
Towards Efficient Main-Memory Use For Optimum Tree
Index Update

Laurynas Biveinis
lauras@cs.aau.dk

Supervised by Simonas Šaltenis
simas@cs.aau.dk

Computer Science Department
Aalborg University

ABSTRACT
An emerging class of database applications is characterized
by frequent updates of low-dimensional data, e.g. coming
from sensors that sample continuous real world phenom-
ena. Traditional persistency requirements can be weakened
in this setting of frequent updates, emphasizing a role of the
main-memory in external storage index structures and en-
abling a higher update throughput. Moreover, in order for
an index to be suitable for practical applications, efficient
past-state queries should be supported without significantly
penalizing other operations.

These issues are not adequately addressed in the database
research. We report on the RR-tree—our first step towards
resolving them. Based on this, we outline a number of con-
crete short-term and more abstract longer-term future re-
search directions.

1. INTRODUCTION
A rapid development of sensor and communication tech-

nologies makes it increasingly feasible to capture and query
large amounts of data that capture continuously-changing
real world properties.

Location-Based Services (LBS) is a representative exam-
ple of such update-intensive applications, where positions of
a large number of GPS-equipped moving objects are tracked
on a central server. Position updates in such scenarios are
issued very frequently to maintain location data within ac-
ceptable accuracy bounds. For example, vehicles travelling
in a semi-urban environment have to issue an update every
fifteen seconds on average to maintain a tracking accuracy
of 200 meters [25].

Traditionally the research of the spatial indexing has con-
sidered mostly static data and consequently focused on an
efficient support of queries. This is exemplified by prop-
erties of one of the most predominant spatial indexes, the
R-tree [4, 11], which supports efficient queries, however the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

update performance has been recognized as inadequate [16].
Furthermore, the amount of the available main-memory

in practical settings is continuously increasing, however this
fact is largely ignored in the research of disk-based index
structures. An efficient index structure should be able to
use any allocated amount of the main-memory to maximize
performance [1]. However, as demonstrated later, the ex-
isting approaches that do use the main-memory suffer from
the drawbacks of requiring some minimum amount of the
main-memory to work, or the opposite, not being able to use
all the available main-memory. Moreover, those approaches
do not constitute a systematic study. Finally, it should be
noted that a generic way to utilize the main-memory—the
LRU cache—is not effective when the goal is to speed up
updates [6].

The role of the main-memory is further emphasized by
an opportunity to relax persistency requirements in scenar-
ios with high update ratios. Even in an event of a system
crash, current positions of indexed objects will be received
after a relatively short time interval. Thus in a setting of re-
laxed persistency, each update does not need to be logged to
the disk immediately on arrival and can be handled purely
in the main-memory at that time. This can greatly increase
the update throughput of an index. However, there is lit-
tle existing research discussing such setting, with exceptions
being [10, 28].

Finally, indexing only the current state of moving object
positions is rarely a whole solution. More often, an efficient
support of past-state queries that does not penalize current-
state queries and updates too much is equally important.
The research in this area has started to appear only very
recently [19] and the state of the art is not satisfactory.

To summarize we make the following observations:

1. Processing high rates of updates on index structures
is essential to support new applications that rely on
tracking of continuously changing real-world phenom-
ena.

2. Persistency requirements in frequent update scenar-
ios can often be relaxed to assume relaxed persistency
only.

3. The main-memory is increasingly available in large
quantities and taking into account the full memory
hierarchy becomes essential.

4. Past-state queries are potentially as much important
as current-state queries.

1617

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

Figure 1: TPR-tree successors

We argue that to date these issues have been mostly ignored
or addressed inadequately in the database research.

The first three of the above observations were started to
be addressed in the RR-tree [6]. This work demonstrates
promising preliminary results as well as raises a number of
immediate research problems to explore. In the following,
we outline these problems as well as longer-term research
issues.

The rest of this paper is organized as follows. Section 2
broadly overviews the related work in the proposed research
areas. Section 3 outlines main contributions of the RR-tree
that provide background for future research. Then Section 4
discusses future research directions. Finally, Section 5 con-
cludes.

2. RELATED WORK
Techniques for the bulk-loading of data structures are rele-

vant for the problem of efficient updates. Notably, Choubey
et al. [7] have proposed algorithms that aim to perform many
insertions on an existing index structure in one go. However,
these algorithms are not directly applicable in our setting
because they focus on the search performance of the result-
ing structure, whereas the performance of the bulk-loading
itself is of a secondary importance. In addition, they do not
consider deletions.

An approach to dealing with frequent updates of contin-
uous variables such as positions is to model the positions as
linear functions of time instead of standard constant func-
tions of time. When representing a position of an object by
a linear function as, e.g., proposed by Wolfson et al. [26], the
modeled position stays close to the actual for longer periods
of time. It has been shown that, for a range of reason-
able accuracy thresholds, the number of updates needed to
maintain positions of vehicles is reduced by almost a factor
of three [25]. The use of such linear functions on the top
of the R-tree was first proposed by Šaltenis et al. [22] and
subsequently explored by others (Figure 1).

The problem of frequent updates in the R-tree was re-
cently tackled by Lee et al. [14], who present the most com-
petitive proposal for bottom-up updates of R-trees. Such ap-
proach avoids potentially expensive top-down traversals and
exploits the update locality of continuous variables. How-
ever, an auxiliary data structure, required in order to access
the bottom level, uses a significant amount of space and is
disk based. Because of this, updates still take at least 3

I/Os. Additionally, the proposal includes a main-memory
data structure that compactly stores a summary of the tree.
This structure helps save I/O in case of non-local updates,
but uses a fixed amount of the main-memory.

Arge has proposed a general tree buffering technique that
associates a buffer with every non-leaf node [2]. Operations
are then not performed immediately, but are placed in the
buffers. Once a buffer is full, its contents are moved to the
buffers at the next level in its subtree. The main-memory is
used for the buffer emptying. A drawback of this approach
is that it cannot answer queries immediately. Arge et al.
have also applied the technique to R-trees [3], and Van den
Bercken and Seeger [8] have explored similar techniques.

Lin and Su propose the LGU algorithm that combines
buffer-tree and bottom-up techniques [16]. They attach
disk-based insertion buffers to the non-leaf nodes and per-
form insertions top-down in batches. To avoid multiple par-
tial traversals for a single deletion, deletions are gathered
in a main-memory deletion buffer that is applied lazily and
directly to the leaf-level nodes. A main-memory based leaf-
level access table facilitates this. A major drawback of this
approach is that the size of the main-memory based leaf-
level access table is the same order of magnitude as the size
of indexed data. For example, for R-trees, the size of this
access table is one third of the size of the index.

A recent approach by Xiong and Aref [27] significantly
lowers an average update cost by performing deletions in
the main-memory. However, insertions are performed using
an ordinary R-tree algorithm, so there are no further per-
formance gains for these. A main-memory data structure,
called update memo, is responsible for keeping information
about deletions as well as about the latest and obsolete data
entries.

The AGILE method [9] addresses an issue of balancing
conflicting performance requirements for update and query
operations in a more general setting of information filtering.
This approach proposes augmenting existing data structures
in a way that selectively increases the update performance at
a cost of losing the query accuracy. This proposal mentions
implementing AGILE on the top of the R-tree as a part of
their future work. The outline of such implementation sug-
gests having buffers on internal nodes that store frequently
updated objects. A detailed comparison with our approach
is impossible at this time as AGILE has not actually been
implemented on top of the R-tree yet.

Most of these approaches assume strong persistency re-
quirements. A notable exception is LUGrid [28], which
adopts an approach that is closely related to the RR-tree,
assuming a grid as an underlying data structure. While
conceptually simple, this approach cannot be directly com-
pared to R-tree-based indexes, as the R-tree and the grid
have different application areas with the most notable dif-
ference being that grids are not suited for indexing objects
with extents.

In a context of B-trees, the main-memory utilization for
an LRU buffer has been recognized as an inadequate so-
lution and LRU-based smart buffering schemes have been
proposed instead [20, 21]. However, these do not offer order
of magnitude improvements over a simple LRU scheme.

In a survey, Graefe [10] presents a general overview of
techniques for speeding up B-tree updates. A number of
presented techniques, such as buffering of insertions, buffer-
ing in separate structures and batching of updates are di-

1618

rectly relevant to our setting. Moreover, a concept of non-
logged B-trees discusses a possibility of relaxing persistency
requirements that is very similar to our setting. Finally,
an idea of differential indexes is presented by Graefe, where
all incoming updates are gathered in a separate data struc-
ture. Other results in this area include [18, 23]. However,
to the best of our knowledge, no existing work considers a
possibility of partial emptying of the main-memory index.

An efficient main-memory use has been most explored in
the context of main-memory databases, where all data re-
sides in the main-memory. While in traditional DBMSs,
main-memory page buffers are organized as simple collec-
tions of pages, main-memory databases employ more elab-
orate index structures to optimize the main-memory access
and the CPU performance [15, 24].

To be efficient, such structures are usually made cache-
conscious, i.e., they take into account parameters of up-
per levels of the memory hierarchy. In the same way as
data is transferred in blocks between the disk and the main-
memory, data is also transferred in blocks of cache-line size
between the main-memory and the CPU cache. Alterna-
tively, main-memory index structures can be made cache-
oblivious, so that they perform well in various different mem-
ory hierarchies without taking a cache line size into account
as an explicit parameter.

Most of the previous research on the main-memory index-
ing assumes that a main cost of index operations is due to
CPU cache misses and fails to account for a CPU compu-
tation cost of the indexing operations. Only recently [12]
has it been recognized that the CPU cost is as important
as memory hierarchy properties in reasoning about main-
memory index performance. This issue becomes even more
important with indexes that perform complex calculations
in their operations, such as the TPR-tree [22].

The research is lacking in the area of an efficient past-
state query support that still enables efficient current-state
queries and updates. To date, the only significant proposal
which addresses these problems is the RPPF -tree [19]. How-
ever, it does not address the issue of efficient main-memory
use.

3. THE RR-TREE
Below we will present general principles of the RR-tree

with a small example and selected performance results. For
a complete treatment, the reader is referred to [6].

The RR-tree builds on the principles of the R-tree [4, 11].
It is a height balanced tree with indexed data stored in leaf
nodes. Non-leaf nodes contain entries pointing to the next
level nodes and associated Minimum Bounding Rectangles
(MBRs) that spatially contain data in the subtree below.

The RR-tree consists of two main structures: a main-
memory R-tree, termed operation buffer and a disk-based
R-tree. The disk R-tree is a standard R-tree. In contrast,
the operation buffer contains operations that have not been
yet performed on the disk R-tree. It collects all incoming
update operations, both insertions and deletions, thus its
leaf node entries are augmented with an additional flag to
differentiate them apart. In contrast to some of the related
work [2, 3, 14, 16, 27], there is no lower or upper bound for
an amount of the main-memory that should be allocated to
the operation buffer.

In addition, some incoming operations are allowed to fully
complete in the main-memory without involving the disk

tree at all. If an incoming update finds an existing “oppo-
site” operation in the buffer that concerns the same object,
both are simply deleted in a so-called annihilation. If the
size of the operation buffer is being increased, more and more
operations are completed this way, up to a point where all
data fits in the main-memory. Then the RR-tree operates
purely as a main-memory R-tree. At the other extreme, if
no main-memory is available, the RR-tree behaves mostly as
a regular disk R-tree.

To answer queries, both the disk-based tree and the op-
eration buffer are queried. This is one of reasons why the
operation buffer is organized as a main-memory index. This
approach is related to Arge’s Buffer Tree [2], with a fun-
damental difference that the Buffer Tree uses disk-based
buffers, thus working in a full-persistency setting, at a cost
of performance, as well as not supporting online queries.

When the operation buffer fills all the available main-
memory, some or all of its operations have to be executed
on the disk tree in a so-called buffer emptying. This is done
by clustering its operations into groups and performing the
largest groups (or, as a generalization, groups larger than
some threshold value k) in bulk on the disk. Disk I/O costs
are significantly reduced compared to an approach of exe-
cuting updates one-by-one, because if k operations from the
buffer need to access the same disk tree node, disk accesses
are shared between them: only one I/O is performed instead
of k. On the other hand, when operations are performed in
bulk, the disk tree update algorithms are more complicated
than the R-tree ones, because the number of various cases
that must be handled increases.

3.1 Example
Figure 2 shows a small example where a number of update

operations is performed, causing a buffer emptying. The
leftmost part of the figure shows positions of eight objects
stored in an R-tree. The four empty circles (a1, a2, c2, j) rep-
resent insertions that are in the buffer or the future updates
that will be discussed in the following. The light gray cir-
cles (a, c) represent positions that are in the disk tree, but
that have corresponding deletion entries in the buffer. In
the example, the object a moves from a to a1 to a2, and the
object c moves from c to c1 to c2. We assume a maximum
fan-out of 3 and a minimum fan-out of 2 for the trees. The
buffer has room for 5 entries and the operation threshold is
4.

Note that the initial state of the tree holds two positions,
c and c1, for the object c. This happened after a part of
the buffer containing an insertion of c1 was emptied, while
a deletion of c was left in the buffer. Next, a and c update
their positions, resulting in the following sequence of up-
dates: del〈a1〉, ins〈a2〉, del〈c1〉, ins〈c2〉. The deletion of a1

and a corresponding insertion already in the buffer annihi-
late each other. The remaining three operations are inserted
into the buffer.

An insertion of a new object j triggers a buffer emptying.
Operations are divided into two groups: one for the node X
and one for the node Y . Note that, due to the overlap be-
tween MBRs of X and Y , del〈c〉 and del〈c1〉 are copied into
both groups. Because the group for the node Y has fewer
than k elements, its entries are put back into the buffer. The
operations in the other group proceed down the tree to the
nodes K and L, as shown in the figure. Note that in the
node L, del〈c1〉 is unsuccessful, but del〈c〉 is successful and

1619

ab
K

cdL
X

fc1

M

h
g

NY

a1

e
c2

j

a2

K L

a b c d c1 e f g h

M N

X Y

d〈a〉,i〈a1〉,d〈c〉 d〈a1〉,i〈a2〉
d〈c1〉,i〈c2〉

d〈a〉,i〈a2〉,d〈c〉,d〈c1〉,i〈c2〉

K L

a b c d c1 e f g h

M N

X Y

a2 b d c1 e f g h

K M N

i〈j〉

d〈a〉,i〈a2〉,d〈c〉,d〈c1〉 d〈c〉,d〈c1〉,i〈c2〉

d〈c1〉,i〈c2〉,i〈j〉

d〈a〉,i〈a2〉 d〈c〉,d〈c1〉

b

K
d

fc1

M

h
g

N

e
c2

j

a2

Figure 2: Performing a set of operations on the RR-tree

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

I/
O

p
er

o
p

er
a
ti

o
n

Part of memory allocated to LRU

Queries per update 1:1
Queries per update 1:10000

Figure 3: I/O performance relation to varying main-
memory divisions

its copy is removed from the buffer.
The performed operations result in a number of structural

changes to the disk tree. Node L is rendered underfull and is
merged with the node K. As a result, the node X contains
only one child; thus, X is replaced by its child, reducing the
height of the subtree, which is then inserted into the node Y ,
to one. Finally, the single-entry root is removed, finishing
the buffer emptying. At last, the operation that caused
the buffer emptying, ins〈j〉, is inserted into the buffer. The
resulting disk tree and the buffer are shown at the rightmost
end of the figure.

Note that the demonstrated shrinking (and growing) of
subtrees is very rare for realistic node sizes and workloads
that mostly contain deletion-insertion pairs.

3.2 Experimental Results
To demonstrate the viability of the RR-tree approach, se-

lected experimental results from [6] are presented. First,
Figure 3 confirms that the operation buffering is a more ef-
fective way to use the main-memory than a write-back LRU
cache in a setting with frequent updates. Furthermore, even
in a setting with an equal number of updates and queries,
a combination of operation buffer and an LRU cache is the
most effective way of using the main-memory.

Figure 4 compares the RR-tree with a plain write-back
LRU-cached R-tree and the RUM-tree [27] in settings with
varying amounts of the main-memory. Since the RUM-tree
itself uses a fixed amount of the main-memory, it has also
been extended with an LRU buffer to be able to utilize a
larger amount of the main-memory. Based on the results,
we conclude that the RR-tree is more effective at utilizing

0

0.5

1

1.5

2

2.5

3

3.5

100 1000 10000 100000

I/
O

p
er

o
p

er
a
ti

o
n

Buffer size in objects

R-tree
RUM-tree

RR-tree

Figure 4: Scalability with respect to available main-
memory

any amount of the main-memory available. The rightmost
point on the graph corresponds to a situation where all data
fit in the main-memory. Because of an operation buffer or
a write-back LRU cache, all three trees operate as main-
memory trees in this setting.

4. RESEARCH DIRECTIONS
In this section we will discuss future research directions.

We start with concrete issues directly arising from the RR-
tree research in Section 4.1.1. Then we discuss a generaliza-
tion of operation buffering techniques to a broader class of
tree indexes in Section 4.1.2. Section 4.2 takes a deeper look
at main-memory issues and finally Section 4.3 addresses an
efficient current and past state indexing.

4.1 Efficient Usage of the Main-Memory for
Disk-Based Indexes

4.1.1 RR-Tree Research Challenges
There is a number of immediate challenges that have to

be addressed for the RR-tree to fully unleash its potential.
First, the cost model in [6] has to be improved to become
simpler, solvable analytically and more precise. The “back
of the envelope” main-memory buffer dynamics calculations
in [6] can be replaced with a much more precise Markov
chain based model (random walk).

Further, currently proposed techniques to set operation
group size thresholds are not flexible enough. Intuitively the
thresholds should be larger at upper tree levels (i.e. equal
to the size of the largest group in the buffer) and smaller at

1620

the lower tree levels (i.e. it is almost universally unprofitable
to execute groups containing only one operation). Thresh-
olds below the root level are further complicated by a total
cost of returning operations back to the buffer. While sim-
ple experimental trials show that dynamic thresholds are
indeed profitable, the question of cost-modelling them and
coming up with universal threshold determination heuristics
remains open.

An interesting alternative that avoids the threshold issue
altogether is to replace the single main-memory tree with
individual variable-size buffers for all intermediate nodes of
the disk tree. It is expected that this scenario would simplify
the cost model greatly, at an expense of complicating RR-
tree algorithms.

4.1.2 Generalization
Although the operation buffering techniques of the RR-

tree work with R-trees, they do not depend on any core R-
tree property. Thus, generalizing the techniques to a grow
and post class of trees [17] is natural.

In particular, we plan to explore the B-tree in the con-
text of the GiST [13] framework. We plan to develop a B-
tree-index-based indexing technique that relies on a main-
memory B-tree to buffer incoming operations and partial
buffer emptying to selectively execute them on the disk B-
tree. If the RR-tree results [6] are indicative, we expect this
technique to outperform related work by one or two orders
of magnitude in terms of disk I/O. Notable research ques-
tions here include modelling of a buffer state and develop-
ment of an optimal analytically-grounded buffer emptying
technique.

While the results of this research would be applicable in
a much broader area than spatial indexing, it would still
further the main goal of improving the spatial continuously-
changing data indexing by enabling an use of B-tree-based
spatial indexes, e.g. with space filling curve indexing tech-
niques.

4.2 Main-Memory Indexing of Continuously
Changing Data

An operation buffer structure in the main-memory should
have good main-memory index properties, especially with
large amounts of the main-memory. Techniques of making
index structures cache-conscious will be investigated. More-
over, since cache line sizes are usually substantially smaller
than disk block sizes, main-memory index trees tend to have
nodes of a much smaller fan-out than disk-based ones. That,
in turn, results in taller trees, meaning that heuristic-based
insertion algorithms of multi-dimensional index structures
designed for index trees of just a few levels may not work
well. Thus the heuristics will have to be adjusted to per-
form well in such cases. Moreover, as an alternative to
cache-conscious data structures, cache-oblivious ones could
be explored.

Finally, we plan to evaluate a CPU cost of complex in-
dexing techniques, in particular the ones employing linear
approximations [22]. Such techniques enable maintaining
accuracy requirements with fewer updates at a cost of being
CPU-intensive. This trade-off will have to be evaluated and
perhaps will lead to different design decisions when develop-
ing such structures. In particular, we plan to look at how to
simplify the heuristics-based index algorithms to make them
less CPU-intensive, perhaps by using a simpler structure as

a base index, for example, the grid. Another research topic
of interest is an investigation of bottom-up techniques in this
setting.

4.3 Efficient Current-State Indexing with an
Historical Queries Support

Finally we plan to extend indexing techniques with an effi-
cient past-state query support that still enables efficient up-
dates and current-state queries and effectively uses the avail-
able main-memory. An “obvious” solution of having two
separate indexes—one for past and one for current state—
suffers from significant drawbacks of a data communication
overhead between the indexes and possible object trajectory
discontinuities.

The only significant proposal which addresses these prob-
lems is the RPPF -tree [19]. However, the proposed solution
is complex and also does not address the challenge of effi-
cient usage of the available main-memory.

Some principles of cache-oblivious data structures (e.g. [5])
are indirectly relevant to this research. Of particular interest
is the transformation of tree nodes between different mem-
ory hierarchy levels that have different native node (disk
page, cache line, etc.) sizes. This can potentially be applied
to transform and move tree nodes between the trees that
are at different memory hierarchy levels (for example, from
the main-memory to the disk) and thus have different node
sizes.

To conclude, the goal of this research direction is to de-
velop an efficient spatiotemporal indexing solution that is
able to use the main-memory effectively (as a special case,
it could be an efficient main-memory-only structure) and is
able to handle a high rate of incoming updates, while having
an adequate query performance, both of the current and the
past state.

5. CONCLUSION
Inspired by a development of database applications, such

as LBS, which monitor large amounts of continuously chang-
ing data, we present the need to efficiently support a large
number of updates in index structures. Moreover, we ob-
serve that traditional persistency requirements can be weak-
ened if relaxed persistency is enough, enabling a significantly
higher update throughput. Furthermore, the main-memory
is playing an increasingly important role in disk-based in-
dexing, and effects of the whole memory hierarchy must be
considered. Finally, the current state indexing is inadequate
and a robust index should be able to answer both past and
current state queries efficiently, while still supporting effi-
cient updates.

We maintain that these issues have not been adequately
addressed in literature and we have started addressing them
in the RR-tree [6], built on the main ideas of operation
buffering and the group update.

Based on promising preliminary results from the RR-tree
research, the following future research directions are pro-
posed. First, to address issues immediately raised by the
RR-tree, we propose to develop a cost model and heuris-
tics to direct dynamic operation group size thresholds. The
next step is to generalize the proposed techniques for the
family of grow and post trees, particularly for the B-tree.
Moreover, main-memory index structures should be inves-
tigated to consider not only the memory hierarchy, but the
CPU cost as well, especially if linear predictions or other

1621

CPU-intensive algorithms are used. Finally, we propose to
develop an index that satisfies a need for applications to have
an efficient past state query support, while still supporting
efficient current state queries and updates.

6. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.

Wood. DBMSs on a modern processor: Where does
time go? VLDB J., pp. 266–277, 1999.

[2] L. Arge. The buffer tree: A new technique for optimal
I/O-algorithms (extended abstract). In Proc. WADS,
Volume 955 of Lecture Notes in Computer Science, pp.
334–345. Springer Verlag, 1995.

[3] L. Arge, K. Hinrichs, J. Vahrenhold, and J. S. Vitter.
Efficient bulk operations on dynamic R-trees.
Algorithmica, 33(1):104–128, 2002.

[4] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.
Seeger. The R*-tree: an efficient and robust access
method for points and rectangles. Proc. ACM
SIGMOD, 19(2):322–331, 1990.

[5] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious B-trees. In Proc. IEEE FOCS p.399.
Washington DC, USA, 2000.

[6] L. Biveinis, S. Šaltenis, and C. S. Jensen.
Main-memory operation buffering for efficient R-tree
update. In Proc. VLDB ’07, 2007.

[7] R. Choubey, L. Chen, and E. A. Rundensteiner. GBI:
A generalized R-tree bulk-insertion strategy. In Proc.
SSD ’99, pp. 91–108. Springer, 1999.

[8] J. Van den Bercken and B. Seeger. An evaluation of
generic bulk loading techniques. In Proc. VLDB ’01,
pp. 461–470, 2001.

[9] J.-P. Dittrich, P. M. Fischer, and D. Kossmann.
AGILE: adaptive indexing for context-aware
information filters. In Proc SIGMOD ’05, 2005.

[10] G. Graefe. B-tree indexes for high update rates.
SIGMOD Rec., 35(1):39–44, 2006.

[11] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proc. ACM SIGMOD,
14(2):47–57, 1984.

[12] R. A. Hankins and J. M. Patel. Effect of node size on
the performance of cache-conscious B+-trees.
SIGMETRICS Perform. Eval. Rev., 31(1):283–294,
2003.

[13] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer.
Generalized search trees for database systems. In
Proc. VLDB ’95, pp. 562–573, 1995.

[14] M.-L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L.
Teo. Supporting frequent updates in R-trees: A
bottom-up approach. In Proc. VLDB ’03, pp.
608–619, 2003.

[15] T. J. Lehman and M. J. Carey. A study of index
structures for main memory database management
systems. In Proc. VLDB ’86, pp. 294–303, 1986.

[16] B. Lin and J. Su. Handling frequent updates of moving
objects. In Proc. ACM CIKM, pp. 493–500. 2005.

[17] D. B. Lomet. Grow and post index trees: Roles,
techniques and future potential. In Proc. SSD ’91, pp.
183–206. 1991.

[18] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Inf.,

33(4):351–385, 1996.

[19] M. Pelanis, S. Šaltenis, and C. S. Jensen. Indexing the
past, present, and anticipated future positions of
moving objects. ACM Trans. Database Syst.,
31(1):255–298, 2006.

[20] G. M. Sacco. Index access with a finite buffer. In Proc.
VLDB ’87, pp. 301–309, 1987.

[21] G. M. Sacco and M. Schkolnick. Buffer management
in relational database systems. ACM Trans. Database
Syst., 11(4):473–498, 1986.

[22] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the positions of continuously moving
objects. In Proc7 SIGMOD ’00, pp. 331–342, 2000.

[23] D. G. Severance and G. M. Lohman. Differential files:
their application to the maintenance of large
databases. ACM Trans. Database Syst., 1(3):256–267,
1976.

[24] In-memory databases: The catalyst behind real-time
trading systems. TimesTen white paper,
http://www.timesten.com, 2005.

[25] A. Čivilis, C. S. Jensen, and S. Pakalnis. Techniques
for efficient road-network-based tracking of moving
objects. IEEE TKDE, 17(5): 698–712, 2005.

[26] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang.
Moving objects databases: Issues and solutions. In
Proc. IEEE SSDBM, pp. 111–122, 1998.

[27] X. Xiong and W. G. Aref. R-trees with update
memos. In Proc . ICDE ’06, p. 22, 2006.

[28] X. Xiong, M. F. Mokbel, and W. G. Aref. LUGrid:
Update-tolerant grid-based indexing for moving
objects. In Proc. MDM, p. 13, 2006.

1622

