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ABSTRACT
Recommenders, as widely implemented nowadays by major
e-commerce players like Netflix or Amazon, use collaborative
filtering to suggest the most relevant items to their users.
Clearly, the effectiveness of recommenders depends on the
data they can exploit, i.e., the feedback of users conveying
their preferences, typically based on their past ratings.
As of today, most recommenders are homogeneous in the

sense that they utilize one specific application at a time. In
short, Alice will only get recommended a movie if she has
been rating movies. But what if she has been only rating
books and would like to get recommendations for a movie?
Clearly, the multiplicity of web applications is calling for het-
erogeneous recommenders that could utilize ratings in one
application to provide recommendations in another one.
This paper presents X-Map, a heterogeneous recommender.

X-Map leverages meta-paths between heterogeneous items
over several application domains, based on users who rated
across these domains. These meta-paths are then used in
X-Map to generate, for every user, a profile (AlterEgo) in a
domain where the user might not have rated any item yet.
Not surprisingly, leveraging meta-paths poses non-trivial is-
sues of (a) meta-path-based inter-item similarity, in order to
enable accurate predictions, (b) scalability, given the amount
of computation required, as well as (c) privacy, given the
need to aggregate information across multiple applications.
We show in this paper how X-Map addresses the above-

mentioned issues to achieve accuracy, scalability and dif-
ferential privacy. In short, X-Map weights the meta-paths
based on several factors to compute inter-item similarities,
and ensures scalability through a layer-based pruning tech-
nique. X-Map guarantees differential privacy using an ex-
ponential scheme that leverages the meta-path-based simi-
larities while determining the probability of item selection to
construct the AlterEgos. We present an exhaustive experi-
mental evaluation of X-Map using real traces from Amazon.
We show that, in terms of accuracy, X-Map outperforms
alternative heterogeneous recommenders and, in terms of
throughput, X-Map achieves a linear speedup with an in-
creasing number of machines.
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1. INTRODUCTION
The vast amount of information available in the Inter-

net calls for personalization schemes, such as recommenders,
that aid the users in their web navigation activities. Rec-
ommenders seek to suggest relevant items to users based on
their preferences (expressed through ratings), by typically
relying on Collaborative Filtering (CF) algorithms [28] to
utilize similarities between users. Such similarities are com-
puted using the rating history of users. The axiom here is
that if Alice and Bob liked the same items in the past, they
will like the same items in the future with a high probability.

1.1 Motivation
Although widely used today, recommenders are mainly

applied in a homogeneous way: movie recommenders like
IMDb or Netflix, news recommenders like Google News or
Yahoo News, as well as music recommenders like Last.fm
or Spotify, each focuses on a single specific application do-
main. In short, you will be recommended books only if you
rated books, and you will be recommended movies only if
you rated movies. Given the growing multiplicity of web
applications, homogeneity is a major limitation. For ex-
ample, with most state-of-the-art recommenders, Alice who
just joined a book-oriented web application, and never rated
any book before, cannot be recommended any relevant book,
even if she has been rating many movies.
We argue that the next level to personalization is hetero-

geneity, namely personalization across multiple domains [11].
Heterogeneous preferences on the web, i.e., preferences from
multiple application domains, should be leveraged to im-
prove personalization, not only for users who are new to a
given domain (i.e, cold-start situation), but also when the
data is sparse [2] (e.g, very few ratings per user). In fact, if
a user, say Alice, likes the Interstellar movie, then a hetero-
geneous personalization scheme could actually recommend
her books such as The Forever War by Joe Haldeman. To
get an intuition of how such recommendation can be made
by going beyond standard schemes, consider the scenario
depicted in Figure 1(a) where five users rated at most one
book. Indeed, according to a standard metric (adjusted co-
sine [29]), the similarity between Interstellar and The For-
ever War is 0, for there are no common users who rated
both. However, a closer look reveals the following meta-
path 1 between these two heterogeneous items: Interstel-
lar Bob−−→Inception Cecilia−−−−−→The Forever War.

1We call meta-path any path involving heterogeneous
items, e.g., movies and books.
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(a) A simple scenario depicting heterogene-
ity across two domains.
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(b) The effect of meta-paths in com-
puting heterogeneous similarities.

Figure 1: Heterogeneous recommendation using meta-paths.

Figure 1(b) compares the number of heterogeneous simi-
larities that could be exhibited with or without using meta-
paths on real-world traces from Amazon (using two domains:
movies and books). Meta-path-based heterogeneous simi-
larities clearly lead to better recommendation quality as we
show later in § 6.4.

1.2 Challenges
While appealing, building a practical heterogeneous meta-

path-based recommender raises several technical challenges.
Meta-path-based similarity. Consider an undirected
graph G where the vertices represent the items and each
edge eij is associated with a weight sij , representing the
similarity between items i and j. A meta-path in G can be
defined as a sequence of adjacent vertices (movies or books)
connected by edges in G. Computing a heterogeneous sim-
ilarity based on these meta-paths is, however, not straight-
forward. Such similarity could be affected by factors like the
number of users involved, directly or indirectly (in the meta-
paths), as well as the strength of the ties between item-pairs
connected by (shorter) meta-paths. The challenge here is to
capture these factors in a way that improves the accuracy
of heterogeneous similarities.
Scalability. Clearly, the computational complexity in-
creases many-fold while computing meta-path-based simi-
larities. Computing all possible meta-paths on a large-scale
graph with millions of vertices (heterogeneous items) can
quickly become computationally intractable.
Privacy. Heterogeneous recommendations also raise pri-
vacy concerns. For example, the new transitive link between
Alice and Cecilia (Figure 1(a)) provides the opportunity for
a curious user, say Alice, to discover the straddlers: people
like Bob or Cecilia who connect multiple domains. Alice
can actually determine the item(s) that allows her to get
this recommendation by pretending to be another user and
incrementally rating items until she gets the recommenda-
tion. This is similar to the privacy risk in statistical database
queries where inferences can be derived from combinations
of queries [26]. As pointed out in [27], such straddlers are at
a privacy risk, and information about their preferences could
be used in conjunction with other data sources to uncover
identities and reveal personal details. This can be partic-
ularly problematic across different applications like Netflix
(movies) and Last.fm (music).
Recent heterogeneous recommenders [11, 30], extending

classical homogeneous recommendation schemes across do-
mains, are neither scalable nor private, and hence are not
suitable for applications involving millions of users and items.

1.3 Contributions
In this paper, we present a recommender we call X-Map:

Cross-domain personalization system. X-Map fully uti-
lizes the overlap among users across multiple domains, as
depicted in Figure 1(a). This overlap is often derived from
profiles maintained by users across various web applications
along with interconnection mechanisms for cross-system in-
teroperability [10] and cross-system user identification [9].
At the heart of X-Map lie several novel ideas.
• We introduce a novel similarity metric, X-Sim, which
computes a meta-path-based transitive closure of inter-
item similarities across several domains. X-Sim involves
adaptations, to the heterogeneous case, of classical signif-
icance weighting [16] (to account for the number of users
involved in a meta-path) and path length [27] (to capture
the effect of meta-path lengths) schemes.
• We introduce the notion of AlterEgos, namely artificial
profiles (created using X-Sim), of users even in domains
where they have no or very little activity yet. We generate
an AlterEgo profile (of Alice) in a target domain leverag-
ing an item-to-item mapping from a source domain (e.g.,
movies) to the target domain (e.g., books). AlterEgos en-
able to integrate any standard recommendation feature in
the target domain and preserve, for example, the temporal
behaviour of users [12].
• We use an effective layer-based pruning technique for se-
lecting meta-paths. AlterEgos, acting as a caching mech-
anism, alleviate computational intractability by only us-
ing the information from the target domain. Combined
with our layer-based pruning technique, AlterEgos enable
X-Map to scale almost linearly with the number of ma-
chines (a major requirement for the deployment of a rec-
ommender in a practical environment). We illustrate this
scalability through our implementation of X-Map on top
of Apache Spark [38].
• We introduce an obfuscation mechanism, based on meta-
path-based similarities, to guarantee differentially private
AlterEgos. We adapt, in addition, a probabilistic tech-
nique, inspired by Zhu et al. [39,40], to protect the privacy
of users in the target domain. Interestingly, we show that,
despite these privacy techniques, X-Map outperforms the
recommendation accuracy of alternative non-private het-
erogeneous approaches [5, 6, 11].
• We deployed an online recommendation platform, using

X-Sim on a database of 660K items, to recommend books
and movies to users based on their search queries at:

http://x-map.work/
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Books like The Da Vinci Code are indeed recommended
when the search query is the Angels & Demons (2009)
movie. Currently, we support Chrome, Safari and Firefox
browsers.

1.4 Roadmap
The rest of the paper is structured as follows. We recall

some background on collaborative filtering and differential
privacy before formulating the heterogeneous recommenda-
tion problem in § 2. Next, we introduce our X-Sim metric
along with our layer-based pruning technique for selecting
meta-paths in § 3. For pedagogical reasons, we first present
a non-private variant of our recommendation scheme (NX-
Map 2) before the private one (X-Map) in § 4. We then
present our scalable implementation of X-Map in § 5 and
our experimental results in § 6. We review the related work
in § 7 and conclude our paper in § 8. Our open-sourced im-
plementation of X-Map as well as the detailed proofs of our
privacy guarantees are provided in a GitHub repository [1].

2. BACKGROUND AND PROBLEM
2.1 Collaborative Filtering
Collaborative Filtering (CF) algorithms fall mainly in two

categories: memory-based [28, 33] and model-based [17, 20,
37]. Memory-based algorithms compute the top-k like-minded
users for any given user (say Alice), denoted as the neigh-
bors of Alice, from the training database, and then make
recommendations to that user based on the rating history
of her neighbors. In contrast to memory-based algorithms,
model-based ones first extract some information about users
(including Alice) from the database to train a model and
then use this model to make recommendations for the users
(including Alice). Memory-based algorithms are more flexi-
ble in practice compared to model-based ones [18]. It is usu-
ally more difficult to add new incoming data to model-based
systems because building a model is often a time-consuming
and resource-consuming process.
Among memory-based CF schemes, neighbor-based CF

(based on k nearest neighbor (kNN) algorithms) are more
popular and widely used in practice [29]. We summarize
the basic notations used in this paper in Table 1. A user-
based CF scheme, as depicted in Algorithm 1, computes
the k neighbors of Alice with highest user-to-user similari-
ties (Phase 1 in Algorithm 1). These neighbors’ profiles are
then used to compute the best recommendations for Alice
(Phase 2 in Algorithm 1). An item-based CF scheme, as
depicted in Algorithm 2, computes the k most similar items
for every item based on item-to-item similarities (Phase 1
in Algorithm 2) and then computes the recommendations
for Alice based on her ratings for similar items (Phase 2 in
Algorithm 2). As we will explain in § 4, X-Map currently
supports user-based as well as item-based CF schemes while
providing recommendations to its users. Different practi-
cal deployment scenarios benefit from the proper choice of
the recommendation algorithm. One requirement, which is
crucial to any deployment scenario, is Scalability. From the
scalability aspect, item-based recommenders are suitable for
big e-commerce players with more users than items whereas

2NX-Map illustrates the effectiveness of X-Sim and Al-
terEgos for heterogeneous recommendations without the pri-
vacy overhead and could be used for applications with het-
erogeneous intra-company services like Google Play.

Table 1: Notations
Notations

D any single domain
U the set of users in a domain
I the set of items in a domain
ru,i the rating provided by a user u for an item i

MD the matrix for the ratings provided by the users 3

r̄u the average rating of u over all items rated by u
r̄i the average rating for i over all users who rated i
Xu the set of items rated by u (user profile)
Yi the set of users who rated i (item profile)

τ(u, v) the similarity measure between u and v

user-based recommenders are preferable for new players with
more items than users due to the number of item-item
or user-user similarities leveraged by the respective recom-
menders. Moreover, the user-user similarities are more dy-
namic than item-item similarities for movies/books [3] due
to the temporality in users’ online behaviour and hence re-
quire frequent updates. For interested readers, we provide
an empirical demonstration of the influence of item-based
and user-based recommenders in two different practical de-
ployment scenarios in our companion technical report [1].

Algorithm 1 User-based CF
Input: I: Set of all items; U : Set of all users; X: set of profiles of

all users where XA denotes the profile of Alice (with user-id
as A) which contains the items rated by A.

Output: RA: Top-N recommendations for Alice
Phase 1 - Nearest Neighbor Selection: kNN(A,U,X)
Input: U , X
Output: k nearest neighbors for Alice
1: var τA; � Dictionary with similarities for Alice
2: var r̄; � Average rating for each item
3: for u in U do
4:

τA[u] =

∑
i∈XA∩Xu (rA,i − r̄i)(ru,i − r̄i)√∑

i∈XA (rA,i − r̄i)2
√∑

i∈Xu (ru,i − r̄i)2
(1)

5: end for
6: γA = τA.sortByV alue(ascending = false);
7: NA = γA[: k] � Top k neighbors
8: return: NA;
Phase 2 - Recommendation: Top-N(NA,I)
Input: I, NA
Output: Top-N recommendations for Alice
9: var Pred; � Dictionary with predictions for Alice
10: var r̄; � Average rating for each user
11: for i : item in I do
12: Pred[i] = r̄A +

∑
B∈NA τ(A,B) · (rB,i − r̄B)∑

B∈NA |τ(A,B)|
; (2)

13: end for
14: φA = Pred.sortByV alue(ascending = false);
15: RA = φA[: N ] � Top N recommendations
16: return: RA;

2.2 Differential Privacy
Differential privacy [14] was initially devised in a context

where statistical information about a database is released
without revealing information about its individual entries.
Differential privacy provides formal privacy guarantees that

3MD is typically a sparse matrix. If u has not rated i,
we use the average rating of i as ru,i to complete MD.
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Algorithm 2 Item-based CF
Input: I: Set of all items; U : Set of all users; Y : Set of profiles

of all items where Yj denotes the list of users who rated an
item with item-id j.

Output: RA: Top-N recommendations for Alice (A)
Phase 1 - Nearest Neighbor Selection: kNN(j,I,Y )
Input: I, Y
Output: k most similar items to item j
1: var τj ; � Dictionary for item similarities with j
2: var r̄; � Average rating for each user
3: for i in I do
4:

τj [i] =

∑
u∈Yj∩Yi (ru,j − r̄u)(ru,i − r̄u)√∑

u∈Yj (ru,j − r̄u)2
√∑

u∈Yi (ru,i − r̄u)2
(3)

5: end for
6: γj = τj .sortByV alue(ascending = false);
7: Nj = γj [: k] � Top k neighbors
8: return: Nj ;
Phase 2 - Recommendation: Top-N(Y ,I)
Input: I, Y
Output: Top-N recommendations for Alice
9: var Pred; � Dictionary with predictions for Alice
10: var r̄; � Average rating for each item
11: for i : item in I do
12: Pred[i] = r̄i +

∑
j∈Ni τ(i, j) · (rA,j − r̄j)∑

j∈Ni |τ(i, j)|
; (4)

13: end for
14: φA = Pred.sortByV alue(ascending = false);
15: RA = φA[: N ] � Top N recommendations
16: return: RA;

do not depend on an adversary’s background knowledge (in-
cluding access to other databases) or computational power.
More specifically, differential privacy is defined as follows.

DEFINITION 1 (Differential Privacy [14]). A random-
ized function R ensures ε-differential privacy if for all
datasets D1 and D2, differing on at most one user profile,
and all t ∈ Range(R), the following inequality always holds:

Pr[R(D1) = t]

Pr[R(D2) = t]
≤ exp(ε) (5)

2.3 Heterogeneous Recommendation Problem
Without loss of generality, we formulate the problem us-

ing two domains, referred to as the source domain (DS) and
the target domain (DT ). We use superscript notations S

and T to differentiate the source and the target domains.
We assume that users in US and UT overlap, but IS and
IT have no common items. This captures the most com-
mon heterogeneous personalization scenario in e-commerce
companies such as Amazon or eBay nowadays. The het-
erogeneous recommendation problem can then be stated as
follows.

PROBLEM 1. Given any source domain DS and any tar-
get domain DT , the heterogeneous recommendation problem
consists in recommending items in IT to users in US based
on the preferences of US for IS, UT for IT and US ∩ UT
for IS ∪ IT .
In other words, we aim to recommend items in IT to a

user who rated a few items (sparsity) or no items (cold-start)
in IT . Figure 1(a) conveys the scenario that illustrates this
problem. The goal is to recommend new relevant items from
DT (e.g., books) either to Alice who never rated any book
(cold-start) or to Bob who rated only a single book (spar-
sity). Both the users rated items in DS (e.g., movies).

Figure 2: Layer-based pruning in X-Map.

3. X-Sim
In this section, we present X-Sim, our novel similarity

metric designed for heterogeneous recommendation along
with our meta-path pruning technique.

3.1 Baseline Similarity Graph
We first build a baseline similarity graph where the ver-

tices are the items and the edges are weighted by the simi-
larities. We could use here any classical item-item similarity
metric like Cosine, Pearson, or Adjusted-cosine [29] for base-
line similarity computations. We choose to use adjusted-
cosine for it is considered the most effective [29]:

sac(i, j) =

∑
u∈Yi∩Yj (ru,i − r̄u)(ru,j − r̄u)√∑

u∈Yi(ru,i − r̄u)2
√∑

u∈Yj (ru,j − r̄u)2
(6)

In this first step, we compute the (baseline) similarities by
integrating both DS and DT as a single domain. We denote
by Gac

4 the resulting similarity graph in which any two
items are connected if they have common users. As shown in
Figure 1(b), the limitation of adjusted-cosine similarity leads
to sparse connections in Gac. We address this sparsity issue
of Gac precisely by extending it with meta-paths connecting
both domains.
Clearly, a brute-force scheme considering all possible meta-

paths would be computationally intractable and not scal-
able. Assuming m items in the database, the time com-
plexity of such a brute-force scheme (computing similarity
for every pair of items) would be O(m2), which is not suit-
able for big datasets like the Amazon one with millions of
items. X-Map uses a layer-based technique to prune the
number of meta-paths, thereby leading to O(km) ' O(m)
time complexity where k ≪ m.

3.2 Layer-based Pruning
Based on the baseline similarity graph, we determine what

we call bridge items, namely any item i in a domain D which
connects to some item j in another domain D′. Both i and j
are bridge items in this case. These bridge items are ascer-
tained based on the overlapping users from both domains.
We accordingly call any item that is not a bridge item a
non-bridge item.

X-Map’s pruning technique partitions the items from DS
and DT into six possible layers, based on their connections
with other items, as we explain below. In turn, the items in
each domain, say D, are divided into three layers (Figure 2).
• BB-layer. The (Bridge, Bridge)-layer consists of the bridge

4Here ac denotes adjusted cosine.
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items of D connected to the bridge items of another do-
main.
• NB-layer. The (Non-bridge, Bridge)-layer consists of the
non-bridge items of D which are connected to bridge items
of D.
• NN-layer. The (Non-bridge, Non-bridge)-layer consists
of the non-bridge items of D which are not connected to
other bridge items.
X-Map then considers only the paths crossing different

layers, which we call meta-paths. Since we use a k-nearest
neighbor method in X-Map, each item i in layer l is con-
nected to the top-k items from every neighboring layer l′

based on the item-item similarities. We describe our lay-
ered meta-path selection in more details in § 5.

3.3 X-Sim: A Novel Similarity Metric
Consider any two items i and j. We denote by Yi≥ī the

set of users who rated item i higher than or equal to the
average rating for i over all the users in the database who
rated i. We also denote by Yi<ī as the set of users who rated
item i lower than the average rating for i. Additionally, we
denote by |Yi| the cardinality of the set Yi.

DEFINITION 2 (Weighted Significance). Given any pair
of items i and j, we define weighted significance (Si,j) as the
number of users who mutually like or dislike this given pair.
Formally, we define the weighted significance (Si,j) between
i and j as follows.

Si,j =
∣∣Yi≥ī ∩ Yj≥j̄∣∣︸ ︷︷ ︸

Mutual like

+
∣∣Yi<ī ∩ Yj<j̄∣∣︸ ︷︷ ︸
Mutual dislike

Intuitively, a higher significance value implies higher impor-
tance of the similarity value. For example, a similarity value
of 0.5 between an item-pair (i,j) with Si,j = 1000 is more
significant than a similarity value of 0.5 between an item-
pair (i,k) with Si,k = 1 (for the latter may be a result of
pure coincidence). 5

DEFINITION 3 (Meta-path). Given G and its six corre-
sponding layers of items, a meta-path consists of at most
one item from each layer.
For every meta-path p = i1 ↔ i2 . . .↔ ik, we compute the

meta-path-based similarity sp, weighted by its significance
value, as follows.

sp =

∑t=k−1
t=1 Sit,it+1 · sac(it, it+1)∑t=k−1

t=1 Sit,it+1

For each pair of items (i, j) from different domains, if i,
j are not connected directly, we aggregate the path similar-
ities of all meta-paths between i and j. Due to the differ-
ent lengths and similarities for meta-paths, we give different
weights to different meta-paths. Shorter meta-paths pro-
duce better similarities in recommenders [27, 34] and hence
are preferred over longer ones. We now explain the scheme
behind assigning these weights and thereby computing the
X-Sim values.

DEFINITION 4 (Normalized Weighted Significance).
Given any pair of items i and j, we define normalized
weighted significance (Ŝi,j) between i and j as their sig-
nificance value weighted by the inverse of number of users
rating either i or j. Formally, we denote normalized
weighted significance as follows.

5This concept is analogous to statistical significance used
in hypothesis testing.

Ŝi,j =
Si,j

n(Yi ∪ Yj)
Next, we determine the notion of path certainty (cp) of a

meta-path to take into account the factor of varying path
lengths. Path certainty measures how good a path is for the
similarity computations.

DEFINITION 5 (Path Certainty). Given any meta-path
(p = i1 ↔ i2 . . . ↔ ik), we compute the path certainty (cp)
of the meta-path p as the product of the normalized weighted
significance between each consecutive pair of items in the
path p. Formally, we define the path certainty as follows.

cp =

t=k−1∏
t=1

Ŝit,it+1

It is important to note that the product of the normalized
weighted significance values inherently incorporates the path
length in our path certainty metric. Hence, shorter paths
have higher weights compared to longer ones. Finally, we
define our X-Sim metric as follows.

DEFINITION 6 (X-Sim). Let P (i, j) denote the set of all
meta-paths between items i and j. We define the X-Sim for
the item pair (i,j) as the path similarity weighted by the path
certainty for all paths in P (i, j). Formally, we define X-Sim
for any given pair of items i and j as follows.

X-Sim(i, j) =

∑
p∈P (i,j)

cp · sp∑
p∈P (i,j)

cp

Here, X-Sim(i,j) denotes the meta-path-based heteroge-
neous similarity between any two items i and j. X-Sim is
then utilized to build the artificial profiles for users (AlterE-
gos). Note that a trivial transitive closure over similarities
would not take into account the above-mentioned factors,
which would in turn impact the heterogeneous similarities
and consequently the recommendation quality.

4. RECOMMENDATION
We show in this section how to leverage our X-Sim metric

to generate artificial (AlterEgo) profiles of users in domains
where these users might not have any activity yet. For peda-
gogical reasons, we first present the non-private (NX-Map)
scheme, and then the extensions needed for the private (X-
Map) one.

4.1 Similarity Computation Phase
In this phase, X-Map treats both the source and target

domains as a single aggregated domain in order to com-
pute pairwise item similarities, called baseline similarities.
Basically, X-Map computes the adjusted cosine similarities
between the items in IS ∪ IT based on the preferences of
the users in US ∪ UT for these items. We distinguish the
following two types of similarities:
(a) Homogeneous similarities are computed between items

in the same domain. Such similarities are used for intra-
domain extensions in § 5.

(b) Heterogeneous similarities are computed between items
in different domains. Such similarities are used for
cross-domain extensions in § 5.

4.2 X-Sim Computation Phase
After the computation of the baseline item-item similari-

ties, X-Map uses the X-Sim metric within a single domain
to extend the connections between the bridge items of a
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domain and other items within the same domain. Then,
X-Map uses the X-Sim metric to extend the similarities be-
tween items across domains (we come back to this in more
details in § 5). After the heterogeneous similarity extension,
each item in source domain (DS) has a corresponding set
of items in target domain (DT ) with quantified (positive or
negative) X-Sim values.

4.3 AlterEgo Generation Phase
In this phase, the profile of Alice (in DS) is mapped to

her AlterEgo profile (in DT ) as shown in Figure 3. We first
present the non-private case, and then discuss the private
one.
NX-Map AlterEgo generation. The non-private map-
ping is performed in two steps.
Replacement selection. In this step, for every item i in
DS , we determine the replacement item j in DT . Here, j is
the heterogeneous item which is most similar to i based on
the heterogeneous similarities computed using X-Sim.
AlterEgo profile construction. We then replace every item

rated by Alice in DS with the most similar item in DT com-
puted in the previous step. This item replacement induces
the AlterEgo profile 6 of Alice in the target domain as shown
in Figure 3.
This AlterEgo profile of Alice is the mapped profile of

Alice from the source domain to the target domain. Note
that the AlterEgo profiles could be incrementally updated
to avoid re-computations in X-Map.

Figure 3: Alice’s AlterEgo profile (in target domain)
mapped from her original profile (in source domain).

X-Map AlterEgo generation. We now explain how we
achieve the differentially private mapping.
Private replacement selection. We apply an obfuscation

mechanism, depending on the meta-path-based heteroge-
neous similarities, to design our differentially private re-
placement selection technique (Algorithm 3). Note that
standard differentially private techniques consisting, for ex-
ample, in adding noise based on Laplace or Gaussian dis-
tributions would not work here for they would not build a
profile consisting of items in the target domain. The follow-
ing theorem conveys our resulting privacy guarantee.

THEOREM 1. Given any item ti, we denote the global
sensitivity of X-Sim by GS and the similarity between
ti and any arbitrary item tj by X-Sim(ti, tj). Our Pri-
vate Replacement Selection (PRS) mechanism, which out-
puts tj as the replacement with a probability proportional to
exp(

ε·X-Sim(ti,tj)

2·GS ), ensures ε-differential privacy.

Due to space constraints, the full proof is provided in our
companion technical report [1] for interested readers.

6If Alice has rated a few items in DT , then the mapped
profile is appended to her original profile in DT to build her
AlterEgo profile.

Algorithm 3 Private Replacement Selection Algorithm:
PRS(ti,I(ti),X-Sim(I(ti))) where I(ti) is the set of items in the
target domain with X-Sim values.
Input: ε, ti, I(ti),X-Sim(I(ti)) � ε : Privacy parameter
1: Global sensitivity for X-Sim:
2: GS = |X-Simmax −X-Simmin| = 2
3: for item tj in I(ti) do
4: Allocate probability as:

exp(
ε·X-Sim(ti,tj)

2·GS )∑
tk∈I(ti)

exp(
ε·X-Sim(ti,tk)

2·GS )

5: end for
6: Sample an element t from I(ti) according to their probability.
7: return: t; � ε-differentially private replacement for ti

AlterEgo profile construction. In this step, we replace ev-
ery item rated by Alice in DS with the item in DT returned
by the PRS mechanism in the previous step. This item
replacement scheme produces a private AlterEgo profile of
Alice in the target domain.
Note that this private AlterEgo profile protects the pri-

vacy of the straddlers, users who rated in both the domains,
as the ratings of these users are used to compute the het-
erogeneous similarities leaving their privacy at risk [27]. In
addition, if the application domains are typically owned by
different companies like Netflix and Last.fm, then this mech-
anism aids the exchange of AlterEgo profiles while prevent-
ing curious or malicious users to infer the preferences of
others.

4.4 Recommendation Phase
We now present the main steps of our recommendation

scheme. Again, we first explain the non-private case followed
by the private one.
NX-Map recommendation. The AlterEgo profile of Al-
ice is used along with the original profiles in the target do-
main to compute the top-k similar users for Alice and then
compute recommendations for Alice leveraging the profiles
of the k most similar users from the target domain as shown
in Algorithm 1. The item-based version of X-Map utilizes
this AlterEgo profile and computes the recommendations as
demonstrated in Algorithm 2.
Furthermore, the AlterEgo profile in the target domain

also retains the temporal behaviour [12] of the user in the
source domain due to the item-to-item mapping. We incor-
porate this temporal behaviour in the item-based version of
X-Map by adding a time-based weight to the ratings to im-
prove the recommendation quality further. The predictions
(Equation 4), weighted by the time-based parameter (α), for
the ratings are computed as follows.

Pred[i](t) = r̄i +

∑
j∈Ni τ(i, j) · (rA,j − r̄j) · e−α(t−tA,j)∑

j∈Ni |τ(i, j)| · e−α(t−tA,j)

(7)
Note that the prediction has a time-based relevance factor
(e−α(t−tA,j)) with a decaying rate controlled by the param-
eter α to determine each rating’s weight for the prediction
computation. Here, tA,j denotes the timestep 7 when user A
rated the item j. This specific time-based CF technique is
applicable to the item-based CF approach as the prediction
computation (Equation 7) for a user A is dependent only on
her previous ratings for similar items and thereby leverages

7The timestep is a logical time corresponding to the ac-
tual timestamp of an event.
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time as observed by A.
X-Map recommendation. The private AlterEgo pro-
file of Alice is used along with the original profiles in the
target domain to compute the recommendations for Alice.
To demonstrate the adaptability of our heterogeneous rec-
ommender, the recommendation step is integrated with a
differentially private approach, inspired by [39, 40], to pro-
tect the privacy of users in the target domain against other
curious users. We implemented both item-based and user-
based versions of X-Map. The item-based recommenda-
tion mechanism is demonstrated in Algorithm 5 which uti-
lizes the PNSA mechanism (Algorithm 4). We first present
our similarity-based sensitivity, required for the private ap-
proach, along with its correctness proof sketch. 8

DEFINITION 7 (Local Sensitivity). For any given func-
tion f : R → R and a dataset D, the Local Sensitivity of f
is defined as LSf = max

D′
‖f(D)− f(D′)‖1, where D and D′

are neighboring datasets which differ at one user profile.
We define a rating vector rti = [rtai , ..., rtxi , rtyi ] which

consists of all the ratings for an item ti ∈ D. Similarly,
we define a rating vector r′ti for ti ∈ D′. Since we use
adjusted-cosine for X-Sim, a rating rtxi is the result after
subtracting the average rating of user x (r̄x) from the actual
rating provided by x for an item i. The similarity-based
sensitivity is formulated as follows.

THEOREM 2 (Similarity-based sensitivity). Given any
score function q : R → R and a dataset D, we formulate
the similarity-based sensitivity corresponding to a score
function qi(I, tj) for a pair of items ti and tj as:

SS(ti, tj) = max{maxux∈Uij (
rtxi × rtxj

‖ r′ti ‖ × ‖ r
′
tj
‖ ),

maxux∈Uij (
rti · rtj

‖ r′ti ‖ × ‖ r
′
tj
‖ −

rti · rtj
‖ rti ‖ × ‖ rtj ‖

)}

The full proof is provided in our companion technical re-
port [1] for interested readers.
We use the notion of truncated similarity [39, 40] (Step 7

in Algorithm 4) along with our similarity-based sensitivity
to enhance the quality of selected neighbors. The two theo-
rems which prove that this truncated similarity along with
our similarity-based sensitivity can enhance the quality of
neighbors are as follows.

THEOREM 3. Given any item ti, we denote its k neigh-
bors by Nk(ti), the maximal length of all the rating vec-
tor pairs by |v|, the minimal similarity among the items in
Nk(ti) by Simk(ti) and the maximal similarity-based sensi-
tivity between ti and other items by SS. Then, for a small
constant 0 < ρ < 1, the similarity of all the items in Nk(ti)
are larger than (Simk(ti) − w) with a probability at least
1− ρ, where w = min(Simk(ti),

4k×SS
ε′ × ln k×(|v|−k)

ρ
).

Intuitively, Theorem 3 implies that the selected neighbors
have similarities greater than some threshold value (Simk(ti)−
w) with a high probability (1− ρ).

THEOREM 4. Given any item ti, for a small constant
0 < ρ < 1, all items with similarities greater than (Simk(ti)+
w) are present in Nk(ti) with a probability at least 1−ρ where
w = min(Simk(ti),

4k×SS
ε′ × ln k×(|v|−k)

ρ
).

8Our similarity-based sensitivity is slightly different from
the recommendation-aware one presented in [39,40].

Intuitively, Theorem 4 implies that the items with sim-
ilarities greater than some threshold value (Simk(ti) + w)
are selected as neighbors with a high probability (1− ρ).
Both theorems prove that the truncated similarity along

with our similarity-based sensitivity provides neighbors of
good quality while providing ε′/2-differential privacy. The
predictions are computed leveraging the PNCF mechanism
(Algorithm 5) which adds Laplacian noise to provide ε′/2-
differential privacy. By the composition property of differen-
tial privacy, PNSA and PNCF together provide ε′-differential
privacy. The item-based version of X-Map includes the ad-
ditional feature of temporally relevant predictions to boost
the recommendation quality traded for privacy.
We provide here only two illustrations (temporal dynam-

ics and differential privacy) of the adaptability of our het-
erogeneous recommender due to space constraints. Since the
AlterEgo profile could be considered as an actual profile in
the target domain, thereby any homogeneous recommenda-
tion algorithm [2] like Matrix Factorization techniques, can
be applied in the target domain to generate the recommen-
dations. We provide a demonstration regarding how to use
Spark-MLlib’s matrix factorization technique with X-Map
in our GitHub repository [1].

Algorithm 4 Private Neighbor Selection : PNSA(ti,I,Sim(ti))
where I is the set of all items.
Input: ε′, w, ti, I,Sim(ti), k � ε′ : Privacy
1: C1 = [tj |s(ti, tj) ≥ Simk(ti)− w, tj ∈ I]
2: C0 = [tj |s(ti, tj) < Simk(ti)− w, tj ∈ I]
3: w = min(Simk(ti),

4k×SS
ε′ × ln k×(|v|−k)

ρ
)

4: for N=1:k do
5: for item tj in I do
6: SS(ti, tj) = max{maxux∈Uij (

rtxi × rtxj
‖ r′ti ‖ × ‖ r

′
tj
‖

),

maxux∈Uij (
rti · rtj

‖ r′ti ‖ × ‖ r
′
tj
‖
−

rti · rtj
‖ rti ‖ × ‖ rtj ‖)

)}

7: Ŝim(ti, tj) = max(Sim(ti, tj),Simk(ti)− w)

8: Allocate probability as: � ε′

2k
-Privacy

exp(
ε′·Ŝim(ti,tj)

2k×2SS(ti,tj)
)∑

l∈C1

exp(
ε′·Ŝim(ti,tl)

2k×2SS(ti,tl)
) +

∑
l∈C0

exp(
ε′·Ŝim(ti,tl)

2k×2SS(ti,tl)
)

9: end for
10: Sample an element t from C1 and C0 without replacement

according to their probability.
11: Nk(ti) = Nk(ti) ∪ t
12: end for
13: return: Nk(ti);

5. IMPLEMENTATION
In this section, we describe our implementation of X-

Map. Figure 4 outlines the four main components of our
implementation: baseliner, extender, generator and recom-
mender. We describe each of these components along with
their functionality.

5.1 Baseliner
This component computes the baseline similarities lever-

aging the adjusted cosine similarity (Equation 3) between
the items in the two domains. The baseliner splits the item-
pairs based on whether both items belong to the same do-
main or not. If both items are from the same domain, then
the item-pair similarities will be delivered as homogeneous
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Algorithm 5 Private Recommendation: PNCF(PA, I)
where PA denotes the AlterEgo profile of Alice, and I denotes
the set of all items.
1: var P; � Dictionary with predictions for Alice
2: var τ ; � User similarities
3: var r̄; � Average rating for each items
4: var ε′ � Degree of privacy
5: var Nk � Private neighbors using PNSA
6: for ti : item in PA do
7: Nk(ti) = PNSA(ti, I,Sim(ti))
8: for tj : item in Nk(ti) do

9: P [tj ] = r̄tj+

∑
tk∈Nk(tj)

(τ(tk,tj)+Lap(
SS(tk,tj)

ε′/2 ))·(rA,tk−r̄tk )∑
tk∈Nk(tj)

|τ(tk,tj)+Lap(
SS(tk,tj)

ε′/2 )|

10: end for
11: end for
12: RA = P.sortByV alue(ascending = false);
13: return: RA[: N ]; � Top-N recommendations for Alice

Figure 4: The components of X-Map: Baseliner,
Extender, Generator, Recommender.

similarities. If one of the items belongs to a different do-
main, then the item-pair similarities will be delivered as
heterogeneous similarities. The baseline heterogeneous sim-
ilarities are computed based on the user overlap. 9

5.2 Extender
This component extends the baseline similarities both within

a domain and across domains. The items in each domain are
divided into three layers based on our layer-based pruning
technique as shown in Figure 2. For every item in a specific
layer, the extender computes the top-k similar items for the
neighboring layers. For instance, for the items in the BB-
layer of DS , the extender computes the top-k similar ones
from items in the BB-layer in DT and also the top-k similar
ones from the items in the NB-layer in DS .
Intra-domain extension. In this step, the extender com-
putes the X-Sim similarities for the items in the NN-layer
in DS and the items in the BB-layer of DS via the NB-
layer items of DS . Similar computations are performed for
domain DT .
Cross-domain extension. After the previous step, the
extender updates the NB and NN layers in both domains
based on the new connections (top-k). Then, it updates the
connections between the items in NB and BB layers in one
domain and the items in NB and BB layers in the other one.
At the end of the execution, the extender outputs, for

every item ti in DS , a set of items I(ti) in DT with some
quantified (positive or negative) X-Sim values with ti.

9These are the baseline similarities without any extension
or enhancements.

5.3 Generator
The generator performs the following computational steps.

Item mapping. The Generator maps every item in one
domain (say DS) to its most similar item (for NX-Map) or
its private replacement (for X-Map) in the other domain
(DT ). After, the completion of this step, every item in one
domain has a replacement item in the other domain. 10

Mapped user profiles. The Generator here creates an
artificial profile (AlterEgo) of a user in a target domain DT
from her actual profile in the source domain DS by replacing
each item in her profile in DS with its replacement in DT
as shown in Figure 3. Finally, after this step, the Generator
outputs the AlterEgo profile of a user in the target domain
where she might have little or no activity yet.

5.4 Recommender
This component utilizes the artificial AlterEgo profile cre-

ated by the Generator to perform the recommendation com-
putation. It can implement any general recommendation
algorithm for its underlying recommendation computation.
In this paper, we implemented user-based and item-based
CF schemes. For NX-Map, the recommender uses Algo-
rithm 1 (user-based CF) or Algorithm 2 (item-based CF)
in the target domain. For X-Map, the recommender also
uses the PNSA algorithm along with the PNCF algorithm to
generate recommendations either in a user-based manner or
in an item-based manner. Additionally, for both NX-Map
and X-Map, the item-based CF recommender leverages the
temporal relevance to boost the recommendation quality. It
is important to note that X-Map runs periodically in an
offline manner to update the predicted ratings. The top-10
items (sorted by the predicted ratings), not-yet-seen by the
current user, would be recommended to users in X-Map.

6. EXPERIMENTAL EVALUATION
In this section, we report on our empirical evaluation of X-

Map on a cluster computing framework, namely Spark [38],
with real world traces from Amazon [25] to analyze its pre-
diction accuracy, privacy and scalability. We choose Spark
as our cluster computing framework since the underlying
data processing framework to support X-Map must be scal-
able and fault-tolerant.

6.1 Experimental Setup
Experimental platform. We perform all the experiments
on a cluster of 20 machines. Each machine is an Intel
Xeon CPU E5520 @2.26GHz with 32 GB memory. The ma-
chines are connected through a 2xGigabit Ethernet (Broad-
com NetXtremeII BCM5716).
Datasets. We now provide an overview of the datasets used
in our experiments.
Amazon. We use two sets of real traces from Amazon

datasets [25]: movies and books. We use the ratings for
the period from 2011 till 2013. The movies dataset consists
of 1,671,662 ratings from 473,764 users for 128,402 movies
whereas the books dataset consists of 2,708,839 ratings from
725,846 users for 403,234 books. The ratings vary from 1 to 5
with an increment of 1. The overlapping users in these two
datasets are those Amazon users who are present in both

10We could also choose a set of replacements for any item,
using X-Sim, in the target domain to have more diversity.
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datasets and are ascertained using their Amazon customer-
ids. The number of such overlapping users from both the
domains is 78,201.
Movielens. We use the Movielens dataset (ML-20M) for

evaluating performance of X-Map within a single domain.
This dataset consists of 20,000,263 ratings from 138,493
users for 27,278 movies. In this dataset, the ratings also
vary from 1 to 5 with an increment of 1.
Evaluation metrics. We evaluate X-Map along three
complementary metrics: (1) the recommendation quality as
perceived by the users in terms of prediction accuracy, (2)
the degree of privacy provided to the end-users in terms
of the privacy parameters (ε, ε′), and (3) the scalability in
terms of speedup achieved in X-Map when increasing the
number of machines in the cluster.
Accuracy. We evaluate the accuracy of the predictions in

terms of Mean Absolute Error (MAE). MAE computes the
average absolute deviation between a predicted rating and
the user’s true rating. MAE is a standard metric used to
evaluate state-of-the-art recommenders [16, 31]. We assume
that the predicted rating for an item i is denoted by pi and
the actual rating is denoted by ri in the test dataset. Then,
the MAE for a test dataset, with N ratings, is computed
as:

∑N
i=1 |pi−ri|
N . Given that rmin and rmax denotes the

minimum and maximum ratings respectively, the following
inequality always holds: 0 < MAE < (rmax − rmin). The
lower the MAE, the more accurate the predictions.
Privacy. Our differential privacy guarantees are param-

eterized as follows: ε for the PRS technique (Algorithm 3)
used for AlterEgo generation and ε′ for the PNCF (Algo-
rithm 5) used for the private recommendation generation
in X-Map. According to the privacy literature [13, 39, 40],
ε = 1 or less would be suitable for privacy preserving pur-
poses.
Speedup. We evaluate the speedup in terms of the time

required for sequential execution (T1) and the time required
for parallel execution with p processors (Tp). Amdahl’s law
models the performance of speedup (Sp) as follows.

Sp =
T1

Tp
Due to the considerable amount of computations for hetero-
geneous recommendation on the Amazon dataset, we com-
pare the speedup on p processors with respect to a minimum
of 5 processors (T5) instead of a sequential execution (T1).
Competitors. We now present the recommenders against
which we compare X-Map. Existing recommendation schemes
over several domains can be classified as follows.
Linked-domain personalization. The goal here is to rec-

ommend items in the target domain (DT ) by exploring rat-
ing preferences aggregated from both source and target do-
mains, i.e, to recommend items in IT to users in US based on
the preferences of users in US ∪ UT for items in IS ∪ IT . In
this approach, ratings from multiple domains are aggregated
into a single domain. Then, a traditional CF mechanism
can be applied over this aggregated single domain [11, 29].
Item-based-kNN is a linked-domain personalization ap-
proach [11, 29] where we use item-based collaborative fil-
tering over the aggregated ratings from both the domains.
Heterogeneous recommendation. The goal here is to rec-

ommend items in IT to users in US based on the prefer-
ences of US for IS , UT for IT and US ∩ UT for IS ∪ IT .
In this approach, the user similarities are first computed
in both source and target domains. These domain-related

similarities are then aggregated into the overall heteroge-
neous similarities. Finally, the k-nearest neighbors, used
for recommendation computations, are selected based on
these heterogeneous similarities [6]. In the RemoteUser
approach [6], the user similarities in source domain are used
to compute the k nearest neighbors for users who have not
rated in the target domain. Finally, user-based collaborative
filtering is performed.
Baseline prediction. For a sparse dataset, the baseline

is provided by item-based average ratings [5] or user-based
average ratings [22]. The goal here is to predict based on
the average ratings provided by users in US ∪ UT for items
in IS ∪ IT . One of the most basic prediction schemes is
the ItemAverage scheme where we predict that each item
will be rated as the average over all users who rated that
item [5]. Note that though this technique gives a very good
estimate of the actual rating but it is not personalized due
to same predictions for all the users.
We compare X-Map with these three other systems namely:

Item-based-kNN, RemoteUser and ItemAverage.
Evaluation scheme. We partition the set of common users
who rated both movies and books into training and test
sets. For the test users, we hide their profile in the tar-
get domain (say books) and use their profile in the source
domain (movies) to predict books for them. This strategy
evaluates the accuracy of the predictions if the user did not
rate any item in the target domain. Hence, we can evalu-
ate the performance of X-Map in the scenario where the
test users did not rate any item in the target domain (cold-
start). Additionally, if we hide part of the user profile in the
target domain, then we can evaluate how X-Map handles
the scenario where the test users rated very few items in the
target domain (sparsity). Furthermore, we denote the item-
based variant of X-Map as X-Map-ib and the user-based
variant as X-Map-ub. Similarly for NX-Map, we denote
the item-based variant of NX-Map as NX-Map-ib and the
user-based variant as NX-Map-ub.

6.2 Temporal Dynamics
In this section, we observe the temporal effect of users,

retained by the AlterEgos across domains, in X-Map. We
leverage the item-based recommender, and tune the tem-
poral parameter α accordingly. Figure 5 demonstrates this
temporal relevance effect where α varies between 0 (no tem-
poral effect) to 0.2. Note that an item-based CF approach
computes the predictions leveraging the target user’s very
few observed ratings on the nearest neighbors and given the
very limited size of this set of ratings, any further amplifi-
cation of α impacts the predictions negatively as it reduces
the contribution of old ratings furthermore. We provide the
optimally tuned parameter (αo) for our experiments, shown
in Figure 5, to achieve optimal recommendation quality.

6.3 Privacy
In this section, we tune the privacy parameters (ε, ε′) for

X-Map. Figures 6 and 7 demonstrate the effect of tuning
the privacy parameters on the prediction quality in terms
of MAE. We observe that the recommendation quality im-
proves (lower MAE) as we decrease the degree of privacy
(higher ε, ε′). It is important to note that X-Map inherently
transforms to NX-Map as the privacy parameters increase
furthermore (lower privacy guarantees). For the following
experiments, we select the privacy parameters as follows.
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Figure 5: Temporal relevance (X-Map, NX-Map).
For X-Map-ib, we select ε = 0.3 and ε′ = 0.8. For X-Map-
ub, we select ε = 0.6 and ε′ = 0.3. 11
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Figure 7: Privacy-quality trade-off in X-Map-ub.

6.4 Accuracy
We now compare the accuracy of the predictions of X-

Map and NX-Map with the competitors.
Impact of top-k neighbors. First, we evaluate the qual-
ity in terms of MAE when the size of k (neighbors in Equa-
tion 7) is varied. Figure 8(a) demonstrates that X-Map-ub
and NX-Map-ub outperform the competitors by a signifi-
cant margin of 30% where the source domain is book and
the target domain is movie. Also, Figure 8(b) shows that
X-Map performs better than the non-private competitors
whereas NX-Map again outperforms the competitors by a
margin of 18% where the source domain is movie and the tar-
get domain is book. A higher number of neighbors induces
more connections across the domains (Figure 2) and hence
enables X-Map to explore better meta-paths between items.
Moreover, better meta-paths lead to better meta-path based
similarities and thereby superior recommendation quality.
We consider k as 50 for all further experiments.

11These parameters are selected from a range of possible
values providing quality close to the optimal one as observed
from Figures 6 and 7.
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Figure 8: MAE comparison with varying k.

Impact of overlap. We now evaluate how X-Map and
NX-Map perform when the number of users in the over-
lap increases. Intuitively, a good approach should provide
better accuracy as more and more users connect the do-
mains. These increasing connections improve the baseline
heterogeneous similarities which are then leveraged by X-
Sim to generate better meta-path based similarities across
the domains. Figure 9 shows that the prediction error of
X-Map decreases as there are more users connecting the
domains. This observation demonstrates that the quality
of the AlterEgo profiles improves when the overlap size in-
creases. Furthermore, we observe in Figure 9(a) that the
user-based models show more improvement than the item-
based ones. This behaviour occurs as the item similarities
are more static than the user similarities [19].
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Figure 9: MAE comparison (Overlap size).12

Impact of sparsity. We now evaluate how X-Map per-
forms when the size of the training profile of a user, in the
target domain, increases from a minimum of 0 (cold-start
situation) to a maximum of 6 (low sparsity), in addition to
her profile in the source domain 13. This experiment also
highlights the performance of X-Map when the sparsity of
the dataset decreases. Additionally, we evaluate the accu-
racy improvement of X-Map over a single domain solution,
item-based kNN in the target domain denoted by KNN-sd,
as well as over a heterogeneous solution, item-based kNN
in the aggregated domain denoted by KNN-cd. Figure 10
demonstrates that KNN-sd and KNN-cd are outperformed
by NX-Map and X-Map. Furthermore, we observe a rela-
tively fast improvement for our non-private item-based tech-
nique (NX-Map-ib) due to the improvement in item simi-
larities with lower sparsity.

6.5 Homogeneity
We now evaluate the ability of X-Map to be applied to a

homogeneous setting consisting of a single domain. Depend-

12Training set size denotes overlap size.
13We consider only those users who rated at least 10 prod-

ucts in each domain.

1079



 0.4

 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 0.68

 0.72

 0  1  2  3  4  5  6

M
AE

Items in auxiliary profile

(a) Source: Book Target: Movie
X-MAP-IB X-MAP-UB NX-MAP-UB

 0.4
 0.44
 0.48
 0.52
 0.56

 0.6
 0.64
 0.68
 0.72
 0.76

 0  1  2  3  4  5  6
Items in auxiliary profile

(b) Source: Movie Target: Book
KNN-CD KNN-SD NX-MAP-IB

Figure 10: MAE comparison based on profile size.

ing on the structural property of the data (e.g., genres), any
domain could be partitioned into multiple sub-domains. For
this experiment, we use the ML-20M dataset which consists
of 19 different genres. We partition this dataset into two
sub-domains D1 and D2 by sorting the genres based on the
movie counts per genre and allocating alternate sorted gen-
res to the sub-domains as shown in Table 2. Note that a
movie can have multiple genres. If a movie m belongs to
both the sub-domains, we add it to the sub-domain which
has the most number of genres overlapping with m’s set of
genres and to any of the two sub-domains in case of equal
overlap with both sub-domains. Sub-domain D1 consists of
15, 119 movies with 138, 492 users whereas sub-domain D2

consists of 11, 383 movies with 138, 483 users.

Table 2: Sub-domains (D1 and D2) based on genres
in Movielens 20M dataset.

D1 D2

Genres Movie counts Genres Movie counts
Drama 13344 Comedy 8374
Thriller 4178 Romance 4127
Action 3520 Crime 2939
Horror 2611 Documentary 2471

Adventure 2329 Sci-Fi 1743
Mystery 1514 Fantasy 1412
War 1194 Children 1139

Musical 1036 Animation 1027
Western 676 Film-Noir 330
Other 196 – –

We compare X-Map and NX-Map with Alternating Least
Square from MLlib (MLlib-ALS). We observe from Ta-
ble 3 that NX-Map significantly outperforms MLlib-ALS
whereas X-Map, even with the additional privacy overhead,
almost retains the quality of non-private MLlib-ALS.

Table 3: MAE comparison (homogeneous setting on
ML-20M dataset).

NX-Map X-Map MLlib-ALS
MAE 0.6027 0.6830 0.6729

6.6 Scalability
In this section, we evaluate the scalability of X-Map in

terms of the speedup achieved with an increasing number
of computational nodes. We also compare our scalability
with a state-of-the-art homogeneous recommender leverag-
ing Spark to implementAlternating-Least-Squares based ma-
trix factorization (MLlib-ALS). For the ALS recommender,
we use the aggregated ratings over both the domains (linked-
domain personalization). Figure 11 demonstrates the near-
linear speedup of X-Map. Additionally, we see that X-Map
outperforms the scalability achieved by MLlib-ALS. Note

that X-Map is periodically executed offline and the compu-
tation time for the recommendations, corresponding to all
the users in the test set, is around 810 seconds on 20 nodes.
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Figure 11: Scalability of X-Map.

6.7 Online Deployment
We deployed an online recommendation platform (http:

//x-map.work/) leveraging X-Sim and made it available
to users. We observe that this recommender indeed provides
book recommendations like Shutter Island: A Novel when
the user queries for the movie Inception. Besides, it also rec-
ommends the Shutter Island movie as a homogeneous rec-
ommendation. We observe similar results for multiple other
queries.

7. RELATED WORK
Heterogeneous trends. Research on heterogeneous rec-
ommendation is relatively new. There are, however, a few
approaches to tackle the problem which we discuss below.
Smart User Models. González et al. introduced the no-

tion of Smart User Models (SUMs) [15]. The idea is to ag-
gregate heterogeneous information to build user profiles that
are applicable across different domains. SUMs rely on users’
emotional context which are, however, difficult to capture.
Additionally, it has been shown that users’ ratings vary fre-
quently with time depending on their emotions [4].
Web Monitoring. Hyung et al. designed a web agent

which profiles user preferences across multiple domains and
leverages this information for personalized web support [21].
Tuffield et al. proposed Semantic Logger, a meta-data ac-
quisition web agent that collects and stores any information
(from emails, URLs, tags) accessed by the users [36]. How-
ever, web agents are considered a threat to users’ privacy as
users’ data over different e-commerce applications are stored
in a central database administered by the web agent.
Cross-domain Mediation. Berkovsky et al. [6] proposed

the idea of cross-domain mediation to compute recommen-
dations by aggregating data from several recommenders. We
showed empirically that X-Map outperforms cross-domain
mediation in Figures 8 and 9.
In contrast, X-Map introduces a new trend in heteroge-

neous personalization in the sense that the user profile from
a source domain is leveraged to generate an artificial Al-
terEgo profile in a target domain. The AlterEgo profiles
can even be exchanged between e-commerce companies like
Netflix, Last.fm thanks to the privacy guarantee in X-Map.
Merging preferences. One could also view the heteroge-
neous recommendation problem as that of merging single-
domain user preferences. Through this viewpoint, several
approaches can be considered which we discuss below.
Rating aggregation. This approach is based on aggregat-

ing user ratings over several domains into a single multi-
domain rating matrix [6, 7]. Berkovsky et al. showed that
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this approach can tackle cold-start problems in collabora-
tive filtering [7]. We showed empirically that X-Map easily
outperforms such rating aggregation based approaches [6].
Common representation. This approach is based on a

common representation of user preferences from multiple
domains either in the form of a social tag [35] or seman-
tic relationships between domains [23]. Shi et al. devel-
oped a Tag-induced Cross-Domain Collaborative Filtering
(TagCDCF) to overcome cold-start problems in collabora-
tive filtering [32]. TagCDCF exploits shared tags to link
different domains. They thus need additional tags to bridge
the domains. X-Map can bridge the domains based on the
ratings provided by users using its novel X-Sim measure
without requiring any such additional information which is
difficult to collect in practice.
Linked preferences. This approach is based on linking

users’ preferences in several domains [11]. We showed em-
pirically that X-Map outperforms such linked preference
based approaches [11] in Figures 8 and 9.
Domain-independent features. This approach is based on

mapping user preferences to domain-independent features
like personality types [8] or user-item interactions [24]. This
approach again requires additional information like person-
ality scores which might not be available for all users.

8. CONCLUDING REMARKS
We presented X-Map, a scalable and private heteroge-

neous recommender. X-Map leverages a novel similarity
metric X-Sim, identifying similar items across domains based
on meta-paths, to generate AlterEgo profiles of users in do-
mains where these users might not have any activity yet.
We demonstrated that X-Map performs better in terms of
recommendation quality than alternative heterogeneous rec-
ommenders [5, 6, 11]. (Although, not surprisingly, there is a
trade-off between quality and privacy.)
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