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ABSTRACT
Searching relevant visual information based on content features
in large databases is an interesting and changeling topic that has
drawn lots of attention from both the research community and in-
dustry. This paper gives an overview of our investigations on ef-
fective and efficient video similarity search. We briefly introduce
some novel techniques developed for two specific tasks studied
in this PhD project: video retrieval in a large collection of seg-
mented video clips, and video subsequence identification from a
long unsegmented stream. The proposed methods for processing
these two types of similarity queries have shown encouraging per-
formance and are being incorporated into our prototype system of
video search named UQLIPS, which has demonstrated some mar-
keting potentials for commercialisation.

1. INTRODUCTION
Recently, multimedia search continuously attracts increasing in-

terest from many researchers as well as commercial organizations.
Among the media types, video carries the richest content in daily
information communication and acquisition. With the advances of
hardware (e.g., the plummeting of storage cost) and software (e.g.,
the popularity of video editing utility), we are experiencing tremen-
dous amount of video data today in many fields such as in personal,
commercial and organizational video archives. In addition, with the
wide spread of broadband access, videos become very popular on
the Web. According to comScore [1], a leader in measuring the
digital world, nearly 134 million Americans viewed more than 9
billion online videos in July 2007 alone. Online viewers watched
an average of 181 minutes video during the month, nearly 30 more
than January 2007. The average online video viewer consumed 68
videos (or more than 2 videos per day), and the number is expected
to keep growing. Clearly, the rapid increase in the generation and
dissemination of digital videos in both centralized video archives
and distributed video resources on the Web has created an urgent
need for video search engines to facilitate retrieving relevant infor-
mation of interest.
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Generally, a video can be viewed as a multi-modality of visual,
audio, textual and motion features [28]. Currently available com-
mercial video search engines such as Google Video only provide
searches based on metadata or surrounding textual information and
do not exploit the content information in a nature and intuitive way.
In some online video sharing sites such as YouTube, video search
is converted into a query of the specified keyword(s) in annotation
data provided by users. Although this approach is directly related
to video semantics, in general it is unsuitable for similarity-based
video search in large repositories, since manually annotating in-
volves too many human efforts and is a tedious, cumbersome and
time-consuming task. Moreover, text descriptors can often be bi-
ased and incomplete, since annotations are intrinsically subjective
and only represent partial information. Different from text retrieval
that typically involves keyword query, video search is actually more
complicated due to its complex information embedded. In this re-
search, we focus on the video modality of a sequence of frames,
each of which is typically represented by some low-level feature
[32] which is referred to asvideo content, such as color distribu-
tion, texture pattern or shape structure. In other words, we exploit
the inherent visual information for content-based video search.

This research is initially motivated by the TV commercial de-
tection project of our collaborator from ACNielsen, a well-known
media research organization. The intriguing application is auto-
matic recognition of TV commercials, which is an essential step in
TV broadcast monitoring. When a company contracts several TV
stations for certain commercials, it often asks a marketing survey
company to track whether its commercials are actually broadcasted
as contracted (when - before/after/during certain popular programs,
and how - the exact durations and times, etc.). Some companies
may also approach such marketing survey companies to seek infor-
mation about how their competitors market their products. While
a commercial is given to some different TV stations for broadcast-
ing, it can be aired with a number of variations, such as station-
specific parameters (e.g., frame rate, aspect ratio and resolution),
and inserts of different local contact information or products (e.g.,
a supermarket would like to insert different products on sale in its
TV commercial ‘template’). Thus, the various versions of TV com-
mercials broadcasted by different TV stations at different times are
‘similar’ but not exactly ‘same’.

Video similarity search also has other practical applications. A
typical one is enforcing copyright compliance. Video content own-
ers would like to be aware of any use of their material, in any media
or representation. Consider, for example, the producers of certain
movie scenes may want to identify whether/where their original
works have been re-used by others, even with some kind of re-
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mixing for multimedia authoring. Since videos are easy to copy,
reformat, modify and republish, duplicate or near-duplicate videos
often spread in the absence of central management or monitoring,
thus there are many such videos distributed on the Web. It is re-
ported that YouTube has recently encountered some legal issues
related to copyright infringement, because copyrighted videos ex-
plicitly requested to be banned by their copyright owners are of-
ten found to be uploaded again by other users with some minor
changes. Therefore, an important problem now faced by these
video sharing sites is how to automatically perform accurate and
fast similarity search for an incoming video clip against its huge
database, to avoid copyright violation. Meanwhile, since the re-
trieval efficiency will be hampered if a large number of search
results are essentially almost-identical, database purge also con-
tributes to high-quality ranking for video search results [34].

In content-based search, each video is transformed to feature
vectors, which are points in a high-dimensional space. Matching
of similar videos is often translated into searches among these fea-
ture vectors [14, 18, 20, 16, 35, 8, 25]. The number of feature
vectors depends on the length of video. Due to the high complex-
ity of video features, scanning on all these vectors results in high
computational cost and is strongly undesirable. Novel indexing and
query processing techniques are indispensable to manipulate large
video databases. We identify three essential issues that have to be
addressed in managing such a system as follows: first, obtaining
an effective and compact video representation; second, measuring
the similarity of videos that ideally can match the ‘similar’ notion
of human perception; third, organizing the compact representations
with an indexing structure, together with an efficient search strat-
egy.

In this PhD project, we investigate two different aspects of content-
based video similarity search:

• Video clip retrieval, which conventionally returns similar clips
from a large collection of videos which have been either
chopped up into similar lengths or cut at content boundaries.

• Video subsequence identification, which aims at finding if
there exists any subsequence of a long database video that
shares similar content to a query.

The primary difference between these two scenarios of similarity
queries is that, for the former, the clips for search have already
been segmented and are always ready for similarity ranking [35, 8,
25], the latter is a typical subsequence matching problem [14, 18,
20, 16] (which is conceptually analogous to subsequence matching
in time series [10]). Because the boundary, and even the length of
target subsequence are not available at beginning, choosing which
subsequences for evaluating similarities is not pre-known.

Our objective is to find a generic database management solu-
tion towards effectively and efficiently searching similar videos,
with tolerance to different variations introduced during not only
transformation process but post-production editing. Existing re-
lated studies are mainly focused on a more specific problem of
co-derivativevideo detecting. In particular, we are interested in
searching visually relevant video, even if there exists some transfor-
mation distortion, partial content re-ordering, insertion, deletion,
or replacement. This scenario introduces additional complexity.
To date, we have worked out a series of new methodologies to
tackle the aforementioned rising challenges to render video simi-
larity search more practical, in terms of both speed and accuracy.
In summary, we make the following technical contributions:

• We develop a batchk Nearest Neighbor (kNN) search al-
gorithm [23, 24] which efficiently processes a bunch of indi-
vidualkNN searches on the same database simultaneously to

significantly reduce the computational overhead of content-
based video search systems, without compromising the ac-
curacy of results.

• On top of this batch query processing strategy, we propose
a graph transformation and matching approach to video sub-
sequence identification, with extension to identify the occur-
rence of potentially different ordering or length due to con-
tent editing for effective identification.

• We propose a novel video clip representation model called
Bounded Coordinate System (BCS) [26], which statistically
summarizes a video clip into a single representative by an-
alyzing the correlation of frame content existing in feature
space, to facilitate fast retrieval in large video clip databases.
This method goes beyond a straightforward adaptation of our
early proposal Video Triplet (ViTri) [25].

• Moreover, we further consider a more robust methodology
of similarity assessment which evaluates the probabilities of
vectorial distribution consistency. Compared with summa-
rizing the correlation of content features for comparison, di-
rectly exploiting the criterion of distributional discrepancy is
a more reliable and general solution for video clip retrieval.

This paper aims at embedding our past and ongoing research ef-
forts in the context of a whole PhD project. We intend to show
some threads for relating the four pieces of work, and put emphasis
on discussing the motivation of each individual work. Since some
results are not published yet, to be self-contained, we also briefly
explain the main idea of each technique here. The rest of the paper
is organized as follows. We first give some background information
in Section 2. The framework of our proposals is given in Section 3.
Section 4 briefly introduces our prototype system UQLIPS which
is currently under further development. Finally, we conclude and
mention some scheduled extensions of this research as future ob-
jectives in Section 5.

2. BACKGROUND
In conventional content-based similarity search such as image re-

trieval, a query consumes a singlekNN search. High-dimensional
indexing has been extensively studied in the database literature [4].
Although tree-based index structures work well in low to medium
dimensional spaces, a simple sequential scan usually performs bet-
ter at higher dimensionality [33]. To tackle the notorious ‘curse
of dimensionality’, substantial progresses have been made, which
can be generally classified into five approaches: tree-like structure
such as X-tree [2], data compression such as VA-file [33], dimen-
sionality reduction and hybrid of tree-like structure such as LDR
[5], transformation to one-dimension such as iDistance [15] and
approximate search such as LSH [12]. These techniques are all
concerned with facilitating singlekNN search. However, a distin-
guishing characteristic of video search is that, each video is de-
scribed by a sequence of feature vectors, so as to the query. De-
note a query clip asQ = {q1, q2, . . . , qm} and a database video
as P = {p1, p2, . . . , pn} (i.e., Q and P havem and n feature
vectors respectively), to determine whetherP is similar to Q or
containsQ, typically for eachqi ∈ Q, a search is first performed
in P to retrieve the similar feature vectors toqi. After complet-
ing all thekNN searches, an overall similarity is then computed,
i.e., a single content-based video search usually involvesm indi-
vidual kNN searches. This bottleneck is restricting most existing
content-based video search systems to test on relatively small video
data sets. Unfortunately, there are few studies addressing how to
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Figure 1: Visually similar videos, but not copies.

efficiently process a batch ofkNN simultaneously. All-nearest-
neighbors queries [36] investigates how to schedule a number of
individual kNN searches by the spatial proximity to maximize the
buffer hit ratio in the context of two-dimensional spatial databases.
It is proposed to order the queries with a space filling curve, e.g.,
Hilbert curve, to maximize the point locality. However, in high-
dimensional space for multimedia applications, this approach be-
comes no longer applicable, since the data set is presumed to be
either indexed with R-tree or spatial hashing. Therefore, it does not
scale well with dimensionality.

In multimedia, most existing research efforts are on content-
based video copy detection [14, 18, 20, 16, 35], which is regarded
as a complementary mechanism of video watermarking. Their pri-
mary focus is to detect any video sharing exactly the same original
source with query, but can be altered with some global transfor-
mation, such as different formats, different resolutions, changing
brightness, changing contrast, changing saturation, cropping, over-
laying a logo, etc. Our research addresses a more changeling prob-
lem of searchingvisually similarvideos. Different from copy de-
tection which normally considers transformation distortions only,
a visually similar video can be further relaxed to be changed with
content editing at frame or shot level (swap, insertion, deletion, or
substitution), thus could have different ordering or length with orig-
inal source. For example, Figure 1 shows two TV commercials for
Tourism New South Wales, Australia. Each of them is displayed
with 5 sampled frames extracted at the same time stamps. They
are highly similar, but not copies. Another example is the extended
cinema version of Toyota commercial and its shorter TV version,
which obviously are not copies of each other by definition.

To further search videos with changes from query due to content
editing, a number of algorithms have been proposed to evaluate
video similarity. In case of retrieving relevant videos from a collec-
tion of well segmented clips, some summarization techniques can
be applied to obtain compact video representations. Video similar-
ity then can be estimated based on these compact representations.
Two typical examples are ViSig [8] and ViTri [25] that both esti-
mate the percentage of visually similar frames. In [8], a random-
ized algorithm is proposed to select a number of seed frames and
assigns a small collection of closest frames called Video Signatures
to the set of seed frames. However, depending on the relative po-
sitions of the seed frames and ViSigs, this randomized algorithm
may sample non-similar frames from almost-identical videos. In
[25], each video is summarized into a set of clusters, each of which
is modelled as a hyper-sphere called Video Triplet described by
its position, radius, and density. Each video is represented by a
much smaller number of hyper-spheres. Video similarity is then ap-
proximated by the total volume of intersections between two hyper-
spheres multiplying the smaller density of clusters.

In case of identifying relevant subsequence, these methods of
video retrieval become inapplicable. Video subsequence match-
ing techniques using a fixed length sliding window at every possi-
ble position of database sequence for exhaustive comparison [14,

18, 20] arenot efficient, especially for seeking over a long-running
video. Although a temporal skip scheme using similarity upper
bound [16, 35] can accelerate search process by reducing the num-
ber of candidate subsequences, under the scenario that actually a
target subsequence could have different ordering or length with a
query, these methods suffer from beingnot effective.

Since the temporal characteristic naturally models a video se-
quence as a trajectory in vector space, various time series simi-
larity measures can be considered, such as Mean distance (nor-
malized pairwise distance) [19], Dynamic Time Warping (DTW)
[17], Longest Common Subsequence (LCSS) [30], and Edit dis-
tance (e.g., Edit distance with Real Penalty (ERP) [7]), all of which
can be extended to measure the similarity of multi-dimensional tra-
jectories and applied for video matching. For instance, Mean dis-
tance is adopted in [16], DTW is adopted in [9], LCSS is adopted
in [6], and Edit distance is adopted in [3]. However, for the specific
problem of measuring video similarity, when dealing with temporal
order, frame alignment, gap and noise together, all these similarity
measures are insufficient in some aspect.

3. OUR PROPOSALS
In this section, we first introduce our batchkNN search enabled

video subsequence identification technique, then discuss two pro-
posals for video clip retrieval.

3.1 Strategies for Subsequence Identification
We develop an effective and efficient strategy for temporal local-

ization of similar content from a long unsegmented video stream,
with particular consideration that target subsequence may be ap-
proximate occurrence of potentially different ordering or length
with respect to query.

3.1.1 Batch Search for Similar Frame Retrieval
As mentioned above, a single content-based video search usually

involves a number of individualkNN searches. Our first work is
motivated by the fact that traditional indexing methods do not pro-
vide adequate efficiency for this process. Since normally nearby
feature vectors in a video are similar, a series of separatekNN
searches will incur lots of expensive I/O cost for random disk ac-
cesses and CPU cost for distance computations, which crucially
affect the overall query performance. Intuitively, some results of
next query could be probably contained in the results of previous
queries. We define batchk Nearest Neighbor search as a batch op-
eration that performs a bunch of individualkNN searches on the
same database simultaneously. Consequently, the speed of similar
frame retrieval, which serves as the first step in our query process-
ing strategy for video subsequence identification described next,
can be improved significantly.

Effectively utilizing the overlaps among queries to the maximal
extent is nontrivial. Optimizations of multiple queries have been
well studied in the context of relational databases [22]. The pro-
posed techniques include elimination of common sub-expressions,
re-ordering of query plans, using materialized views, pre-fetching
and caching of input data values, etc. However, in high-dimensional
feature data sets for multimedia applications, the technique used for
minimizing the number of accesses to database points is different
from that of minimizing the number of accesses to database rela-
tions. [23] is the first work that identifies pruning condition tighten-
ing, the opportunity to further reduce the total number of candidates
through batch operation. Observing the overlapped candidates (or
search space) of a pervious query may help to further reduce the
candidate sets of subsequent queries, we propose Dynamic Query
Ordering (DQO) execution for efficiently processing batchkNN
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searchin high-dimensional space, with advanced optimizations of
both I/O cost and CPU cost. DQO can progressively find a query
order such that the results of previously processed queries can be
maximally re-used by next query. In additional to the experiment
results reported in [23] where successive video frames are used for
the query video clip, [24] further demonstrates the significance of
our batchkNN query processing strategy when sampled frames are
used.

3.1.2 Graph Transformation and Matching
Temporal order is an essential characteristic of video sequences.

Following their temporal orders, a submitted queryQ and long
database videoP can be placed along two one-dimensional tempo-
ral lines. This motivates us to investigate the mapping relationship
betweenQ andP by a bipartite graph.

The main steps of our query processing can be described as fol-
lows. With the proposed batch query algorithm to retrieve similar
frames, the mapping relationship betweenQ andP is first repre-
sented by a bipartite graph. This is a preliminary step analogous to
building element-to-element correspondence in time series match-
ing. Then, the densely matched parts along the long sequenceP
are extracted. In this way, a large portion of irrelevant parts are
safely pruned and we can locate all the possibly similar video sub-
sequences as promising candidates for similarity evaluations. Next,
to effectively but still efficiently identify the actually similar subse-
quence, a novel filter-and-refine strategy is proposed to prune some
irrelevant subsequences. During the filtering stage, imposing a one-
to-one mapping constraint similar in spirit to that of [21], Maxi-
mum Size Matching (MSM) [27] is deployed for each subgraph
constructed by the query and candidate subsequence to rapidly fil-
ter some actually non-similar subsequences with lower computa-
tional cost. During the refinement stage, Sub-Maximum Similarity
Matching (SMSM) is devised to identify the subsequence with the
highest aggregate score from all candidates with relatively higher
computational cost, according to a robust video similarity model
which incorporates visual content, temporal order, frame align-
ment information for accurate identification. In a nutshell, by ex-
ploiting the mapping relationship betweenQ andP , we transform
video subsequence identification to a matching problem in a bipar-
tite graph for processing variable length comparison over database
videoP with queryQ.

Compared with existing work, our strategy has two distinctive
features. First, in contrast to the fast sequential search scheme
applying temporal pruningto accelerate search process [16, 35]
which assumes query and target subsequence are strictly of the
same ordering and length, it adoptsspatial pruningto avoid seeking
over the entire database sequence of feature vectors for exhaustive
comparison. Second, it does not involve video segmentation re-
quired by the proposals based on shot boundary detection such as
[6, 21]. Shot resolution, which could be a few seconds in duration,
is usually too coarse to accurately locate a subsequence boundary.
Meanwhile, our strategy based on frame sub-sampling is capable
of identifying video content containing ambiguous shot boundaries
(such as dynamic commercial, TV program lead-in and lead-out
subsequences).

3.2 Strategies for Clip Retrieval
In video clip retrieval, each database video is well segmented

and available for similarity evaluation. It can be viewed asX =
{x1, x2, . . . , xn}, where each elementxi ∈ Rd is ad-dimensional
feature vector point representing a frame inX, andn is the num-
ber of sampling frames. It is often unnecessary to maintain the
full fidelity of feature vector representations so effective and com-

1
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BPC
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Figure 2: Bounded Principle Components.

pact video representations can be applied to alleviate high computa-
tional complexity. In general, there are two types of summarization
techniques for measuring similarity: higher order techniques which
summarize all feature vectors of a video clip into some high-level
descriptions, such as ViTris, and first-order techniques which sum-
marize a video clip by a small set of representative feature vectors,
such as ViSigs. Then, the similarity between two video clips can
be estimated by comparing their corresponding compact represen-
tations.

3.2.1 Statistical Summarization of Content Features
We first review Bounded Coordinate System (BCS) [26], which

is the first single representative that globally captures the domi-
nating content and content changing trends of a video clip by ex-
ploiting the tendencies of content features. As illustrated with a
simple example in Figure 2, the dots represent the frame features
of a video clip. Principal Component Analysis (PCA) can project
the data points to a new coordinate system such that the greatest
variance comes to lie on the first principal component, the sec-
ond greatest variance on the second principal component, and so
on. Conventionally, principal components only indicate the di-
rections of coordinate axes. Here we adopt a bounded scheme
called Bounded Principle Component (BPC). For a principal com-
ponentΦi identifying a direction, its corresponding BPC̈Φi iden-
tifies a line segment bounded by two furthermost projections on
Φi, as shown by two circles in Figure 2, with the length||Φ̈i||.
BPCs indicate the ranges of feature vector scattering along cer-
tain orientations. Given a video clipX, its compact representa-
tion BCS(X) = (O, Φ̈1, . . . , Φ̈d) is the mean (origin) for allxi

denoted asO, andd BPCs (orientations and ranges). Independent
of frame numbern, BCS only records a centeringd-dimensional
point andd BPCs to represent a video clip. A BCS actually con-
sists of(d + 1) d-dimensional vectors. Since real video data often
have some noise points, to eliminate this effect and capture data dis-
tribution more robustly, the length of BPC can be re-defined with
standard deviation, which measures the statistical dispersion of data
projections. A BPCΦ̈i identifies a line segment bounded byσi,
whereσi is the standard deviation indicating the average distance
of all data points from a projection onΦi to the origin of coordi-
nate system. Its length||Φ̈i|| = 2σi. The dashed rectangle in Fig-
ure 2 shows two corresponding BPCs byσ1 andσ2. The similarity
measure of videos is transformed into a comparison of the corre-
sponding BCSs. Given video clipsX andY with BCS(X) =

(OX , Φ̈X
1 , . . . , Φ̈X

d ) and BCS(Y ) = (OY , Φ̈Y
1 , . . . , Φ̈Y

d ), their
similarity can be intuitively estimated by performing translation,
rotation and scaling operations to match two BCSs. The distance

of two BCSs can be computed by||OX −OY ||+
d∑

i=1

||Φ̈X
i − Φ̈Y

i ||.
The compact video representation together with its linear time
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(a) Similar video clips A and B, and a dissimilar video clip C.
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Figure 3: Vectorial distributions in feature space.

similarity measure makes real-time search from large video clip
collections feasible. We can further use the optimal one-dimensional
transformation accommodated with B+-tree [25] for BCS index-
ing. Given the understanding that a video clip often shows a mo-
ment of significance, from human perception, different dominat-
ing visual content of clips may express different significance. At
the same time, different content changes may also suggest different
meanings. In practice, BCS based on correlation analysis usually
works quite well. It is observed from large-scale experiments that
BCS achieves very high search accuracy, and can convey certain
degree of semantic information.

3.2.2 Distribution-based Similarity Measures
Same with other higher order summarization techniques, theo-

retically BCS has a limitation that it assumes a restricted form of
density model. Specifically, accompanied with PCA, it implicitly
brings an assumption that the data points in each video clip are
drawn from a Gaussian normal distribution, which is statistically
unwarranted in real world. PCA can be ill-adapted to the sets of
data points with intrinsic nonlinear correlations, which possibly
compromises the effectiveness of similarity search based on BCS.
For more robust search the enormous amount of and extremely di-
verse video content on the Web, we address this problem by mod-
elling distribution-based similarity measure for video clip retrieval.

We propose a novel collective perspective of exploiting the dis-
tributional discrepancy of samples for assessing the similarity be-
tween two ensembles of points. Several ideas of non-parametric
hypothesis tests in the literature of multivariate statistics are uti-
lized to check the hypothesis whether two ensembles of points are
from a same distribution. The two specific methods adopted are
Friedman-Rafsky (FR) test [11], and a more efficient Maximum
Mean Discrepancy (MMD) test [13]. FR test is a multivariate gen-
eralization of classical Wald-Wolfowitz (WW) test [31], and MMD
test is a kernel method which employs the unit balls in a univer-
sal Reproducing Kernel Hilbert Space (RKHS) [29] as its function
class. The test statistic of either method can be expressed as the
probability that two ensembles of points are consistent with a same
distribution, which itself is not explicitly known. Figure 3(a) ex-
emplifies the vectorial distributions of three video clips in feature
space. For visualization, the original 32-dimensional feature vec-
tors are projected with the first two PCA coefficients. Each point in
the plots stands for a frame. Actually video clips A and B are sim-
ilar ones, while video clip C is irrelevant. It becomes evident that
the distributions of similar videos are with much likeness, while
dissimilar one is quite different. Figure 3(b) plots the results of

Figure 4: Interface of UQLIPS.

a simple random samplingtechnique (without replacement). Ex-
perimentally, we observe that satisfactory retrieval results can be
achieved even when small to moderate sample size of representa-
tive points are used, thus the computational cost of distribution-
based methods can be alleviated significantly.

The main advantage of this proposal is that, no prior knowledge
about the underlying data distributions of the point sets under study
has to be assumed. It provides a more comprehensive analysis
that captures the essence of invariant distribution information for
retrieving video clips. In fact, the design philosophy of BCS re-
sorting to content correlation can be regarded as some attempts to
roughly reflect the statistical distributions of data points by some
coarse content tendency. The new proposal based on the criterion
of distributional discrepancy is more direct, reliable (more descrip-
tive local information will be exploited) and general (can not only
fit a particular parametric form), which shows better retrieval qual-
ity in our preliminary experiments.

4. PROTOTYPE SYSTEM
We show in Figure 4 a snapshot of a Web-based video search

system named UQLIPS developed at the University of Queensland.
Currently it has a large database of more than 50,000 video clips,
where BCS can retrieval similar video clips with very satisfactory
search accuracy in milliseconds. This system has been demon-
strated at some international conferences and to industry people.
Its marketing opportunity is highly commended by UniQuest (the
Australia’s largest and most successful university commercialisa-
tion group), and expected to be further invested in different ways.
More functionalities such as the module of video subsequence iden-
tification are currently being incorporated into UQLIPS to make
this prototype system more practical and powerful.

5. CONCLUSIONS AND PERSPECTIVES
The rapid advances in multimedia and network technologies make

video search become a key part of the future of digital media. This
paper discusses the challenges of similarity search in large video
databases, and gives an overview of our proposed techniques for
this problem. Our work extends the investigations of video copy de-
tection not only in the aspect of potentially different length but also
allowing flexible temporal order (tolerance to partial re-ordering).
Currently we assume the long video sequence for subsequence match-
ing is pre-stored in database. We are developing an accurate and
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fast system for online detection over continuous video streams.
This module will also be part of our system UQLIPS. In additional,
we will work on search result clustering based on both text and
content information, to fully utilize multi-modality video features.
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