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ABSTRACT

Traditional equi-join relies solely on string equality compar-
isons to perform joins. However, in scenarios such as ad-
hoc data analysis in spreadsheets, users increasingly need
to join tables whose join-columns are from the same se-
mantic domain but use different textual representations, for
which transformations are needed before equi-join can be
performed. We developed Auto-Join, a system that can au-
tomatically search over a rich space of operators to compose
a transformation program, whose execution makes input
tables equi-join-able. We developed an optimal sampling
strategy that allows Auto-Join to scale to large datasets ef-
ficiently, while ensuring joins succeed with high probability.
Our evaluation using real test cases collected from both pub-
lic web tables and proprietary enterprise tables shows that
the proposed system performs the desired transformation
joins efficiently and with high quality.

1. INTRODUCTION

Join performs the powerful operation of combining records
from two tables together that is of key importance to data
analysis. It is extensively used in relational databases, as
well as data analysis tools such as Power Query for Excel ,
Informatica , etc.

Most existing commercial systems only support equi-join
through exact equality comparisons. While equi-join works
well in well-curated settings such as data warehousing, it
falls short for a rich variety of data that is less curated.
For example, analysts today increasingly need to perform
one-off, ad-hoc analysis by joining datasets obtained from
different sources, whose key columns are often formatted
differently. Requiring support staffs to perform extensive
ETL in such scenarios is often too slow and expensive. In
fact, customer surveys from a Microsoft data preparation
system suggest that automating join is a key feature re-
quested by end-users. We believe that solving the auto-join
problem would be an important step towards fulfilling the
broad vision of self-service data preparation , a market
that Gartner estimates to be worth over $1 billion by 2019.
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President Popular Vote President Approval Rating

Barack Obama 52.93% Obama, Barack(1961-) 47.0

George W.Bush = 47.87% Bush, George W.(1946-) 494
Bill Clinton 43.01% Clinton, Bill(1946-) 55.1
George H. W. Bush 53.37% Bush, George H. W.(1924-) 60.9
Ronald Reagan " 50.75% Reagan, Ronald(1911- 2004) 52.8

Figure 1: (left): US presidents and popular votes.
(right): US presidents and job approval rating. The
right table uses last-name, comma, first-name, with

(year-of-birth and year-of-death).

Suhela Chowdhury  Principal schowdhury@forsyth.k12.ga.us Big Creek
Maureen Paluzzi  Instructor mpaluzzi@forsyth.k12.ga.us Brookwood
Missy Payne Instructor mipayne@forsyth.k12.ga.us Chattahoo
Carolyn Craddock Admin ccraddock@forsyth.k12.ga.us Chestatee
Kelly Moore Instructor | kmoore@forsyth.k12.ga.us Princeville |
Figure 2: (left): Name and job titles in school.

(right): Email and school districts. Email can be gen-
erated from name in the left by concatenating first-
initials, last-names, and ’@forsynth.k12.ga.us’.

ATU Manager Alias Sub-ATU Segment

France.01 V-JOHH France.01.MIX SMB
France.03 JOFORD United States.01.Government Major
United States.01 RICHT United States.01.Education AM EPG
United States.02 MICHM United States.03.PS-LRG TM SMS&P
United States.03 ANDYW United States.04.Retail AM SMS&P
Figure 3: (left): ATU name (for area team unit).

(right): Sub-ATU names organized under ATU.

ID Session Name Full Session Name Month

UBAX01 AXUG General Session [UBAX01] AXUG General Session Mar
UBAX02 How?2 Session [UBAX02] How2 Session Apr
UBAX03 Master Planning Session [UBAXO03] Master Planning Session  Apr
UBAX04 Financial Reporting [UBAX04] Financial Reporting Oct
UBAX05 Master Planning Session, [UBAXO05] Master Planning Session  Dec
Figure 4: (left): ID and session name in separate

fields. (right): Concatenated full session name.

Figure [1| shows such an example. An analyst has a ta-
ble on the left in her spreadsheets about US presidents and
popular votes they won in elections. She uses table search
engines (such as Google Web Tables [2| or Microsoft Power
Query ) to find an additional table on the right, that has
information about their job approval rating. Now she wants
to join these two tables so that she can correlate them. How-
ever, the name columns of the two tables use different rep-
resentations — the one on the left uses first-name followed
by last-name, while the one on the right uses last-name,
comma, first-name, with additional year-of-birth informa-
tion in parenthesis. Today’s popular data analysis software
such as Power Query for Excel and Informatica only
support equi-join and would fail to work on these two tables.
The analyst would have to either write her own transfor-



mation program so that the name representations become
consistent for equi—joirﬂ or ask technology support staffs to
perform such a transformation.

Figure[2|shows another case with two real tables collected
from the web, where the table on the left uses teachers’ full
names, while the table on the right only has email addresses
as the key column. Note that in this case because email
aliases can be generated by taking first-initials and concate-
nating with last names, there exists a clear join relationship
between the two tables. Equi-join, however, would again fail
to work in this case.

Scenarios like these are increasingly common in ad-hoc
data analysis, especially when analysts need to bring in data
from different sources, such as public datasets discovered
from table search engines.

It is worth noting that this join problem exists not only
for public data sets like web tables, but also in enterprise
data tables such as Excel files. Figure [3|shows a pair of real
spreadsheet tables from a corpus of Excel files crawled in a
large IT company. The ATU (area-team-unit) column on the
left can be joined with Sub-ATU on the right by taking the
first two components of Sub-ATU, and then equi-join with
ATU in a hierarchical N:1 manner. Figure E| shows another
example from enterprise spreadsheets. The two tables can-
not be equi-joined directly. However, if we concatenate id
and session name in the left table with appropriate brack-
ets, the two tables can then be equi-joined.

Joining tables with different representations is a ubiqui-
tous problem. Simple syntactic transformations (e.g., sub-
string, split, concatenation) can often be applied to make
equi-join possible. However, existing commercial systems
can only perform equi-joins, and users often face two main
challenges: (1) For big tables with a large number of rows
and columns, manually identifying corresponding rows and
columns from two tables that can join using transformations
is non-trivial (i.e., manually searching sub-strings in large
spreadsheets is slow and does not always produce hits). (2)
End-users (e.g., Excel users) may not be able to program
transformations to enable equi-join. In this work, our goal
is to automate the discovery of syntactic transformations
needed such that two tables with different representations
can be joined with the click of a button. Note that because
such transformations are driven by end-user tools, a signif-
icant technical challenge is to make such transformation-
based join very efficient and at interactive speed.

Existing solutions: No existing solutions can solve this
problem well for end-users.

Program transformations for equi-join. A straightforward
approach is to ask users to provide transformation programs
(either manually or with the help of example-driven tools
like FlashFill [15] and Foofah [18]). These programs can
then be used to produce derived columns, with which tables
can be equi-joined. This is inconvenient for users — for large
tables with many columns and millions of rows, the first
task of identifying rows and columns from two tables with
joinable values alone is non-trivial, as users often have to
pick random sub-strings from one table to search for hits in
the other, which is slow and often fails to produce matches.
The need to find the “best” transformation in the context

'Such behavior is observed in customer surveys and logs —
for certain datasets users perform sequences of transforma-
tions in order to enable equi-join.
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of joins further complicates the problem. We aim to auto-
mate this process so that users can join two unordered sets
of rows with the click of a button — in comparison, we no
longer require users to manually specify matching pairs of
input/output examples as in FlashFill-like systems [15].

Fuzzy join. Since rows that join under syntactic trans-
formations typically have substantial substring overlaps, an
alternative approach is to use fuzzy join [8]. The challenge is
that fuzzy join has a wide range of parameters (tokenization,
distance-function, thresholds, etc.) that need to be config-
ured appropriately to work well. The ideal configuration
can vary significantly from case to case, and is difficult for
users to determine. For instance, for Figure [I} one should
tokenize by words, but that tokenization will fail completely
for Figure [2| which requires g-gram tokenization.

Furthermore, even when fuzzy join is configured perfectly,
it may still produce incorrect results due to its fuzzy and
imprecise nature. For example, in Figure [} if we tokenize
by words, and want to join Ronald Reagan and Reagan,
Ronald(1911-2004), then the threshold for Jaccard distance
should be at least 0.66 (this pair has a distance of 1.0 — 3
0.66). However, using a threshold of 0.66 will also join
George W. Bush with Bush, George H. W.(1924-) (where
the distance is 1.0 — 2 = 0.4), which is incorrect. The root
cause here is that fuzzy join uses an imprecise representa-
tion and a simple threshold-based decision-boundary that
is difficult to be always correct. On the other hand, there
are many cases where regularity of structures in data values
exists (e.g. Figure , and for those cases using consis-
tent transformations for equi-join complements fuzzy-join
by overcoming its shortcomings mentioned above.

Substring Matching [23]. Warren and Tompa [23| pro-
posed a technique to translate schema between database
tables, which is applicable to joins and is the only pub-
lished technique that we are aware of that can produce
transformation-based joins given two tables. However, the
types of transformations they considered are rather limited
(e.g., no string-split and component based indexing), and as
a result their approach is not expressive enough to handle
many real join tasks we encountered. As we will show in
our experiments, their approach can handle less than 30%
of the join cases we collected.

Our contributions. We make the following contribu-
tions in Auto-Join, which is currently being integrated into
a Microsoft data preparation system.

e We propose to automate transformation-based joins using
a novel Auto-Join algorithm. Our technique leverages sub-
string indexes to efficiently identify joinable row pairs, from
which we automatically learn minimum-complexity programs
whose execution can lead to equi-joins.

e In order to scale Auto-Join to large tables while still main-
taining interactive speed, we design a sampling scheme that
minimizes the number of rows sampled, which has a formal
guarantee of success with high probability.

e We are the first to compile a benchmark of real cases
requiring transformation joins. We label each case using
fine-grained ground truth and make the benchmark pub-
licly available. Our evaluation suggests that the Auto-Join
produces joins with higher quality than existing approaches.

2. PROBLEM OVERVIEW

Our objective is to automate transformation-joins by gen-
erating the transformations that are needed for equi-joins.



Specifically, we want to transform columns of one table via
a sequence of string-based syntactic operations, such that
the derived columns can be equi-joined with another table.
Example [1] gives such an example.

ExXAMPLE 1. In Figure [1} there exists a transformation
whose application on the right table can lead to equi-joining
with the left table. We illustrate the sequence of opera-
tions in the transformation using the first row {[Ubama,
Barack(1961—)}7 [47.0}} as an example.

1. Input row X with two elements:
{[obama, Barack(1961-)], [47.0]}

2. Take the first item X|[0], SPLIT by “(”, produce Y:
{[Oba.ma, Barack], [1961-)}}

3. Take the first item Y[0], SPLIT by “,”, produce Z:
{[obama], | Barack]}

4. Takes SUBSTRING [1:] from Z[1], produce T":
[Barack]

5. CONCAT T, a constant string “” and Z[0], produce
[Barack Obama]

This derived value can then be equi-joined with the first
row in the left table in Figure[I| It can be verified that the
same transformation can also be applied on other rows in
the right table to equi-join with the President column of
the left table.

As discussed earlier, identifying joinable rows from large
tables alone is non-trivial, not to mention programming trans-
formations. We would like to automate this problem, which
we call the transformation join problem.

DEFINITION 1. Transformation Join Problem: Given two
tables Ts, T;, and a predefined set of operators €2, find a
transformation P = 01-02-03-.. .0y, using operators o; € €,
such that P(Ts) can equi-join with key columns of T}.

Here each transformation P is composed of a sequence
of operators in €2, where the output of one operator is the
input of the next. For the purpose of transformation-join,
we have identified a small set of operators that are sufficient
for almost all join scenarios we encountered.

Q = {SpLIT, CONCAT, SUBSTRING, CONSTANT, SELECTK}
(1)

This set of operators €2 can be expanded to handle addi-
tional requirements as needed.

In this definition, because we require P(T) to equi-join
with key columns of T}, the types of join we consider are
implicitly constrained to be 1:1 join (key:key) and N:1 join
(foreign-key:key). This constraint is important because it
ensures that the joins we automatically generate are likely
to be useful; relaxing this constraint often leads to N:M joins
that are false positives (e.g., join by taking three random
characters from two columns of values).

Also observe that we apply transformations on one table
Ts in order to equi-join with another table T;. We refer to
the table Ts as the source table, and T; as the target table,
respectively.

Because in our problem, we are only given two tables with
no prior knowledge of which table is the source and which
is the target, we try to generate transformations in both
directions. In Example[I]for instance, the right table is used
as the source table. Changing direction in this case does not
generate a transformation-join because year-of-birth is not
present in the left table. Advanced handling of composite
columns will be discussed the full version of this paper [24].

Table 1: Notations for analyzing g-gram matches.

Symbol  Description

Ts, Ty  Ts is the source table, T; is the target table.
Rs, Rt A row in Ts and T}, respectively

Cs,C: A column in T, and T}, respectively

Qq4(v)  The g-grams of a string value v

Q4(Cs)  The multi-set of all g-grams in Cj

Q4(C:)  The multi-set of all g-grams in C}

Solution Overview. Our system has three main steps.

Step 1: Find Joinable Row Pairs. In our problem, we
only take two tables as input, without knowing which row
from T should join with which row from T;. Generating
transformations without such knowledge would be exceed-
ingly slow, due to the quadratic combinations of rows in two
tables that can potentially join.

So in the first stage, we attempt to “guess” the pairs of
rows from the two tables that can potentially join. We lever-
age the observation that unique g-grams are indicative of
possible join relationships (e.g. Obama), and develop an effi-
cient search algorithm for joinable row pairs.

Step 2: Learn Transformation. Once we obtain enough
row pairs that can potentially join, we learn a transforma-
tion that uses rows from T as input and generates output
that can equi-join with key columns of 7. In Example|1|for
instance, the desired transformation uses {[Obama, Barack
(1961—)], [47.0] } as input, and produces [Barack Obama]
as output to join with the key column of the left table.
Since there likely exists many possible transformations for
one particular input/output row pair, we use multiple ex-
amples to reduce the space of feasible transformations, and
then pick the one with minimum complexity that likely best
generalizes the observed examples. This learning process
is repeated many times using different combinations of row
pairs, and the transformation that joins the largest fraction
of rows in T} is produced as the result.

Step 3: Constrained Fuzzy Join. In certain cases
such as tables on the web, the input tables may have in-
consistent value representations or dirty values. For ex-
ample, in Figure [2] the second row of the right table uses
mipayne@forsyth.k12.ga.us, instead of first-initial concate-
nated by last-name like other rows (which would produce
mpayne@forsyth.k12.ga.us). Thus, transformations may
miss this joinable row pair. As an additional step to im-
prove recall, we develop a mechanism that automatically
finds a fuzzy-join with optimized configuration to maximize
additional rows to join, without breaking the join cardinal-
ity constraints (i.e., 1:1 or N:1). This improves the coverage
of joins on dirty tables, and is of independent interest for the
important problem of automatically optimizing fuzzy join.

3. AUTO-JOIN BY TRANSFORMATIONS

In this section we discuss the first two steps of Auto-Join:
(1) finding joinable row pairs, and (2) learn transformations
that generalize the examples observed in these row pairs.

3.1 Finding Joinable Row Pairs

Let P be the desired transformation, such that P(Ts) can
equi-join with T} as in Definition [I] Pairs of rows that join
under this transformation P is termed as joinable row pair.
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For instance, the first row from the left and right table in
Figure[I]is a joinable row pair.

Since users do not provide joinable row pair as input to
our system (which is cumbersome to provide especially in
large tables), in this section we explain our approach for
“guessing” joinable row pairs candidates from the two table
through unique ¢-grams matches. Note that finding such
row pairs is important, because trying the quadratic num-
ber of row combinations exhaustively is too computationally
expensive to be interactive.

We leverage the observation that the set of operations (2
considered for transformation-join (Equation tend to pre-
serve local g-gram. A g-gram (7] of a string v is a substring
of v with ¢ consecutive characters. A complete g-gram to-
kenization of v, denoted as Qq(v), is the set of all possible
g-grams of v. For example:

Qs(Database) = {Datab, ataba, tabas, abase}
g-grams have been widely used for string similarity and lan-
guage modeling, among other applications.

Operations required for transformation-joins in 2 all tend
to preserve sequences of local g-grams, which is the key prop-
erty we exploit to find joinable row pairs.

3.1.1 I-to-1 ¢-Gram Match

Intuitively, if we can find a unique g-gram that only occurs
once in Ts and T3, then this pair of rows is very likely to be
a joinable row pair (e.g., ¢g-gram Barack in Figure . We
start by discussing such 1-to-1 matches, and show why they
are likely joinable row pairs using a probabilistic argument.

It is known that g-grams in texts generally follows power-
law model [6] [12]. We conducted a similar experiment on a
large table corpus with over 100M web tables and observed
similar power law results [24]. For such power law distri-
butions, the probability mass function for a g-gram whose
frequency ranks at position k£ among all g-grams, denoted
by pq(k), is typically modeled as [6} {12]

i

k) = 2

pq(k) Zi\f:l Z%q ©)

Here k is the rank of a g-gram by frequency, N is the to-

tal number of g-grams, and s, is a constant for a given q.

These power-law distributions empirically fit well with real
data [6].

Given a pair of tables whose g-grams are randomly drawn
from such a power-law distribution, we can show that it
is extremely unlikely that a g-gram appears exactly once
in both tables by chance (for reasonably large tables, e.g.,
N > 100).

PROPOSITION 1. Given two columns Cs and Cy from
tables Ts and T; respectively, each with N gq-grams from an
alphabet of size |X| that follow the power-law distribution
above. The probability that a qg-gram appears exactly once in

both Cs and C; by chance is bounded from above by
|24

> (00— p k) k) 3)
k=1

A proof this result can be found in the full version of this

k°4q

paper [24].

For ¢ = 6, N = 100, |X| = 52, and using the s, defined
in [6], the probability of any 6-gram appearing exactly once
by chance on both columns is very small (< 0.00017). This
quantity will in fact grow exponentially small for larger NV
(typical tables have at least thousands g-grams).
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Given this result, we can conclude that if we do encounter
unique 1-to-1 g-gram matches from two tables, they are un-
likely coincidence but the result of certain relationships.

Let Qq4(C) be the multi-set of all the g-grams of distinct
values E| in column C; and let Fy(g,C) be the number of
occurrences of a g-gram g € Qq(C). Let vs and v be the
cell value at row R column C in T, and row R; column
Ct in T}, respectively. We define 1-to-1 g-gram matches as
follows.

DEFINITION 2. Let g be a g-gram with g € Qq(vs) and
g € Qq(v). If Fy(g,Cs) = 1 and F,(g,C:) = 1, then g is
a I-to-1 q-gram match between row pair Rs and R: with
respect to the pair of column Cs and C.

As we have discussed, matches that are 1-to-1 g-gram are
likely joinable row pairs.

ExAMPLE 2. Given two tables in Figure the 6-gram
Barack appears only once in both tables, and the corre-
sponding rows in these two tables are indeed a joinable row
pair. The same is true for g-grams like chowdury in Figure
France.01 in Figure [3]and UBAXO1 in Figure[d] etc.

As the reader will see in the experimental results (Sec-
tion , using 1-to-1 g-gram matches as joining row pairs
leads to a precision of 95.6% in a real-world benchmark.

3.1.2 General n-to-m q-Gram Match

(-gram matches that are 1-to-1 are desirable special cases.
In general we have n-to-m g-gram matches.

DEFINITION 3. Let g be a g-gram with F(g,Cs) =n >1
and F(g,C¢) =m > 1, then g is a n-to-m g-gram match for
corresponding rows with respect to the pair of column Cj
and C;.

Compared to 1-to-1 g-gram matches that almost always
identify a joinable row pair, the probability that a row pair
identified by n-to-m matches is truly joinable is roughly ﬁ
We use ﬁ to quantify the “goodness” of matches.

Note that the ideal g to identify n-to-m matches with small
n and m can vary significantly in different cases.

ExXAMPLE 3. For the tables in Figure|l] if we use 6-grams
for value Barack Obama, we get an ideal 1-to-1 match of
Barack between the first rows of these two tables. However,
if we also use 6-gram for the second row George W. Bush,
then the best we could generate is a 2-to-2 match using the
6-gram George, between the second and fourth rows of these
two tables, respectively.

For George W. Bush, the ideal ¢ should be 9, since the
9-gram George W. could produce a 1-to-1 match. However,
if we use 9-grams for the first row Barack Obama, we would
fail to generate any g-gram match.

The ideal g is not known a priori and needs to be searched.

3.1.3  Efficient Search of ¢-Gram Matches

A simple algorithm for finding ideal g-gram matches (with
small n and m) would conceptually operate as follows: (1)
for every cell from one table, (2) for all possible settings
of g, (3) for each g-gram in the resulting tokenization, (4)
iterate through all values in the this table to find the num-
ber of ¢-gram matches, denoted as n; (5) iterate through
all values in the other table to find the number of g-gram

2We remove possible duplicates in T, columns since they are
potentially foreign keys.



matches, denoted as m. The resulting match can be declared
as an n-to-m match. This is clearly inefficient and would fail
to make the desired join interactive. In this section we de-
scribe efficient techniques we use to search for unique g-gram
matches.

First, we build a suffiz array indez [20] for every column
in the source table and each column of the target table, so
that instead of using step (4) and (5) above, we can search
with logarithmic complexity. A suffix array index is built
by creating a sorted array of the suffixes of all values in a
column. Given a query ¢-gram, matches can be found by
using binary search over the sorted array and looking for
prefixes of the suffixes that match the query exactly. The
complexity of probing a g-gram in the index is O(logS),
where S is the number of unique suffixes. We probe each
g-gram once in both tables, to find the number of matches n
and m. An example of using suffix array index can be found
in the full version of this paper [|24].

Using suffix array significantly improves search efficiency
for a given g-gram. However, for a cell value v, we still need
to test all possible g-grams. To efficiently find the best g¢-
gram (with the highest # score), we express the optimal
g-gram g* as the best prefix of all possible suffixes of v.

g = arg max — (4)
Vg EPREFIXES (u),u€SUFFIXES (v) TVTTY
Where n = F(g,Cs) > 0 and m = F(g,C:) > 0 are the
number of matches in column Cs and C, respectively. We
leverage a monotonicity property described below.

PROPOSITION 2. Let g& be a prefiz of a suffix u with length
q. As the length increases by 1 and gl extends at the end,
the ﬁ score of the longer prefiz g3t is monotonically non-
increasing, or F(gith,Cs) < F(g2,Cs) and F(g2t,Cy) <
F(g2,C).

A proof of this can be found in the full paper [24].

Given Proposition |2 for every suffix u we can find gﬁ*
by looking for the longest prefix with matches in C} using
binary search. The global optimal g* can be found by taking
the gZ* with the highest score for all u.

ExXAMPLE 4. In Figure [1} for the value George W. Bush,
we iterate through all its suffixes (e.g., “George W. Bush”,
“eorge W. Bush”, etc.). For each suffix, we test their pre-
fixes using binary search to find the one with the best score
(the longest prefix with match), from which we select the
best prefix. In this case the prefix “George W.” for the first
suffix is the best g*.

With this 1-to-1 match, we can determine that the first
rows from the left /right tables in Figure [1] are joinable row
pairs. Similarly the second rows from the two tables are also
joinable row pairs, etc.

Because of the use of suffix array indexes and binary
search, our overall search complexity is O(]v]|log |v|log.S),
which is orders of magnitude more efficient than the simple
method discussed at the beginning of this section.

3.1.4 Putting it together: Find Joinable Rows

Algorithm [I] gives the high-level pseudo code for this step
of finding joinable row pairs. For each pair of Cs and C, we
iterate through distinct value v € Cs, and use OPTIMALQ-
GRAM (the procedure discussed above) to efficiently find the
best g-gram match and its associated row pairs. Finally, row
pairs linked by g-gram matches are grouped by Cs and Ct,

Algorithm 1 Find joinable row pairs.

1: function FINDJOINABLEROWPAIRS(T, T%)

M {}

for all Cs; € Ts do

for all C; € KEYCoLUMNS(T%) do
for all v € Cs do

{g*, score, Rs, Rt }<— OPTIMALQGRAM (v, Ct)
M U{(g*, score, Rs, R, Cs, Ct)}

8: return M, GRourBY(Cs, Ct), ORDERBY (score)

> g-gram matches

and ordered by their match scores. Details of this step can
be found in the full paper [24].

It is worth noting that we group row pairs by the column
pairs from which the matches are found. This is because
we want to produce consistent transformations on certain
columns Cs in Ts, so that the results can equi-join with
columns C} in T;. As such, matches found in different col-
umn pairs are good indications that they belong to different
transformation-join relationships, as illustrated by the fol-
lowing example.

EXAMPLE 5. In Figure [2] in addition to g-gram matches
between the columns Name and Email, there is a g-gram
match for Princ, which matches Principal in the first row
in the Title column from the left table, and Princeville
in the last row in the School column from the right table.
However, matching row pairs produced between Title and
School can be used to produce a transformation-join rela-
tionship between these columns (if one exists), which should
be treated separately from one produced using matches be-
tween the Name and Email columns.

3.2 Transformation Learning

Given joinable row pairs {(Rs, R:)} produced for some
column pair Cs and C; from the previous step, we will now
generate transformation programs using these pairs as ex-
amples. Specifically, we can view row R, from T as input
to a transformation program, and R; projected on some key
columns K of T} as the desired output. If a transformation
can take R, as input and produce key columns K of Ry,
equi-join becomes possible.

Physical Operators. Recall that we generate transfor-
mations using the following set of physical operators, 2 =
{SpLIT, SELECTK, CONCAT, SUBSTRING, CONSTANT}. The
detailed interface of each operator is as follows.

string[] SprLiT(string v, string sep)

string SELECTK(string[] array, int k)

string ConcAT(string u, string v)

string CONSTANT(string v)

string SUBSTRING(string v, int start, int length,
Casing c)

Each operator is quite self-explanatory. SPLIT splits an
input string using separator; SELECTK selects the k-th ele-
ment from an array; CONCAT performs concatenation; CON-
STANT produces a constant string; and finally SUBSTRING
returns a substring from a starting index position (counting
forward or backward) for a fixed length, with appropriate
casing (lower case, upper case, title case, etc.).

In designing the operator space for Auto-Join, we referred
to the string transformation primitives defined in the spec
of the String class of C# and Java. The physical operators
we use are a core subset of the built-in String functions
of these languages. More discussions on the choice of the
operators can be found in a full version of the paper [24].
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Disambiguate Transformations by Examples. While
in Example [I] we illustrate transformations using one join-
able row pair for simplicity, in practice with only one row
pair there often exists multiple plausible transformations.

EXAMPLE 6. In Example [1] the input row denoted as X
has two elements {{Oba.ma, Barack(1961—)], [47.0] }, and
the target output is [Barack Obama]. In addition to the
transformation shown in that example, an alternative trans-
formations that can also produce this output is:

1. Take the first item X [0], SUBSTR[8:6], produce [Barack]

2. CONCAT with constant string “”, produce [Barack ]

3. CoNcAT with X[0], SUBSTR[0:5], to produce the target
output [Barack Ubama]

There exists many candidate transformations given only
one input/output example pair. However, most of trans-
formations would fail to generalize to other example pairs.
The observation here is that if we use multiple joinable row
pairs as input/output examples, the space of possible trans-
formations are significantly constrained, such that the in-
correct transformations will be pruned out. For example,
if we just add the second rows from Figure [1| as an exam-
ple pair, with {[Bush, George W. (1946—)]7 ELQ.ZL} } as the
input and [George W. Bush| as the output, then the trans-
formation discussed in Example |§| would no longer be valid,
as it would produce [eorge Bush,]7 which cannot be joined
with the keys in the other row.

The pruning power grows exponentially with the number
of examples (details of this analysis can be found in a full
version of this paper [24]). In practice we just need a few ex-
amples (3 or 4) to constrain the space of candidate programs
enough and generate the desired transformations.

Learning via Logical Operators. The learning prob-
lem now is to find consistent transformations for a small set
of input/output example row pairs. While the execution of
transformations can be decomposed into simple physical op-
erators defined in €, these are too fine-grained and do not
directly correspond to our logical view of the transformation
steps that humans would take. For instance, in Example
when we use {[Oba.ma, Barack(1961-)], [47.0]} as input
to produce [Barack Obama] as output, humans would natu-
rally view the required transformation as having three dis-
tinct logical steps — extract the component Barack, produce
a space “”, extract the component Obama. Note that these
logical operations correspond to a higher-level view that can
always translate into a combination of simple physical op-
erators — extracting the first of component Barack can be
implemented as SPLIT by “(” followed by SpLIT by “”, and
finally a SUBSTRING.

For the technical reason of learning programs from exam-
ples, by mimicking how humans rationalize transformations,
we introduce a set of higher-level logical operators ©, each
of which can be written as a sequence of physical operators.
O={CONSTANT, SUBSTR, SPLITSUBSTR, SPLITSPLITSUBSTR }

Unlike physical operators, each logical operator always
returns a string. Each logical operator can be viewed as
a “step” that contributes “progress” (partial output) to fi-
nal results. It is important that logical operators all re-
turn strings, so that during automatic program generation,
at each step we can decide which logical operator is more
promising based on “progress”. In comparison, physical op-
erators like SELECTK often need to be used in conjunction

Algorithm 2 Transformation learning by example.

Require: R={I',0'i € [k]}  © Input/output row pairs
1: function TRYLEARNTRANSFORM(R = {I',O'|i € [k]})

2: while true do

3: 0 <+ FINDNEXTBESTLOGICALOP(R)

4: P+ EXECUTEOPERATOR(0, I*, 0), Vi € [k
5: O} = LEFTREMAINDER(O', P¥), Vi € [k

6: 0, = TRYLEARNTRANSFORM({I?, O}]i € [k]})
7 if 6, = null then

8: continue

9: Ol = RIGHTREMAINDER(O?, P!, Vi € [K]

10: 0, = TRYLEARNTRANSFORM({I*, O}|i € [k]})
11: if 0, = null then

12: continue

13: 0.1left_child = 6,

14: 0.right_child = 0,

15: return 0 > current root node

with other operators like SUBSTR before producing partial
output, thus not directly amenable to automatic program
generation.

The exact specification of each logical operator can be
found in the full paper [24] in the interest of space. Here we
give an example of rewriting SPLITSUBSTR as a sequence of
four operators.

string SPLITSUBSTR(string[larray, int k, string sep,
int m, int start, int length, Casing c) :=
SuBSTRING (SELECTK(SPLIT(SELECTK (array,k), sep), m),
start, length, c)

Using logical operators, we can define the transformation
learning problem as follows.

DEFINITION 4. Transformation Learning: Given a set of
joinable row pairs R = {(R%, R{)|i € [m]} that can be viewed
as input/output examples, and a predefined set of logical
operations ©, find a transformation P = 61 - 02 - 03 - ... 0y,
0; € O, such that
(1) P is consistent with all examples in R, namely, Vi € [m],
P(RY) can produce the projection of R! on some key columns
K of T}, denoted as ITx (R});

(2) P has minimum-complexity, measured as the number
of logical operators used, among all other transformation
programs that are consistent with examples in R.

This definition is in spirit consistent with principles such
as Minimum Description Length [21] or Occam’s razor [13|
— if there are multiple candidate transformations that can
explain all given examples, we use the simplest one and that
is likely correct. For instance, the transformation in Exam-
ple [T requires 3 logical operators, and there exist no other
programs with lower complexity.

The learning problem can be viewed as a search problem
— each logical operator produces a partial output and has a
unit cost. Like shortest path algorithms, we want to reach
the goal state by producing the required output strings but
with the least cost.

This motivates a program learning algorithm that searches
for the best program by recursively expanding a partial
transformation program using the logical operator that yields
the most progress. This algorithm is outlined in Algorithm 2]
and works as follows. For the given set of input/output ex-
amples, it finds the best logical operator 6 that produces the
most progress towards the required output strings (which in
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this case is some key column of the output rows). We ex-
ecute the operator 6 and extract partial output produced
from the target output. We get what remains to the left
and right in the target output, denoted as O and OX, re-
spectively. This produces two new instances of the problem
with {I',Of|i € [k]} and {I’,O!i € [k]}, which have the
same structure as the original {I*,O'|i € [k]}. So we re-
curse and invoke TRYLEARNTRANSFORM on the two smaller
problems. The resulting operators, 6; and 6, if learned suc-
cessfully, are added as the left child and right child of 6,
until all remaining target output have been consumed. If at
certain level in the hierarchy TRYLEARNTRANSFORM fails
to find a consistent transformation, we can backtrack by us-
ing the next best logical operator, or terminate if enough
number of candidates have been tested.

In practice we impose a limit 7 on the number of logical
operators that can be used in a program P to bound the
search space (e.g., 7 = 16). We fine 7 = 10 to be sufficient
to produce transformations needed to join all real scenarios
we encountered. Setting a larger 7 however has little impact
on efficiency, because incorrect program generation paths
are terminated quickly for failing to produce new operators
consistent with the set of output examples.

We use the following example to illustrate this procedure.

ExaAMPLE 7. From the example in Figure |1} suppose the
first three rows from the right and left tables are given
as learning examples for input/output row pairs, respec-
tively. To learn transformation, suppose we use the first row
{[Dbama, Barack(1961—)], [47.0}} as input and [Barack
Obama] as output, and we use the remaining two rows as
validations. To generate the first logical operator for this
row pair, we search over operators in © with all possible
parameters (separators for SPLIT up to a certain length,
indexes for SUBSTRING that are valid for the given string,
etc.), and pick the logical operator that yields the most
progress. In this case it can be verified that the operator
with the most progress is SPLITSPLITSUBSTR, which selects
the first input element: [X = SELECTK (input, 0)]; split by
“(” and take the first element: [Y = SELECTK(SPLIT(X,
“”), 0)]; split again by “ ” and take the second element:
[Z =SeLECTK(SPLIT(Y, “ 7), 1)]; take substring from po-
sition 1 to the end [1:-1]: [SuBsTR(Z, 1, -1)]. This oper-
ator generates Barack for the first row, George W. for the
second, Bill for the third, with a total gain of 19 characters
(6 +9 +4), and an average gain of 49% for the required
outputs across three rows (%, % and %, respectively).

With this first operator, the remaining required output
strings to be covered are {“ Obama”, “ Bush”, “ Clinton”
}. We again search for the logical operator that yields the
most progress, for which we find SPLITSUBSTR that splits by
“,”, takes the first element, and returns the full string. Now
the remaining output strings are {“ 7, “ 7, € ” }, which can
be covered by adding a CONSTANT operator that produces a
space character. Finally, by concatenating these operators,
we complete a candidate transformation program that can
be tested on the full input tables.

Through the following proposition, we show the success
probability of transformation learning.

ProPOSITION 3.  The learning procedure succeeds with
high probability, if the transformation can be expressed using

operators in ©. The success probability is lower bounded by

T
ey 1 kIS
1= (1= T (1= 1+ s+ 1siPisol) )
i€[m]

where k is the number of independent examples used, T is the

number of trials (each with k examples), |St| and |So| are

the lengths of input/output examples, and |S;| is the length of

the result of each intermediate step (for a logical operator).

A proof of this result can be found in the full version [24].
This proposition shows that with 7 independent trials we
can reduce the failure probability at a rate exponential in T,
thus quickly improving success probability as T  increases.

Ranking of Candidate Transformations. Recall in
Section[3.1.4] we generate groups of joinable row pairs, based
on g-gram matches between each pair of columns Cs, C;.
For each such group, we select the top-k row pairs with the
highest scores (typically 1-to-1 matches), and apply trans-
formation learning for a fixed number of times, each of which
on a random subset of the selected row pairs. We execute
each learnt transformation on the original input tables, and
pick the one that joins the most number of rows in the tar-
get table. By the definition of transformation join problem
(Deﬁnition, the joining columns in the target table are key
columns (1:1 or N:1 joins). A key-column join with high row
coverage is likely to be meaningful in practice. Pseudocode
of this step can be found in the full paper [24].

4. SCALEAUTO-JOINTO LARGE TABLES

Auto-Join is used as a data exploration feature where in-
teractivity is critical. In deploying this into a commercial
data preparation system, a practical challenge we encoun-
tered is to efficiently scale the algorithm to tables with thou-
sands or even millions of rows. In this section, we explain
how to achieve such scalability for Auto-Join.

Given two tables Ts and T}, each with millions of rows,
with commodity hardware it is unlikely that we can achieve
interactive speed if all values need to be indexed and probed.
On the other hand, it would actually be wasteful to in-
dex/probe all values, because for the purpose of transfor-
mation learning we only need enough joinable row pairs for
learning to be successful. Intuitively, we can sample rows
from input tables, where the key is to use appropriate sam-
pling rates to minimize processing costs but still guarantee
success with high probability (the danger is that we may
under-sample, thus missing join relationships that exist).

For Auto-Join, we use independent row samples from in-
put tables, because unlike sampling techniques for equi-
join or set-intersection where join keys are known and co-
ordinated sampling can be used, in our problem, the join
keys are not known a priori. Co-ordinated g-gram sampling
is possible, but the cost of analyzing and hashing all g-grams
is still prohibitive for large tables. Given these, we study a
lightweight independent sampling for Auto-Join.

Let Ns, N; be the number of rows in table Ts, Ti, and
Pps, pt be their sampling rates, respectively. Furthermore,
let r be the join participation rate, defined as the fraction
of records in the target table T; that participate in the de-
sired join. Note that the join participation rate needs to be
reasonably high for sampling to succeed — if only one row
in a million-row table participates in a join, then we need
to sample a very large fraction of it to find the joinable row
pair with high probability. In practice, r is likely to be high,
because joins that humans find interesting likely involve a
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non-trivial fraction of rows. We conservatively set r to a low
value (e.g., 1%), so that as long as the real join participation
is higher we can succeed with high probability.

We formulate the problem of determining ps and p; as
an optimization problem. The objective is to minimize the
total number of sampled rows that need to be indexed and
queried, which is Nsps+N¢p:. The constraint is that we need
to sample enough joinable row pairs with high probability.
Since the join participation rate is r, at least N¢p:r rows
from the target table T; participate in join. Because each
of these participating row joins with at least one row from
the source table T, which is sampled with probability ps,
leading to an expectation of = N - p; - r - ps joinable row
pairs in the sample. This can be seen as a Bernoulli process
with a success probability of p:psr and N; total trials.

As discussed in Section we need a certain number of
examples to constrain the space of feasible transformations
enough to produce correct transformations. Let this re-
quired number be T' (empirically 4 is enough in most cases).
Let X be a random variable to denote the total number of
joinable row pairs sampled. We want to find an upperbound
for the probability that less than T joinable rows pairs are
sampled, or P(X <T).

Using the Multiplicative Chernoff Bound [9], we know X
can be bounded by

2

PX<(1-dp)<e = (5)
If we have p > %7 we can upper-bound the failure proba-
bility as

52

P(X<T)<e 2

(6)
For example, let T' = 4, § = 0.8, we get u = Nypipsr >
155 = 20. Using EquationEI, weget P(X <T)<e” 20
e~ %% < 0.0017, or in other words, our success probabil-
ity is at least 99.8%. So as long as we can ensure p =
Nipipsr > %, then more than T joinable row pairs will be
sampled with high probability. This becomes the constraint
that completes our optimization problem:
min Ngps + Nipe

(7)

Using Lagrange we obtain the following closed form opti-
mal solution

T
s.t. Nipipsr > 15 pt,ps € [0,1]

T TN, ®)
(1—=268)rN, (1—0)rN?
The corresponding sample sizes can be written as Nyp; =

Y. (IT_A;S)T and Nops = N, /%, and both of them grow

N Tf
sub-linearly in Ns.

As a concrete example, suppose we have two tables both
with 1M rows. For some fixed T and §, such as T' = 4 and
6 = 0.8 from the previous example that guarantees success
with high probability, and » = 0.1, we can compute the sam-
pling rates as pr = 0.014 and ps, = 0.014, which translates to
a small sample of 14K rows from the 1M-row tables. The op-
timized sampling significantly reduces processing costs and
improves efficiency for Auto-Joinon large tables.

S. CONSTRAINED FUZZY JOIN

For datasets from the Web, inconsistencies are often found
in how values are formatting and represented (e.g., with or

bt = y, Ps =

3When N, and N; are small, there may not be feasible solu-
tions (the required p may be greater than 1). In such cases
we use full tables.
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without middle name and middle initials for names). Thus,
an equi-join using transformation may miss some row pairs
that should join, as Example [8| shows.

ExaAMPLE 8. In Figure [2] the learned transformation that
has the highest coverage on the target key column Email
concatenates the first character of the first name with the
last name in the left table, to get the email addresses. How-
ever, this transformation does not cover the target key in
the third row mipayne@forsyth.kl12.ga.us as it uses the
first two characters in the first name. As a result, the third
rows in the left and right tables cannot be equi-joined.

Traditionally fuzzy join is used to deal with small value
inconsistencies. However, given a wide space of parameters
in fuzzy join such as the tokenization, distance function,
and threshold, configuring a fuzzy join that works well for a
given problem instance is difficult. This is particularly true
for Auto-Join, as it is intended to be a data exploration
feature in spreadsheets where users may not have no the
expertise on fuzzy joins.

We propose to automatically optimize a fuzzy join con-
figuration using rows that are already equi-joinable as con-
straints, so that as we relax matching criteria in fuzzy join,
we do not make these rows to join more than their equi-join
results (which indicates that the corresponding fuzzy join is
too lax). Although we use this optimization in the context
of Auto-Join, the techniques here are of independent interest
and can be used to optimize general fuzzy join.

Given a column C produced by transformations on the
source table, and K a key column from the target table,
where the join is 1:1 or N:1, our optimization objective is to
maximize the number of rows in the target table that can be
fuzzy-joined between C and K, subjecting to the constraint
on join cardinality.

Specifically, given a tokenziation scheme ¢ from a space of
possible configurations (e.g., word, 2-gram, 3-gram, etc.), a
distance function d (e.g., Jaccard, Cosine), and a distance
threshold (normalized into a fixed range, e.g., [0,1]). The
rows that can fuzzy join for some given t,d, s, denoted as
Fi.a,s(C, K), is defined as follow.

Fi4.5(C,K) ={v, |Fuk € K,v: € C,d¢(vi,ve) < s}
where d; is the distance d using a given tokenization t.

This objective alone tends to produce overly lax matches.
The counteracting constraint is to respect join cardinality.
Specifically, after using fuzzy join every value v. € C cannot
join with more than one value vy € K. This can be viewed
as a key-foreign-key join constraint — a foreign-key value
should not join with two key values (even with fuzzy join).

Additionally, we can optionally require that each vy € K
cannot join with more than one distinct v. € C. This is an
optional constraint assuming that on the foreign key side,
each entity is only represented with one distinct value. E.g.,
if we already have “George W. Bush” in a table, we would
not have “George Bush” or “George W. Bush Jr.” for the
same person. On the other hand a very close value “George
H. W. Bush” in the same column likely corresponds to a
different entity and should not join with the same key as
“George W. Bush”. This optional requirement helps to en-
sure high precision.

These requirements lead to the following two constraints
in the optimization problem.

(9)



argmax|Fi q.s(C, K)|

t,d,s
s.t. [{ve | vk € K, dy(ve,00) < s} < 1,Vv. e ¢ (10)

[{ve | ve € Cydi(ve,vi) < s} <1,V € K
We can search over possible t,d, and s from a given pa-
rameterization space. The following example illustrates how
fuzzy join optimzation is used for joining tables in Figure

EXAMPLE 9. Continue with Example[§] after applying the
transformation, the output for Missy Payne in the left ta-
ble is mpayne@forsyth.k12.ga.us, which cannot be equi-
joined with mipayne@forsyth.k12.ga.us in the right ta-
ble. Using 3-gram tokenizer and Jaccard distance, the dis-
tance between the two is 0.125. Thus, a distance thresh-
old above 0.125 would join these two rows. On the other
hand, if we use a larger distance threshold such as 0.4,
kmoore@forsyth.k12.ga.us (transformation output from the
left table) would join mipayne@forsyth.k12.ga.us (in the
right table), breaking the second constraint in Equation
as mipayne@forsyth.k12.ga.us is joined with two distinct
values. The fuzzy join optimization algorithm finds the max-
imum threshold that still satisfies the join constraints, thus
the optimal threshold in this case is 0.2 or 0.3.

Due to the monotonicity of the objective function with
respect to the distance threshold, we use binary search to
find the optimal distance threshold. The pseudo code for
fuzzy join optimzation can be found in the full paper [24].

6. EXPERIMENTS

In this section we discuss experimental results on join
quality (precision/recall) as well as scalability.

6.1 Benchmark Datasets

Benchmarks. We constructed two benchmark, Web and
Enterprise, using test cases from real datasets; as well as
a synthetic benchmark Synthetic. The Web benchmarks is
made available onlindﬂ to facilitate future research.

The Web benchmark is constructed using tables on the
Web. We sampled table-intent queries from the Bing search
engine (e.g., “list of US presidents”). We then used Google
Tables [2] to find a list of tables for that query (e.g., U.S.
presidents), and selected pairs of tables that use different
representations but are still joinable under transformation
(e.g., Figure. We searched 17 topics and collected 31 table
pairs. We observe that tables on the Web often have minor
inconsistencies (e.g., formatting differences, with or without
middle initials in names, etc.) for the same entity mentions,
which cannot be easily accounted for using transformations
alone. This makes Web a difficult benchmark.

The Enterprise benchmark contains 38 test cases, each
of which has a pair of tables extracted from spreadsheet files
found in the intranet of a large enterprise (e.g., Figureand
Figure. The test cases are constructed by grouping tables
with common topics. Comparing to Web that has mostly 1-
to-1, entity-to-entity joins, Enterprise also has cases with
hierarchical N:1 joins (e.g., Figure [3]).

Lastly, since the authors in [23]| studied a close variant
of the auto-join problem and used synthetic datasets for
evaluation, as a validation test we reconstruct 4 datasets
used in [23] as the Synthetic benchmark. The 4 test cases,

4ht‘cps ://www.microsoft.com/en-us/research/publication/
auto-join-joining-tables-leveraging-transformations/

UserID, Time, NameConcat, and Citeseer, either split or
merge columns to produce target tables [23].

In all these benchmark cases, equi-join would fail. We
manually created the ground truth join result for each pair
of tables, by determining what rows in one table should join
with what rows from the other table.

Evaluation metrics. We use the following metrics to
measure join quality. Denote by G the row pairs in the
ground truth join results, J the joined row pairs produced
by an algorithm. We measure join quality using the standard

precision and recall, defined as:

recall = G0 J]

’ G|

We also report F-score that is the harmonic mean of pre-
cision and recall. When an algorithm produces empty join
results, we do not include it in computing average precision,
but we include it in average recall and F-score.

6.2 Methods Compared

We implemented 8 methods for comparison.

Substring Matching (SM). We implemented the algo-
rithm by Warren and Tompa based on their paper [23]. This
algorithm uses a greedy strategy to find a translation for-
mula, which is a sequence of indexes of the source columns’
substrings that matches parts of the target column.

Fuzzy Join - Oracle (FJ-0). It is known that a major
difficulty of using fuzzy join is the need to find the right con-
figuration from a large space of parameters, which includes
different tokenization schemes, distance functions, and dis-
tance thresholds, etc. To be more favorable to fuzzy join
based methods, we consider an extensive combination of
configurations. Specifically, for tokenization we use {Exact,
Lower, Split, Word, and g¢-gram for ¢ € [2,10]} (similar
to ones used in |16]); for distance functions we consider
{Intersect, Jaccard, Dice, MaxInclusion}; and for thresh-
olds we use 10 equally-distanced values (e.g., {0.1, 0.2, ...,
1} for Jaccard). This creates a total of 520 unique param-
eter configurations. We execute each of these fuzzy joins
on columns that are used in the ground truth as if they
are known a priori, and we join each row with top-1 fuzzy
match in the other table to maintain high precision. We
report the best configuration that has the highest average
F-score across all cases.

Note that this method acts much like an “Oracle” — it
has access to not only the columns that join, but also the
ground truth join result to “fine tune” its configuration for
the best performance. These optimizations are not feasible
in practice, so this provides an upper bound on what fuzzy
join like methods can achieve.

Fuzzy Join - Column (FJ-C). In this method, we per-
form fuzzy join on columns that participate in joins in the
ground truth as if these are known, but without using de-
tailed row-level ground truth of which rows should join with
which for configuration optimization. We use techniques
discussed in Section [5| to determine the best parameter con-
figuration.

Fuzzy Join - Full Row (FJ-FR). This fuzzy join variant
is similar to FJ-C, but we do not provide the information on
which columns are used in join in the ground truth. As a
result, this approach considers full rows in each table. This
represents a realistic scenario of how fuzzy join would be
used without ground truth.

Dynamic g-gram - Precision (DQ-P). Since g-grams al-
ready identify some joinable row-pairs (from which we gen-

precision =
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Figure 5: Average precision/recall comparison for all methods on three benchmarks.

erate transformations), one may wonder if it is sufficient to
perform join using g-gram matches alone. In this method
we use matches produced in Section [3.1} and only allow 1-
to-1 g-gram matches to ensure high precision. Joinable row
pairs are used directly as join result.

Dynamic g-gram - Recall (DQ-R). This algorithm is
similar to DQ-P, except that we allow n-to-1 g-gram matches
as join results. This produces results of higher recall but
can also lead to lower precision compared to DQ-P.

Auto-Join (AJ). This is our Auto-Join algorithm. We
create a variant Auto-Join - Equality (shorten as AJ-E)
that only uses equality join without the fuzzy join described
in Section (Bl

6.3 Quality Comparison

In this section we discuss the experimental results on three
benchmarks. Figure |5 shows the average precisions and re-
calls comparison on all three benchmarks. Table 2] Figure[f]
and [ show the F-scores on all the benchmark datasets.

6.3.1 Enterprise Benchmark

Enterprise contains data that are mostly clean and well
structured — values are consistently encoded with few typos
or inconsistencies as they are likely dumped from sources like
relational databases (e.g., Figure 3| and Figure [4). Unlike
other benchmarks, a significant fraction of joins are N:1 join
through hierarchically relationships (e.g., Figure |3).

The precision and recall results are show in Figure [5al
First, Auto-Join (AJ) achieves near-perfect precision (0.9997)
and recall (0.9781) on average. In comparison, the oracle
baseline FJ-0 has precision at 0.9756 and recall at 0.9755,
which is inferior to Auto-Join. Recall that FJ-0 is the Oracle
version of fuzzy join that uses ground truth to find the best
possible configuration, which provides an upper-bound for
fuzzy join and not feasible in practice. This demonstrates
the advantage of transformation-based join over fuzzy join
when consistent transformations exist. We note that in this
test case using equality-join only AJ-E (with no optimized
fuzzy join) produces virtually the same quality results, be-
cause values in this benchmark are clean and well structured.

Second, the SM algorithm achieves lower precision and re-
call then other baselines methods. This shows that their ap-
proach in building the translation formula using fixed sub-
string indexes, as mentioned earlier in Section [6.2] is not
expressive enough to handle transformations needed in real
join scenarios we encountered.

Third, fuzzy join algorithms (FJ-FR and FJ-C) produced
good precision due to our conservative fuzzy-join optimiza-
tion. However, their recall is low, because in certain cases
where the join values are hierarchical, non-joinable row pairs
may also have low syntactic distance (e.g., Figure|3), which
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makes it difficult to differentiate between joinable and non-
joinable row pairs using distance functions alone.

Lastly, DQ-P produces joins based on 1-to-1 g-gram matches,
which has high precision but low recall. This is consis-
tent with our analysis that 1-to-1 g-gram matches are often
good joinable row pairs for transformation learning. On the
other hand, DQ-R relaxes the matching constraints, and as
expected produces better recall but lower precision.

Figure[6]shows the F-scores on individual cases. It is clear
that in most datasets, AJ achieved higher scores than the
baselines, demonstrating that AJ is more resilient to compli-
cations such as N:1 joins and common substrings between
joinable and non-joinable row pairs. In the test cases uk ad
sector and region atu 1, AJ did worse than DQ methods.
A close inspection reveals that it finds an alternative trans-
formation that only covers a subset of the joinable results.

6.3.2 Web Benchmark

Unlike Enterprise that have a significant number of N:1
joins, in Web most join cases are 1:1, entity-to-entity joins
(e.g., Figure [1] and Figure , and are considerably more
dirty with ad-hoc inconsistencies.

Figure gives the quality comparisons. First, AJ has a
considerably higher average precision than the oracle fuzzy
join FJ-0, but a lower average recall. This is not surprising
because FJ-0 uses ground truth to optimizing its configu-
ration parameters, which is not feasible in practice. We do
notice that because FJ-0 always joins a row with its top-1
match by score as long as the score is above a certain thresh-
old, which leads to many false positives and thus lower pre-
cision. The problem is the most apparent for cases where
most rows from one table do not actually participate in join.
This is an inherent shortcoming of top-1 fuzzy join methods
that AJ can overcome.

We see in Figure that Auto-Join (AJ) has a higher
average recall than its equality join version, AJ-E (0.8840
vs. 0.7757), but slightly lower precision (0.9504 vs. 0.9758).
This is because inconsistencies exist in certain cases, where
one correct transformation alone does apply to all rows that
should join. In such cases, optimized fuzzy join brings sig-
nificant gain in recall (= 0.11), with a small loss in precision
(=~ 0.025).

SM does not perform well compared to other methods.
Transformations required in Web benchmark are often too
more complex for SM that relies on fixed substring indexes.

We analyze individual cases for which FJ-C produces higher
F-scores than AJ, as shown in Figure m For cases like uk
pus, we found that although AJ learnt the correct trans-
formation and achieved a perfect precision, the fuzzy join
step was not able to cover the rest of joinable row pairs
that have inconsistencies in entities’ naming. For complex
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Figure 7: F-Scores on Web Table Benchmark.

Table 2: F-Scores on Synthetic Benchmark

Citeseer NameConcat Time UserID
DQ-P 0.9826 0.1264 0.0392  0.7572
DQ-R 0.9826 0.1356 0.2025 0.6638
FJ-C 0.4637 0.1651 1.0000 0.8795
SM 0.0291 0.1186 0.5464  0.7553
AJ 1.0000 1.0000 1.0000  1.0000

cases like duke cs profs, the correct join actually requires
more than one transformations in order to join all rows.
Although AJ learns one transformation with perfect preci-
sion, it falls short in recall as not all joinable rows are cov-
ered. For these two datasets, the fuzzy distances between
the non-joinable row pairs using the original join-columns
are larger than when using the derived column. So it is
easier for FJ-C, which uses the original join-columns, to dif-
ferentiate between joinable and non-joinable row pairs and
achieve higher F-score, even though FJ-C and AJ uses the
same fuzzy join method.

6.3.3 Synthetic Benchmark

Synthetic contains cases synthetically generated as de-
scribed in prior work using split or concatenation. The
cases here are relatively simple and we use these as a vali-
dation test to complement with our previous benchmarks.

Figure shows that AJ achieves perfect precision and
recall, matching the oracle fuzzy join FJ-0. Other methods
produce results similar to the previous benchmarks.

Table [2] shows the F-scores on individual cases. Both of
DQ-P and DQ-R performs poorly on the Time dataset. Time
is synthetically generated by concatenating three columns
with second (0-59), minute (0-59), and hour (0-23) into a
time column separated by “”. Due to the small space of
numbers, there are many common substrings and few 1-to-
1 or n-to-1 g-gram matches, thus the low scores of DQ-P
and DQ-R. These two approaches work well on Citeseer,
which has many 1-to-1 g-gram matches due to unique author
names and publication titles. AJ achieved perfect F-scores
on all datasets, since it just needs a few examples to produce
the generalized transformations needed.
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We found that SM achieved good recall in this bench-
mark, however, its average precision is relatively low (see
Figure . This result is not as well as what is reported in
the original work . This is likely because the method is
data-sensitive, and it tends to fall into a local optimum with
its use of greedy strategy in finding a translation formula.
Since the translation formula is constructed incrementally
by inspecting one source column at a time with no reverse-
back, the addition of a single incorrect partial formula stops
the whole algorithm from finding the globally optimal for-
mula. This step is quite sensitive to the variance in the
lengths of the substrings that matches with the target col-
umn. This is evident in Table 2} as SM did relatively better
in Time and UserID, which has smaller variances (Time has
zero variance, and UserID uses a fixed-length substring in
the translation formula), while the scores in Citeseer and
NameConcat are much lower.

6.4 Scalability Evaluation

We used the DBLP datasets [1] to evaluate the scalability
of SM, FJ-0, FJ-C, and AJ-E. In the DBLP data set, each
record has three fields: authors, title, and year of publica-
tion. For the purpose of scalability evaluation, we create
a synthetic target table that is the concatenation of these
three fields. We sample N records from the source table and
the target table where N = {100, 1K, 10K, 100K, 1M}, and
measure the corresponding end-to-end execution time. Some
existing methods are very slow on large data sets so we set
a timeout at 2 hours. Note that we omit results for FJ-FR
since it is identical to FJ-C for this data set. We also do not
compare with DQ-R and DQ-P since these are sub-components
from the proposed AJ method.

Figure [8| shows the end-to-end running times. AJ-E is
2-3 orders of magnitude faster than existing methods. In
particular, SM and FJ-0 time out at 10K rows, and FJ-C
times out at 100K rows; the runtime of these methods grow
quickly with the table sizes.

For AJ-E, we break down the time into three stages —
indexing, transformation-generation, and equi-join. We find
that equi-join is efficient and accounts for less than 5% of
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Figure 8: End-to-end running time comparison
overall execution time. The cost of transformation learning
increases slowly, from 2.5 seconds at 100 rows to 6.4 seconds
at 1M rows, as the number of attempts for transformations
learning does not increase with the table size. The indexing
time becomes a dominant factor as the number of rows grows
over 100K.

In addition, we experimented Auto-Join without the op-
timized row sampling (Section to see its impact on effi-
ciency. Without sampling the algorithm reaches timeout on
the data set with 1M rows, which shows the importance of
sampling-based optimization for scaling to large data sets.

7. RELATED WORKS

Warren and Tompa proposed a schema translation tech-
nique in the context of data integration [23], which is closely
related to Auto-Join. Their technique is based on string
alignment that produces a transformation given two tables
as input. However, the set of transformations they consider
is limited to only concatenation, which is not sufficient to
handle transformations required to join real tables as our
experiment results show. Our approach, in comparison, sup-
ports much more expressive transformations that can handle
almost all real join cases encountered, provides probabilistic
guarantee of its success, and maintain an interactive speed
even for large tables.

There is a long and fruitful line of research on schema
matching that identifies column correspondence between ta-
bles, where certain types of transformations have been con-
sidered. For example, iMap was developed to han-
dle transformations such as numerical conversion and string
concatenation. Similarly Bellman can also find column
correspondence when the underlying transformation is sim-
ple string concatenations.

Compared to Auto-Join, in schema matching one only
needs to identify column-level correspondence for humans
to judge, where no precise correspondence is produced at
the row-level. In Auto-Join we need to reproduce the un-
derlying transformation at the row-level in a generative pro-
cess. Furthermore in schema matching transformations con-
sidered are limited since g-gram match and fuzzy matching
is often sufficient to identify column correspondence. Tech-
niques we develop for Auto-Join can precisely identify com-
plex relationships between columns with high confidence,
which can in fact be used for schema matching.

Program-by-example is a programming paradigm stud-
ied in the programming language community to facilitate
program generation based on examples, which is closely re-
lated to our transformation learning component. Systems
such as FlashFill , BlinkFill and Foofah per-
form transformations when given input/output examples.
In comparison, our system automatically identifies such ex-
amples. Our program generation algorithm is also consider-

ably different from existing techniques that requires efficient
enumeration of all feasible programs.

A related problem to Auto-Join is to automatically join
tables with semantic relationships. Techniques are devel-
oped using corpus-driven co-occurrence statistics , which
is orthogonal to joining tables using syntactic string trans-
formations studied in this work.

8. CONCLUSION

We developed Auto-Join, a system for automatically join
tables with transformation programs, which is currently be-
ing integrated into a Microsoft data preparation system. In-
teresting future directions include automatically joining ta-
bles with semantic relationships, as well as complex domain-
specific functions.
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