
XML-Document-Filtering Automaton

Panu Silvasti
Helsinki University of Technology

psilvast@cs.hut.fi
Supervisors: Seppo Sippu and Eljas Soisalon-Soininen

ABSTRACT
In a publish-subscribe system based on filtering of XML
documents subscribers specify their interests with profiles
expressed in the XPath language. The system processes a
stream of XML documents and delivers to subscribers a no-
tification or content of documents that match the profiles.
We present a new XML-document-filtering algorithm that
is based on the classic Aho–Corasick pattern-matching au-
tomaton. The automaton has a size linear in the sum of the
sizes of the filters. We assume that the XML documents all
conform to a given DTD; our algorithm utilizes the DTD
in the preprocessing phase of the automaton to prune out
descendant axes (//) and wildcards (∗) from the XPath fil-
ters. The XPath subset currently supported consists of lin-
ear XPath expressions without predicates. In the case of a
683 MB protein-sequence database, we obtained a through-
put of 18.8 MB/sec for 50 000 filters and 17.0 MB/sec for
500 000 filters, using a SAX parser with a throughput of
27 MB/sec.

1. INTRODUCTION
A publish-subscribe system consists of one or more pub-

lishers and many subscribers, where the publishers provide
a stream of documents and the subscribers specify their in-
terests with filters that match some of those documents.
Publish-subscribe systems have emerged in everyday use;
examples include Google alerts and stock-information deliv-
ery by Yahoo.com. Designing efficient techniques for filtering
of XML documents has received much attention in the re-
search of data-stream management [2, 4, 6, 8, 9, 10, 11], and
XML-filtering techniques have been applied in areas such as
routing real-time air traffic control data [13].

In a publish-subscribe system based on XML filtering, the
profiles are usually specified by filters written in the XPath
language. The system processes the stream of XML docu-
ments and delivers to subscribers a notification or the con-
tent of those documents that match the filters. The number
of interested subscribers and their stored profiles can be very

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

large, thousands or even millions. In this case the scalability
of the system is critical.

The primary problem we address in this paper is defined
as the filtering problem : given a set of XPath expressions,
identify those expressions that match a given XML docu-
ment. We study the filtering problem for linear XPath ex-
pressions. Linear XPath expressions do not have branches
in their query trees and are described by the following gram-
mar:

P := /E | //E | PP

E := label | *

where label denotes an XML-element label.
Several approaches to XML filtering use a finite automa-

ton as a basis of the filtering algorithm. Diao et al. [6] report
an XPath-query-evaluation method, called YFilter that ap-
plies nondeterministic finite automata (NFAs). YFilter is an
improvement upon its predecessor, called Xfilter [2], which
uses a separate NFA for each filter but executes them simul-
taneously in processing the input document. YFilter uses a
single NFA that combines the effect of the individual NFAs
and achieves considerable improvements in performance by
prefix-sharing, that is, by merging states that correspond to
common prefixes in different query paths.

The algorithm of Green et al. [8] is based on a single de-
terministic finite automaton (DFA). The state explosion of
the DFA is tackled by constructing the DFA lazily. In other
words, the DFA is constructed runtime, on demand: if in
processing the stream of XML documents, no next state
is defined on the current input symbol, the corresponding
new state will be computed and the process is continued at
this new state. While exponential in the worst case, this
approach works extremely well in many cases, when the in-
coming XML documents obey a schema or DTD that is non-
recursive or contains only simple cycles (a cycle is simple
if its nodes do not occur in other cycles). The lazy DFA
can process only linear XPath expressions. Onizuka [11]
present another DFA-based algorithm for XML filtering; this
algorithm can also process branching XPath expressions (or
“twig filters”). Onizuka also proposes several techniques for
improving the memory usage of the DFA.

Our approach to XML filtering is also based on the use
of a DFA. The basis of our algorithm is the classic Aho–
Corasick [1] pattern-matching automaton (PMA). The PMA
is constructed from the set of filters in the preprocessing
phase of the algorithm. The memory usage of our algorithm
is linear in the sum of sizes of the filters. The idea of using
Aho–Corasick for XML document filtering is presented in
article [14].

1666

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this wor k owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212)869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-306-8/08/08

In the preprocessing phase we utilize the DTD or schema
of the XML documents in optimizing the XPath queries,
when such a DTD exists. Our optimization method, called
filter pruning, was inspired by the query-pruning technique
by Fernández and Suciu [7], and it takes a linear XPath
expression possibly containing “//” and “∗’, and outputs a
set of keywords that can be matched by using the standard
pattern-matching algorithm, such as Aho–Corasick, when
the input stream for the algorithm consists of SAX-parser
events. Our current implementation of the algorithm can
filter XML documents that conform to a nonrecursive DTD.

Our preliminary experimental results show that our al-
gorithm provides good throughput for filtering, regardless
of the number of filters. In the case of a 683 MB protein-
sequence database [15], we obtained a throughput of 18.8 MB/sec
for 50 000 filters and 17.0 MB/sec for 500 000 filters, using
a SAX parser with a throughput of 27 MB/sec on the in-
put document. Benchmarking with YFilter also produces
good results, our PMA being 10.7 to 26.5 times faster than
YFilter.

Our paper is organized as follows. In Sec. 2 we present our
algorithm, and in Sec. 3 experimental results of the memory
consumption and filtering speed, as well as limited bench-
marking with YFilter. In Sec. 4 we present conclusions and
in Sec. 5 we describe our upcoming experiments and some
ideas for improving the filtering algorithm even further.

2. THE ALGORITHM
The standard Aho–Corasick PMA is a recognizer for a

finite set of nonempty keywords w1 ∪ . . . ∪ wn over an in-
put alphabet Σ [1]. In our setting, the alphabet Σ contains
the set of elements occurring in the DTD plus an additional
symbol # denoting the root root element of any XML doc-
ument. The keywords wi are derived from the XPath filters
provided by the subscribers. Each keyword may come from
one or more such filter. We modify the standard PMA so
that, upon recognition of a keyword, the PMA is able to
report exactly which of the filters match.

An XPath filter containing no “//” or “∗” gives rise to
a single keyword w in Σ∗. For example, the filters P1 =
/a/b/f and P2 = /a/c/f are represented as keywords w1 =
#abf and w2 = #acf . Here XML element names are repre-
sented as unique lexical symbols in our alphabet Σ, rather
than as strings of characters.

Our goal is to express an XPath filter containing “//” or
“∗” as a disjunction of keywords. This can be done by utiliz-
ing the DTD to “prune out” the operators “//” or “∗”. We
call this technique filter pruning, motivated by the query-
pruning technique presented by Fernández and Suciu [7].

Given a DTD or schema, let G be its graph schema [3],
that is, the directed graph whose set of nodes is the set
of XML elements in the DTD and that contains a directed
edge from node a to node b if and only if b is a child element
of a. There is a distinguished node, representing the root
element of an XML document, that has no incoming edges.
G cannot be cyclic, since our current implementation does
not yet allow recursive DTDs. Figure 1 shows a sample DTD
and its graph schema.

Now each keyword defines a path in G. A linear XPath
filter consists of successive keywords w1, . . . , wk separated
by “//” or “∗”. For example, for the filter P = //a//f/i

the successive keywords are w1 = a and w2 = fi. The idea
is to use G to “fill in the gap” between any two succes-

#

a

b

c d

f

e

i j

k

Figure 1: A DTD and its graph schema.

XPath filter Keywords
/a/b/f #abf

//b/f bf

/a//f #abf ∪#acf ∪#adef

//c/f//k cfik ∪ cfjk

/ ∗ /b #ab

/a/∗ #ab ∪#ac ∪#ad

/a/ ∗ /f #abf ∪#acf

/ ∗ / ∗ / ∗ /∗ #abfi ∪#abfj ∪#acfi ∪#acfj ∪#adef

Table 1: XPath filters and corresponding pruned
keywords. “#” symbol in a keyword denotes the
XML documents root element.

sive keywords wi, wi+1 by finding out what actual element
strings xi+1 can appear between wi and wi+1 in paths of G

and by replacing the keyword pair by a set of single key-
words wixi+1wi+1. Table 1 shows some XPath filters and
the corresponding sets of keywords that denote paths in G.

In the preprocessing phase, our filter-pruning algorithm
takes XPath filters possibly containing “//” and “∗’, and
outputs a set of keywords. The Aho–Corasick PMA is con-
structed for the set of all keywords thus obtained. Figure 2
shows the PMA for matching keywords w1 = #abf, w2 =
bf, w3 = #acf and w4 = #adef . Each keyword w is given
a unique identifier, id(w), and the output set associated with
each state contains the identifiers of keywords recognized at
that state.

The input stream for the PMA consists of tokens pro-
duced by a SAX parser. When the SAX parser encounters
a start element tag, the current state of the automaton is
pushed onto a stack, and the symbol corresponding to the
element name is consumed by the automaton. The automa-
ton changes its state according to Aho–Corasick’s goto and
fail functions, and keeps track of the matching filters. On
each end element tag, the current state of the automaton is
set to the state on top of the stack, and the stack is popped.
When the input document has been processed, the algorithm
reports the filters that match the input the document.

Our algorithm uses the following data structures, where

1667

0

other
1

#

5

b

2
a

3

b

7c

11

d

4f

{1,2}

6
f

{2}

8f
{3}

12e 13f

{4}

Figure 2: The Aho–Corasick automaton for match-
ing keywords w1 = #abf, w2 = bf, w3 = #acf and
w4 = #adef . The dashed lines denote fail arcs. There
is also a fail arc to the initial state 0 from states 1,
2, 5, 6, 7, 8, 11, 12 and 13.

#words is the number of distinct keywords, #filters is the
number of filters and #states is the number of states.

goto[1 . . .#states]: an array representing the goto function
of the Aho–Corasick PMA. For state q, the entry goto[q] is
a hash table of pairs (a, q′) indexed by input symbols a. We
use Java’s library implementation of the hashtable.

fail[1 . . .#states]: an array representing the fail function
of the PMA.

filters[1 . . .#words] is an array where filters[id(w)] con-
tains the numbers of those filters that contain the given
keyword w.

result[1 . . .#filters] is a boolean array where result[i] is
true if i’th filter matches the input document.

output visited[1 . . .#states] is a boolean array where
output visited[s] is true if state s has been visited during the
processing of an input document. When state s has been
visited, we set output visited[s] to true and do not scan the
same output set again for the input document.

The operating cycle of the algorithm is presented in Al-
gorithm 1. The input for the procedure are the tokens pro-
duced by the SAX parser.

Algorithm 1 The operating cycle of the PMA

if inputToken is startDocument then
initialize()
stack.push(state)
sym← #
state← goto(state, sym)

else if inputToken is endDocument then
print result()

else if inputToken is startElement(elName) then
stack.push(state)
sym← symbol table(elName)
while goto(state, sym) = fail do

state← fail(state)
end while
state← goto(state, sym)
report output(state)

else if inputToken is endElement then
state← stack.pop()

end if

Algorithm 2 Procedure report output(state).

if output visited[state] = false then
for each id in output[state] do

for each i in filters[id] do
result[i]← true

end for
end for
output visited[state]← true

end if

Algorithm 3 Procedure initialize.

state← initial state

for i = 1 to #states do
output visited[i]← false

end for
for i = 1 to #filters do

result[i]← false

end for

3. EXPERIMENTAL RESULTS
We implemented the algorithm in Java, and tested it on

a 10 MB input document that is part of a protein-sequence
database of obtained from the Database Research Group of
the University of Washington [15]. The data has a maxi-
mum nesting depth of 7, average depth of 5.15, and the pro-
tein DTD contains 66 elements. Figure 3 shows the graph
schema of the protein DTD. The filter workload was gen-
erated using the XPath query generator described by Diao
et al. [6]. The workload of linear XPath expressions was
parameterized by the following parameters: prob(//), the
probability of “//” being the operator at a location step,
and prob(∗), the probability of wildcard “∗” occurring at a
location step. The filter workload does not contain predi-
cates; it may contain duplicate filters, which is most likely
the case with real-world filters. Figure 4 shows part of a
workload. With these settings more than 90 % of the filters
matched the input document.

The tests were run on a Dell PowerEdge SC430 server
with 2.8 GHz Pentium 4 processor, 1 GB of main memory,
and 1 MB of on-chip-cache. The computer was running the
Debian Linux 2.6.18 operating system with the Sun Java
virtual machine 1.6.0 03 installed. In the tests the input
document was read from the disk, but the overhead of the
disk operations should be fairly small. The disk-read speed
of the test hardware is more than 50 MB/sec. The through-
put of the Java JAXP SAX parser (run in non-validating
mode) on the input document was 21.4 MB/sec. For each
measurement, the results are averages of five independent
test runs.

The linear size of the PMA with respect to the size of the
filters was evident in our experiments, as shown in Figure 5.
Figures 6 and 7 show the size of the PMA with respect
to prob(∗) and prob(//). The measurements indicate that
when prob(∗) increases, the size of the PMA grows. The
obvious reason for this is that the filter-pruning algorithm
produces growing numbers of possible paths (and keywords
for the PMA) when there are more wildcard operators in
the XPath queries. An example of such a filter is the last on
in Table 1. However, the size of the PMA is not so sensitive
to prob(//).

The number of distinct keywords in the PMA for 500 000

1668

ProteinDatabase

Database ProteinEntry

header

proteinorganismreference

comment

genetics

complex

function

classification keywords

feature

summary sequence

uid

accession created_date seq-rev_date txt-rev_date

name alt-namecontainssource commonformal variety

note

refinfo contents accinfo

authors citation volume month year pages title description xrefs

author anonymousgroup xref

db

statusmol-typeseq-spec exp-source

gene

map-positiongenome mobile-element gene-origin genetic-code start-codon introns intron-status other-productpathway

superfamily keyword

feature-type

lengthtype

Figure 3: The graph schema of the protein DTD. The DTD has a maximum nesting depth of 7, and it
contains 66 elements. The protein data has an average depth of 5.15.

/ProteinDatabase/ProteinEntry/summary/status

//uid

/*/ProteinEntry/feature/note

/ProteinDatabase/ProteinEntry/function/pathway

/*/ProteinEntry/*/accinfo//seq-spec

/ProteinDatabase//keyword

/ProteinDatabase/ProteinEntry//superfamily

/*/ProteinEntry/organism//formal

/ProteinDatabase/*/*/note

/ProteinDatabase/ProteinEntry/organism/variety

//ProteinDatabase/ProteinEntry/*/*

/*/*/*

Figure 4: Part of filter workload generated with
prob(//) = prob(∗) = 0.2.

filters having prob(//) = prob(∗) = 0.2 is 327 and the num-
ber of states is 352. The PMA has not very many states even
for a large number of filters. The most memory is consumed
by the auxiliary data structure filters.

Figure 8 shows the throughput of filtering calculated from
the time spent on filtering the single 10 MB input document.
The throughput decreases from 14.2 MB/sec for 50 000 fil-
ters to 11.6 MB/sec for 500 000 filters. The reason for de-
creased throughput is that processing also includes reporting
matching filters, which is dependent of the number of filters.
The time complexity of Aho–Corasick is not entirely linear
in the length of the input, but O(x log |Σ| + k), where x is
the size of the input, |Σ| the size of the alphabet and k the
number of matched patterns.

The throughput of filtering was also measured with the
whole protein-sequence database of 683 MB as the input
document. In this case the parser throughput was 27 MB/sec
and the filtering throughput was 18.8 MB/sec for 50 000 fil-
ters and 17.0 MB/sec for 500 000 filters. The throughput
is better for bigger input documents, since reporting of the
matched filters, the initialization of the PMA (Algorithm 3)
and the warm-up phase of the SAX parser are amortized by
the length of the input document.

Table 2 shows absolute matching times for the 10 MB
input document, comparing our algorithm with Yfilter [6].
For our algorithm, the preprocessing phase of the PMA was
excluded from the filtering time, but the time spent on pars-
ing the input document is included. For Yfilter, the parsing
time is excluded from the filtering time. The results show
that the speed of filtering of the PMA is nearly indepen-
dent of the number of filters and of the number of “//”
and “∗” operators in the filters. The filtering speed is even
slightly better with 100 000 filters than with 10 000 filters.

PMA YFilter
XPath expressions 10k 100k 10k 100k
prob(∗) = 0.2, prob(//) = 0.2 0.79 0.72 8.52 16.72
prob(∗) = 0.2, prob(//) = 0.4 0.80 0.72 9.43 19.09
prob(∗) = 0.2, prob(//) = 0.6 0.81 0.74 8.67 18.91
prob(∗) = 0.4, prob(//) = 0.2 0.65 0.72 8.89 17.53
prob(∗) = 0.6, prob(//) = 0.2 0.67 0.75 7.55 15.14

Table 2: Filtering time (in seconds) of the 10 MB
input document compared with YFilter. With these
settings more than 90 % of the filters matched the
input document.

This behaviour happens only with a relatively small num-
ber of filters, and, as Figure 8 shows, the filtering speed
(or throughput) will decrease when the number of filters in-
creases beyond 100 000. The results of Table 2 also indicate
that with current settings the filtering speed of the PMA is
better than that of YFilter.

Green et al. [8] have measured the filtering speed of their
lazy DFA algorithm and YFilter with the protein-sequence
database. They also generated the filter workload with YFil-
ter’s generator having prob(∗) = prob(//) = 0.1. With these
settings and 100 000 filters the lazy DFA was 8.3 times
faster than YFilter. With nearly same settings (prob(∗) =
prob(//) = 0.2) our PMA is 23.2 times faster than YFilter.

4. CONCLUSIONS
We have presented a new algorithm for XML document

filtering. The algorithm is based on the Aho–Corasick [1]
pattern-matching automaton and it has a size linear in the
sum of the sizes of the pruned filters. Our current implemen-
tation of the algorithm supports a subset of XPath filters,
namely linear XPath expressions without predicates. Filter-
ing of XML documents that conform to a nonrecursive DTD
is currently supported. The algorithm utilizes the DTD to
prune the subscriber-provided filters.

Our experiments with a protein-sequence database show
that our algorithm provides good throughput for XML fil-
tering. Benchmarking with YFilter [6] also produces good
results, our algorithm being 10.7 to 26.5 times faster than
YFilter. The lazy DFA [8] was not compared directly with
our algorithm, but experiments with YFilter indicate that
our algorithm could be 2.8 times faster than the lazy DFA
on the protein-sequence database and with 100 000 filters.
However, the lazy DFA is more general than our algorithm;
it does not need the DTD, it can also process recursive XML
documents, and it supports value-based predicates in filters.

1669

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 50 100 150 200 250 300 350 400 450 500

S
iz

e
[M

b]

Filter count [1k XPath expressions]

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
iz

e
[M

b]

Prob(*)

Figure 5: Size of the PMA in relation to the number
of filters. prob(//) = prob(∗) = 0.2.

Figure 6: Size of the PMA in relation to prob(∗).
prob(//) = 0.2 and the number of filters is 100k.

 70

 75

 80

 85

 90

 95

 100

 105

 110

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
iz

e
[M

b]

Prob(//)

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t [

M
b/

se
c]

Filter count [1k XPath expressions]

Figure 7: Size of the PMA in relation to prob(//).
prob(∗) = 0.2 and the number of filters is 100k.

Figure 8: Throughput of filtering in relation to the
number of filters. prob(//) = prob(∗) = 0.2. The results
are averages of five independent test runs. Error bars
denote standard deviation.

1670

5. FUTURE WORK
In order to obtain more convincing results it is necessary

to experiment with several other DTDs and datasets avail-
able [15], besides the protein-sequence database. Also syn-
thetic XML data could be used. Green et al. [8] used input
documents as big as with a size of hundreds of megabytes
in experimenting with the lazy DFA. However, the exper-
iments performed with e.g. YFilter [6] and FiST [10] have
been done with smaller documents (with a size of tens of
kilobytes). We feel that in our upcoming experiments the
throughput should also be measured by filtering a continu-
ous stream of many smaller XML documents rather than one
big document of many megabytes. As our preliminary ex-
periments indicate, the throughput is expected to decrease,
when the document size decreases.

For some DTDs the filter pruning can produce theoreti-
cally an exponential number of keywords for some XPath fil-
ters. A simple example is a DTD having elements a1, . . . , ak, ak+1,
b1, . . . , bk, c1, . . . , ck, where bi and ci are children of ai, and
ai+1 is a child of both bi and ci, i = 1, . . . , k. Pruning the
filter /a1//ak+1 would result in a filter of size Θ(k2k), when
the DTD is of size O(k). In another submitted paper, we
have presented a method that has a polynomial upper bound
on the size of the pruned filters (and the resulting PMA)
with respect to the size of the original, subscriber-provided
filters. Our future plans include implementation and experi-
mentation of this algorithm. We also believe that processing
of XML documents conforming to a recursive DTD can be
handled with this approach.

The XPath subset considered here can be extended with
filters having value-based predicates of the simple forms
/a/b[text()=’value’] and /a/b[@attr=’value’]. The evalua-
tion of such predicates can be done with the same PMA as
the structural analysis by encoding the predicates as a part
of the PMA so that the characters contained in the pred-
icates give rise to state transitions of the PMA. The time
complexity of this method is independent of the number of
filters.

We have also developed a method for evaluating more
complex value-based predicates. The predicates of a filter
are evaluated whenever the structure part matches. This
method is very similar to the method of Diao et al. [6]; its
time complexity is dependent on the number of filters.

Extending the XPath subset with branching XPath filters
(or “twig filters”) [6, 10, 11] is a challenging problem, be-
cause automata-based filtering algorithms such as ours are
designed to find only the first matching occurrences of the
filters.

Diao et al. [6] have measured the maintenance cost of
YFilter, that is, the cost of adding and deleting filters. Our
aim is to address this question as well in the future.

Salmela et al. [12] have experimented with string-matching
algorithms that are faster than the Aho–Corasick PMA for
matching multiple string patterns. Their algorithms match
overlapping q-grams instead of single characters, so that, for
example, the word “pony” might be transformed into the
2-gram string “po-on-ny”, before giving it as input to the
pattern-matching algorithm. These new pattern-matching
algorithms provide better preprocessing and matching times,
and require less memory than the Aho–Corasick PMA. A
related idea is considered by Dharmapurikar et al. [5], who
modify the Aho-Corasick PMA to consider multiple charac-
ters at a time for content filtering. These approaches might

also prove useful in XML filtering.

6. REFERENCES
[1] A. V. Aho and M. J. Corasick. Efficient string

matching: an aid to bibliographic search. Commun.
ACM, 18(6):333–340, 1975.

[2] M. Altinel and M. J. Franklin. Efficient filtering of
XML documents for selective dissemination of
information. In VLDB, pages 53–64, 2000.

[3] P. Buneman, S. B. Davidson, M. F. Fernandez, and
D. Suciu. Adding structure to unstructured data. In
ICDT ’97: Proceedings of the 6th International
Conference on Database Theory, pages 336–350,
London, UK, 1997. Springer-Verlag.

[4] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi.
Efficient filtering of XML documents with XPath
expressions. The VLDB Journal, 11(4):354–379, 2002.

[5] S. Dharmapurikar and J. Lockwood. Fast and scalable
pattern matching for content filtering. In ANCS ’05:
Proceedings of the 2005 symposium on Architecture for
networking and communications systems, pages
183–192, New York, NY, USA, 2005. ACM Press.

[6] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path sharing and predicate evaluation for
high-performance XML filtering. ACM Trans.
Database Syst., 28(4):467–516, 2003.

[7] M. F. Fernandez and D. Suciu. Optimizing regular
path expressions using graph schemas. In ICDE, pages
14–23, 1998.

[8] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and
D. Suciu. Processing XML streams with deterministic
automata and stream indexes. ACM Trans. Database
Syst., 29(4):752–788, 2004.

[9] A. K. Gupta and D. Suciu. Stream processing of
XPath queries with predicates. In SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 419–430,
New York, NY, USA, 2003. ACM Press.

[10] J. Kwon, P. Rao, B. Moon, and S. Lee. FiST: scalable
XML document filtering by sequencing twig patterns.
In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 217–228.
VLDB Endowment, 2005.

[11] M. Onizuka. Light-weight xPath processing of XML
stream with deterministic automata. In CIKM ’03:
Proceedings of the twelfth international conference on
Information and knowledge management, pages
342–349, New York, NY, USA, 2003. ACM Press.

[12] L. Salmela, J. Tarhio, and J. Kytöjoki. Multipattern
string matching with q-grams. J. Exp. Algorithmics,
11:1.1, 2006.

[13] A. C. Snoeren, K. Conley, and D. K. Gifford.
Mesh-based content routing using XML. In SOSP ’01:
Proceedings of the eighteenth ACM symposium on
Operating systems principles, pages 160–173, New
York, NY, USA, 2001. ACM Press.

[14] E. Soisalon-Soininen and T. Ylönen. On Classification
of Strings. In SPIRE, pages 321–330, 2004.

[15] D. Suciu. XMLData Repository – The Database
Research Group of University of Washington, 2006.
http:

//www.cs.washington.edu/research/xmldatasets/.

1671

