes the parameters; the values in bold denote the
default values used.

5. INDEX IMPLEMENTATION
As a precursor to applying the benchmark to the six indexing

techniques described in Section 3, we cover pertinent details of our
implementations of the indexes. All the indexes were implemented
in C++. To be fair, they adopted the same type of block file, buffer
technique, and lock manager.

• RUM*-tree . Since the RUM-tree does not support predic-
tive queries, we apply its memo-based update approach to
the TPR*-tree, denoted the resulting index as the RUM*-tree.
Obsolete entries in a leaf node are cleared whenever the node
is accessed or the node gets the token for garbage collection.
There are 10 tokens in total, and after every 1000 updates,
each token is passed to another leaf node.

• TPR-tree. The TPR-tree is optimized for thetmu time units
into the future. Each leaf node contains a set of moving ob-
jects of the form〈id, x, y, vx, vy〉, whereid is the identity of
the object,vx, vy are its velocities along thex andy-axes,
andx, y are the coordinates of the object at the reference
time of the index (i.e., the time when the index was born).

Each entry in an internal node consists of a child pointerpt
and a bounding rectangle in the form of〈xmin, xmax, ymin,
ymax, vxmin, vxmax, vymin, vymax〉, wheremin andmax
indicates the minimum and maximum value, respectively, in
the given dimension. As we can see, internal nodes store
more information than leaf nodes, and hence the fan-out of
the internal nodes is smaller than that of the leaf nodes.

• TPR*-tree. The TPR*-tree is optimized for the range query
with default size (1000×1000m2). The TPR*-tree inherits
the above TPR-tree by overloading the functions ofchoose
subtree, split, reinsertion, anddeletion. This means
that the TPR*-tree has the same leaf and internal node struc-
ture and fan-out as the TPR-tree. Through overloading, we
also avoid any extra performance difference between the TPR-
tree and the TPR*-tree caused by different implementations.
The implementations of the TPR-tree and the TPR*-tree are
based on the one provided by the authors of the TPR*-tree [1].

• Bx-tree. The Bx-tree has two partitions. The order of the
Hilbert curve used for space partitioning is optimized ac-
cording to the findings in [6], which is dynamically selected
according to the number of objects in the dataset. The max-
imum update interval in the Bx-tree is the same as the op-
timizing time intervaltmu of the TPR-tree. The iterative
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Parameter Setting

Spacedomain 100,000×100,000m2

Datasize 100K, ..., 1M
Maximumobject speed 10m/ts,...,100m/ts
Maximumupdate interval,tmu 120ts
Updatefrequency,fup 1, ..., 10
Rangequery size 1,000×1,000m2, ...,10,000×10,000m2

Numberof neighbors,k 10, ..., 100
QueryPredictive Time 0ts,10ts, ...,60ts, ..., 120ts
Time duration 240ts,600ts
Buffer size (number of pages) 50,0, 16, 32, ..., 256
Disk page size (KB) 1, 2, 4, 8
Numberof hotspots 1, 10, 100, 1000, 10000
Roadnetwork Oldenburg, Singapore, San Francisco
Update/queryratio 100:1,...,1:100, ..., 1:10,000
Numberof threads 1, 2, 4, ..., 256

Table 1: Parameters and Their Settings

expanding query algorithm in [11] is employed to avoid ex-
cessively large query region after expansion. The velocity
histogram contains 1,000×1,000 cells.

• Bdual-tree. The Bdual-tree uses the sameB+-tree as the
Bx-tree and also has two partitions. The order of the Hilbert-
curve is also optimized as that of the Bx-tree, but one degree
smaller since the Bdual-tree partitions two more dimensions
(the velocity dimension). The MORs are updated along with
the internal nodes of the B+-tree. In particular, the MORs of
an internal entry are updated if the key range of its subtree is
changed by the update. The MORs are kept in main memory
while the index is active.

• STRIPES. STRIPES also has two partitions similar to the
other two dual-tree indexes. To improve the space utilization,
the two optimization techniques provided by the authors are
employed [16]: each leaf node first acquires a half page and
will acquire a full page when the data exceeds half of a page;
non-leaf nodes are packed together to be stored in as few disk
pages as possible.

6. EXPERIMENTAL STUDY
We proceed to report on the results of applying the benchmark

to the six indexes presented in Sections 3 and 5. We first offer
results for uniformly distributed datasets and then consider skewed
and road-network based datasets.

All experiments were conducted on a PC with Intel Core 2 Duo
2.66 GHz processor, 2 GB RAM, and a 200 GB SATA disk, running
the Window XP Pro OS.

6.1 Uniformly Distributed Datasets
In this round of experiments, we examine the first nine aspects

of index performance using uniformly distributed datasets. Unless
specified otherwise, the query performance concerns range queries.

A1 Effect of Data Size: Figures 1 and 2.

Figure 1 shows the average update and range query performance
of each index when varying the dataset size from 100K to 1M. As
expected, both the update and query cost increase linearly with in-
creasing dataset size for all indexes. This is because more objects
need to be retrieved in a given query region for a larger dataset. We
also observe several differences in performance among the indexes.
The reasons are detailed as follows.

- The TPR-tree and the TPR*-tree have the best query perfor-
mance, but also exhibit the worst update performance. The low
update performance is mainly due to the overlap being followed
in deletions among bounding rectangles, which result in multiple
search paths.

- Compared to the TPR*-tree, the RUM*-tree improves the up-
date. However, this occurs at the expense of higher query cost.
By simplifying an update to an insertion and a delayed deletion,
the RUM*-tree reduces the overall update cost. On the other
hand, obsolete entries left in the tree degrade the query perfor-
mance.

- The Bx-tree and the Bdual-tree both achieve the best update I/O
performance. They benefit from their base structure, the B+-
tree, in which only a single path needs to be searched during
deletions (and insertions). The Bdual-tree is generally slower
than the Bx-tree for updates due to the time-consuming compu-
tation of MORs. While, the Bdual-tree and the Bx-tree similar
query I/O performance, the query time cost of the latter is much
higher. The query performance will be considered in detail when
we study aspect A5.

- STRIPES has low update I/O cost that is comparable to that of
the B+-tree-based indexes. The query time is also as low as those
of the R-tree based indexes. However, in comparison with the
other indexes, the update time of the STRIPES increases faster,
possibly because the quad-tree becomes taller and taller with in-
creasing numbers of objects. An update then has to follow a long
path to get a leaf node. The query I/O of STRIPES is the highest
among all indexes due to the low space utilization, as shown in
the Figure 2.

The left graph in Figure 2 shows the storage requirements of the
indexes with respect to data size.

- The STRIPES requires the most space due to its unbalanced in-
dex structure. Although STRIPES employs several space opti-
mization techniques, its space utilization is low in comparison
with the other balanced index structures.

- Except for STRIPES, all the indexes are similar in size. The size
of the RUM*-tree is the second largest one because it generally
contains a number of obsolete entries. The TPR-tree and the
TPR*-tree require nearly the same disk space since they have
the same node structure. So do the Bx-tree and the Bdual-tree.
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Figure 1: A1 Effect of Data Size
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Figure 2: A1-A2 Index Size
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Figure 3: A2 Effect of Time
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Figure 4: A3 Effect of Maximum Object Speed
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Figure 5: A4 Effect of Update Frequency
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- However, the sizes of the R-tree based indexes are slightly smaller
than those of the B+-tree-based ones. This is because the Bx-tree
and the Bdual-tree need to store one more field for each object:
thekey value, i.e. the Hilbert value, resulting in a smaller leaf
fan-out.

A2 Effect of Time: Figures 2 and 3.

The right graph in Figure 2 shows the effect of time on the in-
dex size. As we can see, STRIPES is significantly affected by the
passing of time. The size of STRIPES shows periodical change
due to dual-tree structure. Its space utilization is best when the two
trees are balanced. Actually, the Bx-tree and the Bdual-tree, both of
which are also dual-tree structures, exhibit similar changes in size,
but these are not as pronounced as that of STRIPES. In contrast,
the size of the TPR-tree and the TPR*-tree are barely affected by
the passing time.

Figure 3 shows index performance as a function of time. In what
follows, we only explain the behavior of each individual index. We
defer the discussion on the performance differences among the in-
dexes to the section covering A5.

- The update cost (I/Os and CPU time) of the TPR-tree and the
TPR*-tree keeps increasing with time for the time duration con-
sidered in the experiment. This maybe due to the increased over-
laps among the BRs. Although the TPR*-tree aims to improve
the TPR-tree’s performance by shrinking the BRs more often to
bound the objects more tightly, frequent BR adjustments intro-
duce additional update I/Os. However, as we can see, the overall
gain in query performance is not obvious. The difference be-
tween the two indexes is not very significant.

- Updates in the RUM*-tree incur the least I/O cost among all the
indexes. The main reason is that the RUM*-tree eliminates the
costly deletion from the update. However, the delayed deletions
deteriorate the query performance.

- All the dual-tree structures, i.e., the Bx-tree, the Bdual-tree, and
STRIPES, demonstrate similar periodic patterns for both update
and query performance. The performance is best when all ob-
jects are in one partition of the index while the other partition is
empty. Regarding the update time, an update in the Bx-tree and
STRIPES is too fast to make the periodic change visible.

A3 Effect of Maximum Object Speed: Figure 4.

Figure 4 shows the results of varying the maximum object speed
from 10m/ts to 100m/ts. Increasing object speed leads to increas-
ing query costs for all indexes but does not affect the update per-
formance of the Bx-tree, the Bdual-tree, and STRIPES. The update
costs of the R-tree based indexes increase linearly with the max-
imum object speed. This is because higher speeds lead to faster
expansions of bounding rectangles. More updates in the workloads
would reduce the expansions due to more frequent tightening. Con-
sequently, more overlaps occur and more (partial) paths need to be
accessed during updates. We also observe that the RUM*-tree in-
curs the least update I/O and that the growth rate is also smaller
than that of the other two due to the reasons mentioned in A1. In
comparison to the others, the STRIPES and the Bdual-tree are less
affected by the objects’ speed, probably because both take advan-
tage of object velocity while indexing.

A4 Effect of Update Frequency: Figure 5.

In Figure 5, we vary the update frequencyfup from 1 to 10,
which means that the number of updates issued by an object during

tmu time units increases from 1 to 10. Whentmu is 120ts, for a
100K dataset, the number of updates during each timestamp varies
from 100K

120
to 100K

12
, in increment of100K

120
. From the figure, we

can observe that all indexes to varying degrees exhibit better overall
performance when updates are more frequent. The possible reasons
are the following.

- When updates are frequent, the BRs in the TPR-tree, TPR*-tree,
and RUM*-tree are tightened frequently, and hence they bound
objects more closely, which leads to better update and query per-
formance.

- The Bx-tree, the Bdual-tree, and STRIPES all exhibit a minor
improvement in update I/O with more frequent updates. These
improvements are mainly caused by the presence of the LRU
buffer. When an object issues updates frequently, the changes
in its positions are likely small, and the updated object will be
stored in the same leaf node with relatively high probability. If
the leaf node is already cached in the buffer, the I/O cost is re-
duced.

In both the Bx-tree and STRIPES, the update time is extremely
short , and hence we cannot see the changes for varying update
frequency. Unlike the Bx-tree and STRIPES, the Bdual-tree ben-
efits more from a high update frequency. Each update on the
internal node of the B+-tree requires recomputation of the cor-
responding MORs. As objects are updated more frequently, the
update I/O decreases, and the time spent for recomputing MORs
also decreases. Since the I/O is reduced by the LRU buffer, the
savings in the computational time are more significant.

A5 Effect of Range Query Size: Figure 6.

In this experiment, we investigate the effect of query sizes by
varying the square window from 1,000× 1,000m2 to 10,000×
10,000m2. As expected, the results in Figure 6 show that the query
cost of each index increases with an increasing query window size.
Larger windows contain more objects and therefore lead to more
node accesses. In the following, we discuss the performance differ-
ence among the indexes.

- The TPR-tree and the TPR*-tree perform similarly and have the
lowest I/O cost.

- The query cost of the RUM*-tree is a little higher than that of the
TPR*-tree mainly because of the existence of obsolete entries in
the RUM*-tree.

- The Bx-tree has query I/Os similar to the TPR-tree and the TPR*-
tree. This is because the Bx-tree uses the iterative query en-
largement algorithm, which reduces the number of false hits as
well as the query I/Os. However, the query time of the Bx-tree
is slightly higher compared to other indexes, with the excep-
tion of the Bdual-tree. This is possibly caused by the complex
computation of converting a 2-dimensional query range to a 1-
dimensional interval and iterative query enlargements.

- Surprisingly the query I/O of the Bdual-tree is much higher than
that of the Bx-tree. A possible reason could be that the parti-
tioning in the velocity dimensions results in some nearby ob-
jects with different velocities being distributed among different
leaf nodes, while in the Bx-tree, nearby objects are clustered
together. The query processing time of the Bdual-tree is also
higher, but is affected less than the others. This is not only be-
cause it has higher query I/Os, but also because checking the in-
tersections between queries and large number of MORs is time-
consuming.
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Figure 8: A7 Effect of Query Predict Time
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Figure 9: A8 Effect of Buffer Size
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Figure 10: A9 Effect of Disk Page Size
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Figure 11: Uniform and Gaussian Datasets
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Figure 12: A10 Effect of Number of Hotspots
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- Amongall the indexes, STRIPES has the highest I/O cost. The
main reason is that STRIPES needs to access more nodes to find
the same number of objects, which is due to its low space utiliza-
tion. In addition, the low space utilization also weakens the ef-
fect of the buffer. However, due to its simple structure and query
processing algorithm, the query processing of the STRIPES is
even faster than that of the Bx-tree.

A6 Effect of Number of Neighbors: Figure 7.

Considering kNN queries, all indexes exhibit slight increases in
I/O costs and query processing time. Figure 7 shows the same
relative performance among the indexes as does Figure 6 (range
queries). In the case of the Bx-tree, a kNN query is processed us-
ing incremental range queries. Due to the difficulty of in estimating
the initial search radius, the query range may be extended several
times in order to find all the neighbors. Such repeated range queries
result in a an increased query processing time while the I/O cost re-
mains unchanged due to the buffer.

A7 Effect of Query Predictive Time: Figure 8.

Figure 8 shows the effect of the query predictive time interval,
which is varied from 0 to 120ts. It is not surprising that the query
costs of all the indexes increase as the predictive query length in-
creases. This is so because either BRs or query ranges need to be
enlarged when the predictive query length increases. However, the
effect on the Bx-tree is most significant. This is because only the
Bx-tree processes a predictive query through query enlargement. A
longer predictive time leads to a larger query region and hence a
larger number of false positives in it, which introduces more I/O
and longer time. Again, the Bdual-tree and STRIPES, which index
objects in the dual space, are less affected by the query predictive
time, since the MOR and quadrant enlargement, supervised by the
velocity constraints, are relatively small.

A8 Effect of Buffer Size: Figure 9.

We vary the number of buffer pages from 0 to 256. As shown in
Figure 9, the time cost is relatively stable since it is mainly deter-
mined by the query algorithms used by the indexes, while the I/O
cost of some indexes can be reduced substantially by using a small
buffer (e.g, 32 pages); after certain point, the effect of increase of
the buffer is negligible. In what follows, we discuss why some in-
dexes benefit more from a larger buffer.

- The three R-tree based indexes save sub a lot of update I/Os by
using the buffer. This is because they need to read and write sev-
eral internal nodes for each update—the costs of accessing such
nodes are saved if the nodes are already in the buffer. More-
over, an update in the TPR*-tree is always slower than that in the
TPR-tree, which conforms the fact that an update in the TPR*-
tree is more complex than the TPR-tree. We also observe that
the buffering has less of an effect on the query performance.

- The Bx-tree saves much query I/Os with buffering, since some
of the nodes are searched repeatedly during a query. Its update
performance is almost independent of the buffer size because an
insertion or a deletion only needs to access a single path in the
index.

A9 Effect of Disk Page Size: Figure 10.

Figure 10 shows the effect of varying the disk page size from 1k
to 8k. With a larger page size, fewer I/Os are required for the same
operation while more time is needed to check the larger number of
objects in each node.

- For all indexes, both the update I/O and the query time decrease
with an increasing page size. The reason is straightforward. With
larger pages, the number of I/Os required for a query decreases
and so does the processing time.

- In terms of the update time, the TPR-tree and the TPR*-tree both
benefit from a small page size, i.e, 1KB or 2KB. A larger page
contains more objects that need to be accessed for each update.
There is a higher probability of having to update the MBRs all
the way back to the root during an update. Therefore, it takes
more time. However, with the help of an LRU buffer, most inter-
nal nodes may be kept in main memory, and the update I/O does
not increases.

- It seems that the RUM*-tree performs best when the disk page
size is 4KB. This may be due to the settings of the RUM*-tree in
the experiments. As 10 tokens are used for garbage collection,
the cleaning frequency may be too low for the 1K and 2K pages
where there are many leaf nodes; and it may occur too often for
the 8K pages (few leaf nodes). Keeping too many obsolete en-
tries will decrease the efficiency of the index, while performing
the cleaning too often will slow down the updates. Tuning the
parameters of the RUM*-tree’s garbage collection may help to
relieve the deterioration.

6.2 Gaussian Distributed and Road-Network-
Based Datasets

In this section, we investigate index performance in Gaussian
distributed and Road-network-based datasets.

A10 Effect of Number of Hotspots: Figure 12.

We first investigate performance while varying the number of
hotspots from 1 to 10,000. Figure 11 visualizes some of the datasets
used in this set of experiments, and Figure 12 shows the results.
Note that in the dataset with 10,000 hotspots, objects are nearly
uniformly distributed.

The performance of all the indexes demonstrates similar trends
as that for the uniform datasets.

- The update costs of the TPR-tree and the TPR*-tree decrease
with the increasing numbers of hotspots resulting in datasets that
become more and more uniform. In comparison to the TPR*-
tree, the RUM*-tree has a more steady update performance.

- The Bx-tree requires more update I/Os when the data is more
skewed. As mentioned in Section 3, the granularity of space par-
titioning for the Bx-tree is optimized for the number of objects in
the dataset. When data become more skewed, the object density
around the hotspots becomes higher. Many objects are indexed
in the same cell with the same indexing key, leading to overflow
pages that adversely affect the performance.

- In comparison with the Bx-tree, the update costs of the Bdual-
tree and STRIPES are affected less by the skewed data distri-
bution. This may be because both of them consider the object
velocity in partitioning, which weakens the influence of space
distribution on the updates.

- In terms of queries, all indexes require more query I/Os when
there are less hotspots, i.e, the data becomes less uniformed.
We observe that the query I/Os of the Bx-tree increases fastest
among all indexes when data becomes more skewed. This is due
to the fixed space partitioning of the Bx-tree. The Bdual-tree and
STRIPES, both of which partitions the dual space (i.e, location
and velocity), exhibit slower increases in query I/Os in compar-
ison to that of the Bx-tree. As for the R-tree based indexes, the
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(a) OL (b) SG (c) SA

Figure 13: Road Network
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Figure 14: A11 Effect of Road Network

query I/Os increases at the similar, slow rate. Since the R-tree
based indexes form MBRs based on data distribution, the data
skew has the relatively small influence on them.

A11 Effect of Network Size: Figure 14.

This experiment examines the effect of network size by using three
real maps of different sizes (OL< SG < SA), as shown in Fig-
ure 13. The results are shown in Figure 14, where we can observe
that the performance is not affected by the size of the network. To
obtain a better understanding of this behavior, we first analyze the
features of each dataset.

- The OL network is the smallest. The nodes are distributed more
evenly in space and hence the average length of each edge is the
longest. This in turn results in less updates for each object.

- The SA network contains the largest number of nodes and edges,
and hence it has relatively short edges. Also, the distribution
of the nodes is more skewed than for the OL and SG networks
where we can see that a large number of objects concentrate in
the central part of the network. Therefore, objects in the SA
dataset have the highest update frequency and are very skewed.

- The SG dataset has an in-between size and hence a moderate
update frequency. The object distribution is close to uniform in
most parts of the network.

Figure 14 suggests a complex effect of the road network on the
index performance. The size of the network affects the update fre-
quency while the shape of the network determines the distribution
of the objects. The index performance is affected by both factors,
each of which was discussed in A4 and A10.

- Considering updates, the TPR-tree and the TPR*-tree both per-
form the best with the OL dataset and the worst with the SA
dataset. This is because of the joint effect of the update fre-
quency and the data skew. The update cost of all the other in-
dexes remains nearly the same for the three networks, since the
object distribution barely affects the their update costs (Figure

12 in A10) and since the impact of the update frequency on their
update costs is also small, i.e., less than one I/O, as shown in
Figure 5.

- In terms of the query cost, all indexes perform the best in the SG
dataset and worst in the OL dataset, which is consistent with that
the SG datasets has a balance between the update frequency and
the object distribution.

6.3 Concurrency Control
Finally, we evaluates all the index in a multi-user environment.

The performance is measured according to two metrics: through-
put and response time. The throughput is defined as the average
number of tasks finished in a unit time (1ts).

A12 Effect of Update/Query Ratio: Figure 15.

Figure 15 shows the effect of update/query ratio. We can observe
that the throughput of all indexes increases when there are more
updates and fewer queries. The reason is that an update usually can
be executed more quickly than a query. Hence, during the same
duration of time, more operations can be finished if most of these
operations are updates. With the increase of the throughput, it is
natural that the response time decreases a little. Next, we discuss
the performance differences among all the indexes.

- The Bx-tree exhibits the largest throughput. This is because it
performs very fast for updates and relatively fast for queries.
And also the concurrency control mechanism of the B+-tree is
more efficient than those of the R-tree and the quad-tree.

- STRIPES achieves the second highest throughput since it has
similar update and query performance as the Bx-tree. Moreover,
the unbalanced quad-tree in STRIPES has more levels and hence
concurrent operations are more likely to be performed at differ-
ent levels of the tree.

- The TPR-tree and TPR*-tree yield lower throughput than the Bx-
tree and the STRIPES mainly due to their relatively low update
performance.
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Figure 15: A12 Effect of Update/Query Ratio Figure 16: A13 Effect of Number of Threads

RUM*-tree TPR-tree TPR*-tree Bx-tree Bdual-tree STRIPES
UpdateI/O 0.9-2.3 0.7-7 0.7-7.7 1 1 1.1-1.3
Update time 6-16 8-17 8-18 1 1.2-8 0.9-1.2
Range query I/O 2-5 1 1 0.8-1.8 2-9 2.5-10
Range query time 1.1-2.4 1 1 1.1-1.6 1.2-3 0.9-1.5
kNN query I/O 2.5-2.6 1 1 1.1-1.3 2.3-2.5 3.3-3.5
kNN query time 2-2.2 1 1 1.5-2 3.7-5.1 1.4-1.5
Storage space 1.1-1.2 1 1 1.1-1.2 1.1-1.2 3.2-4
Concurrency access (response time)2-30 3.5-6.5 5-10 0.4-1.6 1.5-2.2 1

Table 2: Performance Summary

- Although the concurrency control in the B+-tree is efficient, the
Bdual-tree has the lowest throughput. This is because the Bdual-
tree holds the nodes for a longer time to handle each update.

- The RUM*-tree has a low throughput when queries constitute
the majority of the workload. However, as the proportion of up-
dates in the workload increases, the throughput of the RUM*-
tree shows the largest increase in throughput, simply because
updates in the RUM*-tree are quite fast.

A13 Effect of the Number of Threads: Figure 16.

Figure 16 shows the performance of the indexes with various
degree of concurrency when the update/query ratio is fixed at 100:1.
Observe that the throughputs of all the indexes peak at about 1 or 2
threads and then decrease when there are more threads. The main
reason is that an update exclusively locks the node being accessed.
When the update frequency is high, multiple threads may compete
for the right to access the same node, meaning that it takes more
time for each thread to successfully execute an operation. Also,
some time is wasted on frequent thread switching. Therefore, the
increase in the number of threads will not help with the throughput,
but may even degrade the overall performance. This is also the
reason why the response time increases nearly exponentially with
the number of threads.

- The Bx-tree again achieves the highest throughput and short-
est response time among the indexes for the same reason as ex-
plained in A12.

- STRIPES has a moderate throughput, which is higher than that
of the TPR-tree, the TPR*-tree, and the Bdual-tree. The impact
of increasing number of threads on the STRIPES is less pro-
nounced when comparing to the others. Because of the quad-tree
structure, STRIPES is unbalanced. Locks are distributed among
different level of the tree.

- Apparently, the TPR-tree outperforms the TPR*-tree in concur-
rent operations. The TPR*-tree accesses more internal nodes
than the TPR-tree for each insertion and deletion. Although such
additional I/O cost is relieved by the buffering in a single thread
environment, the problem is hard to solve in a multi-threaded

environment, where the TPR*-tree locks the internal nodes more
often than the TPR-tree does.

- The performance of the RUM*-tree surpasses all the other in-
dexes except the Bx-tree when there is no more than 32 threads.
In addition to the internal nodes of the tree, the threads have to
compete for the update memo as well. Therefore, the throughput
of the RUM*-tree degrades fast with more working threads.

6.4 Result Summary
Table 2 presents an overall comparison of the six indexes with

respect to a total of eight different performance aspects, as listed
in the leftmost column. For each row in the table, an entry with
value ”1” indicates that the corresponding index usually performs
the best regarding the specific aspect, while an interval “a-b” in
other entries indicates that the corresponding index isa to b times
more expensive than the best index. For example, the first row
summarizes the update I/O performance across all experiments. We
can see that the Bx-tree and Bdual-tree both have value “1”, which
indicates that they generally outperform the other indexes. As for
the TPR-tree, an interval “0.7 − 7” means the update cost of the
TPR-tree is 70% of that of the Bx-tree in the best case and is about
7 times higher than that of the Bx-tree in the worst case. Generally
speaking, in each entry, a smaller number and a smaller range of
the interval indicates a better and more stable performance.

To summarize, we have the following interesting findings from
Table 2.

- With some restriction on the storage, if an application needs to
deal with a large number of updates, but relatively few queries,
the Bx-tree is a good choice since it performs the best among
all indexes in terms of both update I/Os and update time and it
requires relatively little storage space. This is also true in the
multi-user environments where we can see that the Bx-tree ex-
hibits almost the least response time.

- If an application has to handle more queries than updates, the
TPR-tree is the proper one since it beats all the others with a
stably efficient query performance regardless the query types.

- If the composition of the workload is not unknown and the stor-
age space is not a concern, STRIPES is a good choice since it has
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relatively good, if not optimal, update and query performance in
most situations.

7. SUMMARY AND FUTURE RESEARCH
This paper proposes a benchmark for the study of important per-

formance properties of techniques for the indexing of the current
and near-future positions of moving objects. The benchmark in-
cludes a dataset and workload generator, as well as definitions of
experiments. The parameters that control the datasets and work-
loads are varied considerably with the goal of covering a wide range
of settings, the idea being to obtain a better understanding of the
strengths and the weaknesses of an index under varying circum-
stances. The paper also reports on the application of the benchmark
to six recent moving-object indexes, thus offering findings that can
serve as guidelines for choosing a proper index for a specific appli-
cation.

The current benchmark implicitly assumes that the object posi-
tions stored in an index are accurate. This is in accord with the
assumptions made by many existing indexes. In practice, however,
only inaccurate current object positions can be stored in an index.
It is thus of interest to take into account the inaccuracies of object
positions in both indexes and benchmarks.

For example, an approach may be used where it is assumed that
each moving object is aware of both its actual position and the posi-
tion stored in the index; the object then updates the index as needed
in order to maintain an agreed-upon accuracy guarantee for the po-
sition known by the index [12]. Different objects may have dif-
ferent accuracy guarantees, and these may vary across time. This
yields update workloads that differ from the ones currently covered.

We feel that the property of index robustness is very important—
a single, robust index is probably more likely to be useful in prac-
tice than a less robust index that may perform much better under
certain circumstances, but that performs poorly under other cir-
cumstances. One approach to increase the focus on robustness is
to identify systematically any uniformity assumptions and solution
parameters employed by an index. One may then consider whether
realistic datasets and workloads exist where the uniformity assump-
tions are not met and then consider the consequences. For each pa-
rameter, one may also consider whether realistic datasets and work-
loads exist that render the parameter difficult to set or even render
it impossible to identify a single, good setting. Studies along these
lines may yield additional benchmark datasets, workloads, and ex-
periments aimed specifically at the study of robustness.
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