
ORPHEUSDB: Bolt-on Versioning for Relational Databases

Silu Huang1, Liqi Xu1, Jialin Liu1, Aaron J. Elmore2, Aditya Parameswaran1

1University of Illinois (UIUC) 2University of Chicago
{shuang86,liqixu2,jialin2,adityagp}@illinois.edu aelmore@cs.uchicago.edu

ABSTRACT
Data science teams often collaboratively analyze datasets, gener-
ating dataset versions at each stage of iterative exploration and
analysis. There is a pressing need for a system that can support
dataset versioning, enabling such teams to efficiently store, track,
and query across dataset versions. We introduce ORPHEUSDB, a
dataset version control system that “bolts on” versioning capabili-
ties to a traditional relational database system, thereby gaining the
analytics capabilities of the database “for free”. We develop and
evaluate multiple data models for representing versioned data, as
well as a light-weight partitioning scheme, LYRESPLIT, to further
optimize the models for reduced query latencies. With LYRESPLIT,
ORPHEUSDB is on average 103× faster in finding effective (and
better) partitionings than competing approaches, while also reduc-
ing the latency of version retrieval by up to 20× relative to schemes
without partitioning. LYRESPLIT can be applied in an online fash-
ion as new versions are added, alongside an intelligent migration
scheme that reduces migration time by 10× on average.

1. INTRODUCTION
When performing data science, teams of data scientists repeat-

edly transform their datasets in many ways, by normalizing, clean-
ing, editing, deleting, and updating one or more data items at a
time; the New York Times defines data science as a step-by-step
process of experimentation on data [5]. The dataset versions gener-
ated, often into the hundreds or thousands, are stored in an ad-hoc
manner, typically via copying and naming conventions in shared
(networked) file systems [12]. This makes it impossible to effec-
tively manage, make sense of, or query across these versions. One
alternative is to use a source code version control system like git
or svn to manage dataset versions. However, source code version
control systems are both inefficient at storing unordered structured
datasets, and do not support advanced querying capabilities, e.g.,
querying for versions that satisfy some predicate, performing joins
across versions, or computing some aggregate statistics across ver-
sions [12]. Therefore, when requiring advanced (SQL-like) query-
ing capabilities, data scientists typically store each of the dataset
versions as independent tables in a traditional relational database.
This approach results in massive redundancy and inefficiencies in

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 10
Copyright 2017 VLDB Endowment 2150-8097/17/06.

storage, as well as manual supervision and maintenance to track
versions. As a worse alternative, they only store the most recent
versions—thereby losing the ability to retrieve the original datasets
or trace the provenance of the new versions.

A concrete example of this phenomena occurs with biologists
who operate on shared datasets, such as a protein-protein interac-
tion dataset [41] or a gene annotation dataset [16], both of which
are rapidly evolving, by periodically checking out versions, per-
forming local analysis, editing, and cleaning operations, and com-
mitting these versions into a branched network of versions. This
network of versions is also often repeatedly explored and queried
for global statistics and differences (e.g., the aggregate count of
protein-protein tuples with confidence in interaction greater than
0.9, for each version) and for versions with specific properties (e.g.,
versions with a specific gene annotation record, or versions with “a
bulk delete”, ones with more than 100 tuples deleted from their
parents).

While recent work has outlined a vision for collaborative data an-
alytics and versioning [12], and has developed solutions for dataset
versioning from the ground up [33, 13], these papers offer partial
solutions, require redesigning the entire database stack, and as such
cannot benefit from the querying capabilities that exist in current
database systems. Similarly, while temporal databases [42, 21, 36,
27] offer functionality to revisit instances at various time intervals
on a linear chain of versions, they do not support the full-fledged
branching and merging essential in a collaborative data analytics
context, and the temporal functionalities offered and concerns are
very different. We revisit related work in Section 6.

The question we ask in this paper is: can we have the best of
both worlds—advanced querying capabilities, plus effective and
efficient versioning in a mature relational database? More specifi-
cally, can traditional relational databases be made to support ver-
sioning for collaborative data analytics effectively and efficiently?

To answer this question we develop a system, ORPHEUSDB1, to
“bolt-on” versioning capabilities to a traditional relational database
system that is unaware of the existence of versions. By doing
so, we seamlessly leverage the analysis and querying capabilities
that come “for free” with a database system, along with efficient
versioning capabilities. Developing ORPHEUSDB comes with a
host of challenges, centered around the choice of the representa-
tion scheme or the data model used to capture versions within a
database, as well as effectively balancing the storage costs with the
costs for querying and operating on versions:

Challenges in Representation. One simple approach of capturing
dataset versions would be to represent the dataset as a relation in
a database, and add an extra attribute corresponding to the version

1Orpheus is a musician and poet from ancient Greek mythology with the ability to
raise the dead with his music, much like ORPHEUSDB has the ability to retrieve old
(“dead”) dataset versions on demand.

1130

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vid

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

ENSP472847 ENSP365773 225 0 73

rid vlist

r1

r7

r2

r3

r 4

r5

r6

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4 }

{v3, v4 }

vid rlist

{r1,r2,r3}

{r2,r3,r 4}

{r3,r5,r6,r7}

{r2,r3,r 4,r5,r6,r7}

v1

v2

v3

v4

v4

v4

v4

v4

v1

v2

a. Table with Versioned Records b. Combined Table c. Data Table + Versioning Table

c.ii. Split-by-rlist

c.i. Split-by-vlist

v3

v3
data attributes versioning attribute

v1

v4

v2

v1

v4

v2

v3

v3

Protein1 Protein2
Neighb
orhood

Cooccu
rrence

Coexpr
ession

vlist

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP261890 0 53 83

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

rid Protein1 Protein2 Neighb
orhood

Cooccu
rrence

Coexpr
ession

ENSP273047 ENSP261890 0 53 0

ENSP273047 ENSP235932 0 87 0

ENSP300413 ENSP274242 426 0 164

ENSP309334 ENSP346022 0 227 975

ENSP273047 ENSP261890 0 53 83

ENSP332973 ENSP300134 0 0 83

ENSP472847 ENSP365773 225 0 73

{v1 }

{v1, v2, v4}

{v1, v2, v3, v4 }

{v2, v4 }

{v3, v4 }

{v3, v4}

{v3, v4}

r1

r7

r2

r3

r 4

r5

r6

Figure 1: Data models for protein interaction data [41]

number, called vid, as shown in Figure 1(a) for simplified protein-
protein interaction data [41]; the other attributes will be introduced
later. The version number attribute allows us to apply selection
operations to retrieve specific versions. However, this approach is
extremely wasteful as each record is repeated as many times as the
number of versions it belongs to. It is worth noting that a times-
tamp is not sufficient here, as a version can have multiple parents (a
merge) and multiple children (branches). To remedy this issue, one
can use the array data type capabilities offered in current database
systems, by replacing the version number attribute with an array at-
tribute vlist containing all of the versions that each record belongs
to, as depicted in Figure 1(b). This reduces storage overhead from
replicating tuples. However, when adding a new version (e.g., a
clone of an existing version) this approach leads to extensive mod-
ifications across the entire relation, since the array will need to be
updated for every single record that belongs to the new version. An-
other strategy is to separate the data from the versioning informa-
tion into two tables as in Figure 1(c), where the first table—the data
table—stores the records appearing in any of the versions, while the
second table—the versioning table—captures the versioning infor-
mation, or which version contains which records. This strategy
requires us to perform a join of these two tables to retrieve any ver-
sions. Further, there are two ways of recording the versioning in-
formation: the first involves using an array of versions, the second
involves using an array of records; we illustrate this in Figure 1(c.i)
and Figure 1(c.ii) respectively. The latter approach allows easy in-
sertion of new versions, without having to modify existing version
information, but may have slight overheads relative to the former
approach when it comes to joining the versioning table and the data
table. Overall, as we demonstrate in this paper, the latter approach
outperforms other approaches (including those based on recording
deltas) for most common operations.

Challenges in Balancing Storage and Querying Latencies. Un-
fortunately, the previous approach still requires a full theta join
and examination of all of the data to reconstruct any given ver-
sion. Our next question is if we can improve the efficiency of the
aforementioned approach, at the cost of possibly additional stor-
age. One approach is to partition the versioning and data tables
such that we limit data access to recreate versions, while keeping
storage costs bounded. However, as we demonstrate in this paper,
the problem of identifying the optimal trade-off between the stor-
age and version retrieval time is NP-HARD, via a reduction from
the 3-PARTITION problem. To address this issue, we develop an ef-
ficient and light-weight approximation algorithm, LYRESPLIT, that
enables us to trade-off storage and version retrieval time, provid-
ing a guaranteed ((1 + δ)`, 1

δ
)-factor approximation under certain

reasonable assumptions—where the storage is a (1 + δ)`-factor of
optimal, and the average version retrieval time is 1

δ
-factor of op-

timal, for any value of parameter δ ≤ 1 that expresses the de-
sired trade-off. The parameter ` depends on the complexity of the

branching structure of the version graph. In practice, this algo-
rithm always leads to lower retrieval times for a given storage bud-
get, than other schemes for partitioning, while being about 1000×
faster than these schemes. Further, we adapt LYRESPLIT to an on-
line setting that incrementally maintains partitions as new versions
arrive, and develop an intelligent migration approach to minimize
the time taken for migration (by up to 10×).

Contributions. The contributions of this paper are as follows:
• We develop a dataset version control system, titled ORPHEUSDB,

with the ability to effectively support both git-style version con-
trol commands and SQL-like queries. (Section 2)

• We compare different data models for representing versioned
datasets and evaluate their performance in terms of storage con-
sumption and time taken for querying. (Section 3)

• To further improve query efficiency, we formally develop the
optimization problem of trading-off between the storage and
version retrieval time via partitioning and demonstrate that this
is NP-HARD. We then propose a light-weight approximation
algorithm for this optimization problem, titled LYRESPLIT, pro-
viding a ((1 + δ)`, 1

δ
)-factor guarantee. (Section 4.2 and 4.1)

• We further adapt LYRESPLIT to be applicable to an online set-
ting with new versions coming in, and develop an intelligent
migration approach. (Section 4.3)

• We conduct extensive experiments using a versioning bench-
mark [33] and demonstrate that LYRESPLIT is on average 1000×
faster than competing algorithms and performs better in bal-
ancing the storage and version retrieval time. We also demon-
strate that our intelligent migration scheme reduces the migra-
tion time by 10× on average. (Section 5)

2. ORPHEUSDB OVERVIEW
ORPHEUSDB is a dataset version management system that is

built on top of standard relational databases. It inherits much of the
same benefits of relational databases, while also compactly storing,
tracking, and recreating versions on demand. ORPHEUSDB has
been developed as open-source software (orpheus-db.github.io).
We now describe fundamental version-control concepts, followed
by the ORPHEUSDB APIs, and finally, the design of ORPHEUSDB.

2.1 Dataset Version Control
The fundamental unit of storage within ORPHEUSDB is a col-

laborative versioned dataset (CVD) to which one or more users can
contribute. Each CVD corresponds to a relation and implicitly con-
tains many versions of that relation. A version is an instance of the
relation, specified by the user and containing a set of records. Ver-
sions within a CVD are related to each other via a version graph—
a directed acyclic graph—representing how the versions were de-
rived from each other: a version in this graph with two or more
parents is defined to be a merged version. Records in a CVD are
immutable, i.e., any modifications to any record attributes result in

1131

a new record, and are stored and treated separately within the CVD.
Overall, there is a many-to-many relationship between records and
versions: each record can belong to many versions, and each ver-
sion can contain many records. Each version has a unique version
id, vid, and each record has its unique record id, rid. The record ids
are used to identify immutable records within the CVD and are not
visible to end-users of ORPHEUSDB. In addition, the relation cor-
responding to the CVD may have primary key attribute(s); this im-
plies that for any version no two records can have the same values
for the primary key attribute(s). ORPHEUSDB can support multiple
CVDs at a time. However, in order to better convey the core ideas
of ORPHEUSDB, in the rest of the paper, we focus our discussion
on a single CVD.

2.2 ORPHEUSDB APIs
Users interact with ORPHEUSDB via the command line, using

both SQL queries, as well as git-style version control commands.
In our companion demo paper, we also describe an interactive user
interface depicting the version graph, for users to easily explore
and operate on dataset versions [44]. To make modifications to ver-
sions, users can either use SQL operations issued to the relational
database that ORPHEUSDB is built on top of, or can alternatively
operate on them using programming or scripting languages. We
begin by describing the version control commands.
Version control commands. Users can operate on CVDs much like
they would with source code version control. The first operation is
checkout: this command materializes a specific version of a CVD
as a newly created regular table within a relational database that
ORPHEUSDB is connected to. The table name is specified within
the checkout command, as follows:

checkout [cvd] -v [vid] -t [table name]

Here, the version with id vid is materialized as a new table [table
name] within the database, to which standard SQL statements can
be issued, and which can later be added to the CVD as a new ver-
sion. The version from which this table was derived (i.e., vid) is
referred to as the parent version for the table.

Instead of materializing one version at a time, users can mate-
rialize multiple versions, by listing multiple vids in the command
above, essentially merging multiple versions to give a single table.
When merging, the records in the versions are added to the table in
the precedence order listed after -v: for any record being added, if
another record with the same primary key has already been added,
it is omitted from the table. This ensures that the eventual ma-
terialized table also respects the primary key property. There are
other conflict-resolution strategies, such as letting users resolve
conflicted records manually; for simplicity, we use a precedence
based approach. Internally, the checkout command records the ver-
sions that this table was derived from, along with the table name.
Note that only the user who performed the checkout operation is
permitted access to the materialized table, so they can perform any
analysis and modification on this table without interference from
other users, only making these modifications visible when they use
the commit operation, described next.

The commit operation adds a new version to the CVD, by mak-
ing the local changes made by the user on their materialized table
visible to others. The commit command has the following format:

commit -t [table name] -m [commit message]

The command does not need to specify the intended CVD since OR-
PHEUSDB internally maintains a mapping between the table name
and the original CVD. In addition, since the versions that the table
was derived from originally during checkout are internally known
to ORPHEUSDB, the table is added to the CVD as a new version
with those versions as parent versions. During the commit opera-
tion, ORPHEUSDB compares the (possibly) modified materialized

table to the parent versions. If any records were added or modified
these records are treated as new records and added to the CVD. An
alternative is to compare the new records with all of the existing
records in the CVD to check if any of the new records have existed
in any version in the past, which would take longer to execute. At
the same time, the latter approach would identify records that were
deleted then re-added later. Since we believe that this is not a com-
mon case, we opt for the former approach, which would only lead
to modest additional storage at the cost of much less computation
during commit. We call this the no cross-version diff implementa-
tion rule. Lastly, if the schema of the table that is being committed
is different from the CVD it derived from, we alter the CVD to in-
corporate the new schema; we discuss this in Section 3.3.

In order to support data science workflows, we additionally sup-
port the use of checkout and commit into and from csv (comma sep-
arated value) files via slightly different flags: -f for csv instead of
-t. The csv file can be processed in external tools and programming
languages such as Python or R, not requiring that users perform the
modifications and analysis using SQL. However, during commit,
the user is expected to also provide a schema file via a -s flag so
that ORPHEUSDB can make sure that the columns are mapped in
the correct manner. Internally, ORPHEUSDB also tracks the name
of the csv file as being derived from one or more versions of the
CVD, just like it does with the materialized tables.

In addition to checkout and commit, ORPHEUSDB also supports
other commands, described very briefly here: (a) diff: a standard
differencing operation that compares two versions and outputs the
records in one but not the other. (b) init: initialize either an ex-
ternal csv file or a database table as a new CVD in ORPHEUSDB.
(c) create_user, config, whoami: allows users to register, login, and
view the current user name. (d) ls, drop: list all the CVDs or drop
a particular CVD. (e) optimize: as we will see later, ORPHEUSDB
can benefit from intelligent incremental partitioning schemes (en-
abling operations to process much less data). Users can setup the
corresponding parameters (e.g., storage threshold, tolerance factor,
described later) via the command line; the ORPHEUSDB backend
will periodically invoke the partitioning optimizer to improve the
versioning performance.

SQL commands. ORPHEUSDB supports the use of SQL com-
mands on CVDs via the command line using the run command,
which either takes a SQL script as input or the SQL statement as a
string. Instead of materializing a version (or versions) as a table via
the checkout command and explicitly applying SQL operations on
that table, ORPHEUSDB also allows users to directly execute SQL
queries on a specific version, using special keywords VERSION,
OF, and CVD via syntax

SELECT ... FROM VERSION [vid] OF CVD [cvd], ...

without having to materialize it. Further, by using renaming, users
can operate directly on multiple versions (each as a relation) within
a single SQL statement, enabling operations such as joins across
multiple versions.

However, listing each version individually as described above
may be cumbersome for some types of queries that users wish to
run, e.g., applying an aggregate across a collection of versions,
or identifying versions that satisfy some property. For this, OR-
PHEUSDB also supports constructs that enable users to issue ag-
gregate queries across CVDs grouped by version ids, or select ver-
sion ids that satisfy certain constraints. Internally, these constructs
are translated into regular SQL queries that can be executed by the
underlying database system. In addition, ORPHEUSDB provides
shortcuts for several types of queries that operate on the version
graph, e.g., listing the descendant or ancestors of a specific ver-
sion, or querying the metadata, e.g., identify the last modification

1132

(in time) to the CVD. The details of the query syntax, translation, as
well as examples can be found in our companion demo paper [44].

2.3 System Architecture

Partition
Information

CVDsCheckout Tables

Record Manager Version Manager

Partition Optimizer

Version Control
Command

DBMS

Access Controller

SQL
Command

Database Communicator

Provenance Manager

SQLs

Command Client

Query Translator

SQL

Translation Layer

Figure 2: ORPHEUSDB Architecture

We implement ORPHEUSDB as a middleware layer or wrapper
between end-users (or application programs) and a traditional re-
lational database system—in our case, PostgreSQL. PostgreSQL
is completely unaware of the existence of versioning, as version-
ing is handled entirely within the middleware. Figure 2 depicts the
overall architecture of ORPHEUSDB. ORPHEUSDB consists of six
core modules: the query translator is responsible for parsing in-
put and translating it into SQL statements understandable by the
underlying database system; the access controller monitors user
permissions to various tables and files within ORPHEUSDB; the
partition optimizer is responsible for periodically reorganizing and
optimizing the partitions via a partitioning algorithm LYRESPLIT
along with a migration engine to migrate data from one partition-
ing scheme to another, and is the focus of Section 4; the record
manager is in charge of recording and retrieving information about
records in CVDs; the version manager is in charge of recording
and retrieving versioning information, including the rids each ver-
sion contains as well as the metadata for each version; and the
provenance manager is responsible for the metadata of uncommit-
ted tables or files, such as their parent version(s) and the creation
time. At the backend, a traditional DBMS, we maintain CVDs that
consist of versions, along with the records they contain, as well as
metadata about versions. In addition, the underlying DBMS con-
tains a temporary staging area consisting of all of the materialized
tables that users can directly manipulate via SQL without going
through ORPHEUSDB. Understanding how to best represent and
operate on these CVDs within the underlying DBMS is an impor-
tant challenge—this is the focus of the next section.

3. DATA MODELS FOR CVDs
In this section, we consider and compare methods to represent

and operate on CVDs within a backend relational database, starting
with the data within versions, and then the metadata about versions.

3.1 Versions and Data: The Models
To explore alternative storage models, we consider the array-

based data models, shown in Figure 1, and compare them to a delta-
based data model, which we describe later. The table(s) in Figure 1
displays simplified protein-protein interaction data [41], and has a
composite primary key <protein1, protein2>, along with numerical
attributes indicating sources and strength of interactions: neighbor-
hood represents how frequently the two proteins occur close to each
other in runs of genes, cooccurrence reflects how often the two pro-
teins co-occur in the species, and coexpression refers to the level to
which genes are co-expressed in the species.

One approach, as described in the introduction, is to augment
the CVD’s relational schema with an additional versioning attribute.

For example, the tuple of <ENSP273047, ENSP261890, 0, 53, 83>
in Figure 1(a) exists in two versions: v3 and v4. (Note that even
though <protein1, protein2> is the primary key, it is only the pri-
mary key for any single version and not across all versions.) How-
ever, this approach implies that we would need to duplicate each
record as many times as the number of versions it is in, leading to
severe storage overhead due to redundancy, as well as inefficiency
for several operations, including checkout and commit. We focus
on alternative approaches that are more space efficient and dis-
cuss how they can support the two most fundamental operations—
commit and checkout—on a single version at a time. Considera-
tions for multiple version checkout is similar to that for a single
version; our findings generalize to that case as well.

Approach 1: The Combined Table Approach. Our first approach
of representing the data and versioning information for a CVD is the
combined table approach. As before, we augment the schema with
an additional versioning attribute, but now, the versioning attribute
is of type array and is named vlist (short for version list) as shown
in Figure 1(b). For each record the vlist is the ordered list of ver-
sion ids that the record is present in, which serves as an inverted
index for each record. Returning to our example, there are two ver-
sions of records corresponding to <ENSP273047, ENSP261890>,
with coexpression 0 and 83 respectively—these two versions are
depicted as the first two records, with an array corresponding to v1
for the first record, and v3 and v4 for the second.

Even though array is a non-atomic data type, it is commonly sup-
ported in many database systems [8, 3, 1]; thus ORPHEUSDB can
be built with any of these systems as the back-end database. As our
implementation uses PostgreSQL, we focus on this system for the
rest of the discussion, even though similar considerations apply to
the rest of the databases listed.

For the combined table approach, committing a new version to
the CVD is time-consuming due to the expensive append operation
for every record present in the new version. Consider the scenario
where the user checks out version vi into a materialized table T ′

and then immediately commits it back as a new version vj . The
query translator parses the user commands and generates the cor-
responding SQL queries for checkout and commit as shown in Ta-
ble 1. When checking out vi into a materialized table T ′, the array
containment operator ‘ARRAY[vi] <@ vlist’ first examines whether
vi is contained in vlist for each record in CVD, then all records that
satisfy that condition are added to the materialized table T ′. Next,
when T ′ is committed back to the CVD as a new version vj , for
each record in the CVD, if it is also present in T ′ (i.e., the WHERE
clause), we append vj to the attribute vlist (i.e., vlist=vlist+vj). In
this case, since there are no new records that are added to the CVD,
no new records are added to the combined table. However, even
this process of appending vj to vlist can be expensive especially
when the number of records in vj is large, as we will demonstrate.

Approach 2: The Split-by-vlist Approach. Our second approach
addresses the limitations of the expensive commit operation for the
combined table approach. We store two tables, keeping the version-
ing information separate from the data information, as depicted in
Figure 1(c)—the data table and the versioning table. The data ta-
ble contains all of the original data attributes along with an extra
primary key rid, while the versioning table maintains the mapping
between versions and rids. The rid attribute was not needed in the
previous approach since it was not necessary to associate identifiers
with the immutable records. There are two ways we can store the
versioning data. The first approach is to store the rid along with
the vlist, as depicted in Figure 1(c.i). We call this approach split-
by-vlist. Split-by-vlist has a similar SQL translation as combined-
table for commit, while it incurs the overhead of joining the data
table with the versioning table for checkout. Specifically, we select

1133

Table 1: SQL Queries for Checkout and Commit Commands with Different Data Models
Command SQL Translation with combined-table SQL Translation with Split-by-vlist SQL Translation with Split-by-rlist

CHECKOUT SELECT * into T’ FROM T
WHERE ARRAY[vi] <@ vlist

SELECT * into T’ FROM dataTable,
(SELECT rid AS rid_tmp
FROM versioningTable
WHERE ARRAY[vi] <@ vlist) AS tmp
WHERE rid = rid_tmp

SELECT * into T’ FROM dataTable,
(SELECT unnest(rlist) AS rid_tmp
FROM versioningTable
WHERE vid = vi) AS tmp
WHERE rid = rid_tmp

COMMIT
UPDATE T SET vlist=vlist+vj
WHERE rid in
(SELECT rid FROM T’)

UPDATE versioningTable
SET vlist=vlist+vj

WHERE rid in
(SELECT rid FROM T’)

INSERT INTO versioningTable
VALUES (vj ,
ARRAY[SELECT rid FROM T’])

the rids that are in the version to be checked out and store it in the
table tmp, followed by a join with the data table.

Approach 3: The Split-by-rlist Approach. Alternatively, we can
organize the versioning table with a primary key as vid (version
id), and another attribute rlist, containing the array of the records
present in that particular version, as in Figure 1(c.ii). We call this
approach the split-by-rlist approach. When committing a new ver-
sion vj from the materialized table T ′, we only need to add a single
tuple in the versioning table with vid equal to vj , and rlist equal to
the list of record ids in T ′. This eliminates the expensive array
appending operations that are part of the previous two approaches,
making the commit command much more efficient. For the check-
out command for version vi, we first extract the record ids associ-
ated with vi from the versioning table, by applying the unnesting
operation: unnest(rlist), following which we join the rids with the
data table to identify all of the relevant records.

So far, all our models support convenient rewriting of arbitrary
and complex versioning queries into SQL queries understood by
the backend database; see details in our demo paper [44]. However,
our delta-based model, discussed next, does not support convenient
rewritings for some of the more advanced queries, e.g., “find ver-
sions where the total count of tuples with protein1 as ENSP273047
is greater than 50”: in such cases, delta-based model essentially
needs to recreate all of the versions, and/or perform extensive and
expensive computation outside of the database. Thus, even though
this model does not support advanced analytics capabilities “for
free”, we include it in our comparison to contrast its performance
to the array-based models.

Approach 4: Delta-based Approach. Here, each version records
the modifications (or deltas) from its precedent version(s). Specifi-
cally, each version is stored as a separate table, with an added tomb-
stone boolean attribute indicating the deletion of a record. In ad-
dition, we maintain a precedent metadata table with a primary key
vid and an attribute base indicating from which version vid stores
the delta. When committing a new version vj , a new table stores
the delta from its previous version vi. If vj has multiple parents,
we will store vj as the modification from the parent that shares the
largest common number of records with vj . (Storing deltas from
multiple parents would make reconstruction of a version compli-
cated, since we would need to trace back multiple paths in the ver-
sion graph. Here, we opt for the simpler solution.) A new record
is then inserted into the metadata table, with vid as vj and base as
vi. For the checkout command for version vi, we trace the version
lineage (via the base attribute) all the way back to the root. If an
incoming record has occurred before, it is discarded; otherwise, if
it is marked as “insert”, we insert it into the checkout table T ′.

Approach 5: The A-Table-Per-Version Approach. Our final array-
based data model is impractical due to excessive storage, but is use-
ful from a comparison standpoint. In this approach, we store each
version as a separate table. We include a-table-per-version in our
comparison; we do not include the approach in Figure 1a, contain-
ing a table with duplicated records, since it would do similarly in
terms of storage and commit times to a-table-per-version, but worse
in terms of checkout times.

3.2 Versions and Data: The Comparison
We perform an experimental evaluation between the approaches

described in the previous section on storage size, and commit and
checkout time. We focus on the commit and checkout times since
they are the primitive versioning operations on which the other
more complex operations and queries are built on. It is important
that these operations are efficient, because data scientists checkout
a version to start working on it immediately, and often commit a
version to have their changes visible to other data scientists who
may be waiting for them.

In our evaluation, we use four versioning benchmark datasets
SCI_1M, SCI_2M, SCI_5M and SCI_8M, each with 1M , 2M , 5M
and 8M records respectively, that will be described in detail in Sec-
tion 5.1. For split-by-vlist, a physical primary key index is built on
rid in both the data table and the versioning table; for split-by-rlist,
a physical primary key index is built on rid in the data table and
on vid in the versioning table. When calculating the total storage
size, we count the index size as well. Our experiment involves first
checking out the latest version vi into a materialized table T ′ and
then committing T ′ back into the CVD as a new version vj . We
depict the experimental results in Figure 3.

Storage. From Figure 3(a), we can see that a-table-per-version
takes 10× more storage than the other data models. This is be-
cause each record exists on average in 10 versions. Compared to
a-table-per-version and combined-table, split-by-vlist and split-by-
rlist deduplicate the common records across versions and therefore
have roughly similar storage. In particular, split-by-vlist and split-
by-rlist share the same data table, and thus the difference can be at-
tributed to the difference in the size of the versioning table. For the
delta-based approach, the storage size is similar to or even slightly
smaller than split-by-vlist and split-by-rlist. This is because our
versioning benchmark contains only a few deleted tuples (opting
instead for updates or inserts); in other cases, where deleted tuples
are more prevalent, the storage in the delta-based approach is worse
than split-by-vlist/rlist, since the deleted records will be repeated.

Commit. From Figure 3(b), we can see that the combined-table
and split-by-vlist take multiple orders of magnitude more time than
split-by-rlist for commit. We also notice that the commit time when
using combined-table is almost 104s as the dataset size increases:
when using combined-table, we need to add vj to the attribute vlist
for each record in the CVD that is also present in T ′. Similarly, for
split-by-vlist, we need to perform an append operation for several
tuples in the versioning table. On the contrary, when using split-
by-rlist, we only need to add one tuple to the versioning table, thus
getting rid of the expensive array appending operations. A-table-
per-version also has higher latency for commit than split-by-rlist
since it needs to insert all the records in T ′ into the CVD. For the
delta-based approach, the commit time is small since the new ver-
sion vj is exactly the same as its precedent version vi. It only needs
to update the precedent metadata table, and create a new empty ta-
ble. The commit time of the delta-based approach is not small in
general when there are extensive modifications to T ′, as illustrated
by other experiments (not displayed); For instance, for a committed

1134

SCI_1M SCI_2M SCI_5M SCI_8M0
5

10
15
20
25
30
35
40

St
or

ag
e

Si
ze

 (i
n

GB
)

a. Storage Size Comparison
SCI_1M SCI_2M SCI_5M SCI_8M

100

101

102

103

104

Co
m

m
it

Ti
m

e
(in

 S
ec

on
d)

b. Commit Time Comparison
SCI_1M SCI_2M SCI_5M SCI_8M0

10

20

30

40

50

60

Ch
ec

ko
ut

 T
im

e
(in

 S
ec

on
d)

c. Checkout Time Comparison

A-table-per-version Combined-table Split-by-vlist Split-by-rlist Delta-based

Figure 3: Comparison Between Different Data Models

version with 250K records of which 30% of the records are modi-
fied, delta-based takes 8.16s, while split-by-rlist takes 4.12s.

Checkout. From Figure 3 (c), we can see that split-by-rlist is a bit
faster than combined-table and split-by-vlist for checkout. Not sur-
prisingly, a-table-per-version is the best for this operation since it
simply requires retrieving all the records in a specific table (corre-
sponding to the desired version). Combined-table requires one full
scan over the combined table to check whether each record is in ver-
sion vi. On the other hand, split-by-vlist needs to first scan the ver-
sioning table to retrieve the rids in version vi, and then join the rids
with the data table. Lastly, split-by-rlist retrieves the rids in version
vi using the primary key index on vid in the versioning table, and
then joins the rids with the data table. For both split-by-vlist and
split-by-rlist, we used a hash-join, which was the most efficient2,
where a hash table on rids is first built, followed by a sequential
scan on the data table by probing each record in the hash table.
Overall, combined-table, split-by-vlist, and split-by-rlist all require
a full scan on the combined table or the data table, and even though
split-by-rlist introduces the overhead of building a hash table, it re-
duces the expensive array operation for containment checking as
in combined-table and split-by-vlist. For the delta-based approach,
the checkout time is large since it needs to probe into a number
of tables, tracing all the way back to the root, remembering which
records were seen.

Takeaways. Overall, considering the space consumption, the com-
mit and checkout time, plus the fact that delta-based models are in-
efficient in supporting advanced queries as discussed in Section 3.1,
we claim that split-by-rlist is preferable to the other data models in
supporting versioning within a relational database. Thus, we pick
split-by-rlist as our data model for representing CVDs. That said,
from Figure 3(c), we notice that the checkout time for split-by-rlist
grows with dataset size. For instance, for dataset SCI_8M with 8M
records in the data table, the checkout time is as high as 30 sec-
onds. On the other hand, a-table-per-version has very low checkout
times on all datasets; it only needs to access the relevant records
instead of all records as in split-by-rlist. This motivates the need
for the partition optimizer module in ORPHEUSDB, which tries to
attain the best of both worlds by adopting a hybrid representation
of split-by-rlist and a-table-per-version, described in Section 4.

3.3 Version Derivation Metadata
Version Provenance. As discussed in Section 2.3, the version
manager in ORPHEUSDB keeps track of the derivation relation-
ships among versions and maintains metadata for each version.
We store version-level provenance information in a separate table
called the metadata table; Figure 4(a) depicts the metadata table for
the example in Figure 1. It contains attributes including version id,
2We also tried alternative join methods—the findings were unchanged; we will discuss
this further in Section 4.1. We also tried using an additional secondary index for
vlist for split-by-vlist which reduced the time for checkout but increased the time for
commit even further.

parent/child versions, creation time, commit time, a commit mes-
sage, and an array of attributes present in the version. Using the
data contained in this table, users can easily query for the prove-
nance of versions and for other metadata. In addition, using the
attribute parents we can obtain each version’s derivation informa-
tion and visualize it as directed acyclic graph that we call a version
graph. Each node in the version graph is a version and each di-
rected edge points from a version to one of its children version(s).
An example is depicted in Figure 4(b), where version v2 and v3 are
merged into version v4.

vid parents checkoutT commitT msg attributes

...

 ...

...

...

v1

v2

v3

v4

{v1}

{v1}

{v2, v3 }

t2

t2

t5

t1

t3
t 4

t6

a. Metadata Table b. Version Graph

v1

v2 v3

v4

3

43

12

3 4

6

{a1,a2, a3,a4,a6}

{a1,a2, a3,a4,a6}

{a1,a2, a3,a4,a6}

{a1,a2, a3,a4,a6}NULLNULL

Figure 4: Metadata Table and Version Graph (Fixed Schema)

Schema Changes. During a commit, if the schema of the table
being committed is different from the schema of the CVD it was
derived from, we update the schema of CVD to incorporate the
changes. We describe details in our technical report [9]. All of our
array-based models can adapt to changes in the set of attributes: a
simple solution for new attributes is so use the ALTER command
to add any new attributes to the model, assigning NULLs to the
records from the previous versions that do not possess these new
attributes. Attribute deletions only require an update in the ver-
sion metadata table. This simple mechanism is similar to the single
pool method proposed in a temporal schema versioning context by
De Castro et al. [17]. Compared to the multi pool method where
any schema change results in the new version being stored sepa-
rately, the single pool method has fewer records with duplicated
attributes and therefore has less storage consumption overall. Even
though ALTER TABLE is indeed a costly operation, due to the
partitioning schemes we describe later, we only need to ALTER a
smaller partition of the CVD rather than a giant CVD, and conse-
quently the cost of an ALTER operation is substantially mitigated.
In our technical report, we describe how our partitioning schemes
(described next) can adapt to the single pool mechanism with com-
parable guarantees; for ease of exposition, for the rest of this paper,
we focus on the static schema case, which is still important and
challenging. There has been some work on developing schema ver-
sioning schemes [18, 35, 34] and we plan to explore these and other
schema evolution mechanisms (including hybrid single/multi-pool
methods) as future work.

4. PARTITION OPTIMIZER
In this section, we introduce the concept of partitioning a CVD

by breaking up the data and versioning tables, in order to reduce
the number of irrelevant records during checkout. All of our proofs
can be found in our technical report [9].

1135

4.1 Problem Overview
The Partitioning Notion. Let V = {v1, v2, ..., vn} be the n ver-
sions andR = {r1, r2, ..., rm} be them records in a CVD. We can
represent the presence of records in versions using a version-record
bipartite graph G = (V,R,E), where E is the set of edges—an
edge between vi and rj exists if the version vi contains the record
rj . The bipartite graph in Figure 5(a) captures the relationships
between records and versions in Figure 1.

v1
r1

v2

v3

v4

r2

r3

r4

r5

r6

r7

v1
r1

v2

v3

v4

r2

r3

r4

r5

r6

r7

Ρ1

Ρ2

a. Bipartite Graph b. Illustration of Partitioning

Figure 5: Version-Record Bipartite Graph & Partitioning
The goal of our partitioning problem is to partitionG into smaller

subgraphs, denoted as Pk. We let Pk = (Vk,Rk, Ek), where Vk,
Rk and Ek represent the set of versions, records and bipartite graph
edges in partition Pk respectively. Note that ∪kEk = E, where E
is the set of edges in the original version-record bipartite graph G.
We further constrain each version in the CVD to exist in only one
partition, while each record can be duplicated across multiple par-
titions. In this manner, we only need to access one partition when
checking out a version, consequently simplifying the checkout pro-
cess by reducing the overhead from accessing multiple partitions.
Thus, our partition problem is equivalent to partitioning V , such
that each partition (Pk) stores all of the records corresponding to
all of the versions assigned to that partition. Figure 5(b) illustrates
a possible partitioning strategy for Figure 5(a). Partition P1 con-
tains version v1 and v2, while partition P2 contains version v3 and
v4. Note that records r2, r3 and r4 are duplicated in P1 and P2.

Metrics. We consider two criteria while partitioning: the storage
cost and the time for checkout. Recall that the time for commit is
fixed and small—see Figure 3(b), so we only focus on checkout.

The overall storage costs involves the cost of storing all of the
partitions of the data and the versioning table. However, we observe
that the versioning table simply encodes the bipartite graph, and as
a result, its cost is fixed. Furthermore, since all of the records in
the data table have the same (fixed) number of attributes, so instead
of optimizing the actual storage we will optimize for the number of
records in the data table across all the partitions. Thus, we define
the storage cost, S, to be the following:

S =
K∑
k=1

|Rk| (4.1)

Next, we note that the time taken for checking out version vi is
proportional to the size of the data table in the partition Pk that
contains version vi, which in turn is proportional to the number of
records present in that data table partition. We theoretically and
empirically justify this in our technical report [9]. So we define the
checkout cost of a version vi, Ci, to be Ci = |Rk|, where vi ∈ Vk.
The checkout cost, denoted as Cavg , is defined to be the average of
Ci, i.e., Cavg =

∑
i Ci
n

. While we focus on the average case, which
assumes that each version is checked out with equal frequency, our
algorithms generalize to the weighted case [9]. On rewriting the
expression for Cavg above, we get:

Cavg =

∑K
k=1 |Vk||Rk|

n
(4.2)

The numerator is simply sum of the number of records in each
partition, multiplied by the number of versions in that partition,

across all partitions—this is the cost of checking out all of the ver-
sions, equivalent to

∑n
i=1 Ci.

Formal Problem. Our two metrics S and Cavg interfere with each
other: if we want a small Cavg , then we need more storage, and if
we want the storage to be small, then Cavg will be large. Typically,
storage is under our control; thus, our problem can be stated as:

PROBLEM 1 (MINIMIZE CHECKOUT COST). Given a stor-
age threshold γ and a version-record bipartite graphG = (V,R,E),
find a partitioning of G that minimizes Cavg such that S ≤ γ.
We can show that Problem 1 is NP-HARD using a reduction from
the 3-PARTITION problem, whose goal is to decide whether a given
set of n integers can be partitioned into n

3
sets with equal sum. 3-

PARTITION is known to be strongly NP-HARD.
THEOREM 1. Problem 1 is NP-HARD.
We now clarify one complication between our formalization so

far and our implementation. ORPHEUSDB uses the no cross-version
diff rule: that is, while performing a commit operation, to minimize
computation, ORPHEUSDB does not compare the committed ver-
sion against all of the ancestor versions, instead only comparing it
to its parents. Therefore, if some records are deleted and then re-
added later, these records would be assigned different rids, and are
treated as different. As it turns out, Problem 1 is still NP-HARD
when the space of instances are those that can be generated when
this rule is applied. For the rest of this section, we will use the for-
malization with the no cross-version diff rule in place, since that
relates more closely to practice.

4.2 Partitioning Algorithm

|E|
|V|

|R|

|R| |E|

single partition

n partitions

Cavg

S

Figure 6: Extreme Schemes

Given a version-record
bipartite graphG = (V,R,E),
there are two extreme cases
for partitioning. At one
extreme, we can minimize
the checkout cost by stor-
ing each version in the CVD
as one partition; there are in
total K = |V | = n parti-
tions, and the storage cost is S =

∑n
k=1 |Rk| = |E| and the

checkout cost is Cavg = 1
n

∑n
k=1 (|Vk||Rk|) = |E|

|V | . At another
extreme, we can minimize the storage by storing all versions in one
single partition; the storage cost is S = |R| and Cavg = |R|. We
illustrate these schemes in Figure 6.

Version Graph Concept. Our goal in designing our partition-
ing algorithm, LYRESPLIT3, is to trade-off between these two ex-
tremes. Instead of operating on the version-record bipartite graph,
which may be very large, LYRESPLIT operates on the much smaller
version graph instead, which makes it a lot more lightweight. We
denote a version graph as G = (V,E), where each vertex v ∈ V
is a version and each edge e ∈ E is a derivation relationship. Note
that V is essentially the same as V in the version-record bipartite
graph. An edge from vertex vi to a vertex vj indicates that vi is a
parent of vj ; this edge has a weight w(vi, vj) equals the number
of records in common between vi and vj . We use p(vi) to denote
the parent versions of vi. For the special case when there are no
merge operations, |p(vi)| ≤ 1, ∀i, and the version graph is a tree,
denoted as T = (V,E). Lastly, we use R(vi) to be the set of all
records in version vi, and l(vi) to be the depth of vi in the version
graph G in a topological sort4 of the graph—the root has depth 1.
For example, in Figure 4, version v2 has |R(v2)| = 3 since it has
3A lyre was the musical instrument of choice for Orpheus.
4In each iteration r, topological sorting algorithm finds vertices V ′ with in-degree
equals 0, removes V ′, and updates in-degree of other vertices. l(vi) = r, ∀vi ∈ V ′.

1136

three records, and is at level l(v2) = 2. Further, v2 has a single
parent p(v2) = v1, and shares two records with its parent, i.e.,
w(v1, v2) = 2. Next, we describe the algorithm for LYRESPLIT
when the version graph is a tree (i.e., no merge operations).

The Version Tree Case. Our algorithm is based on the following
lemma, which intuitively states that if every version vi shares a
large number of records with its parent version, then the checkout
cost is small, and bounded by some factor of |E||V | , where |E||V | is the
lower bound on the optimal checkout cost.

LEMMA 1. Given a bipartite graph G = (V,R,E), a version
tree T = (V,E), and a parameter δ ≤ 1, if the weight of every
edge in E is larger than δ|R|, then the checkout cost Cavg when all
of the versions are in one single partition is less than 1

δ
· |E||V | .

Lemma 1 indicates that when Cavg ≥ 1
δ
· |E||V | , there must ex-

ist some version vj that only shares a small number of common
records with its parent version vi, i.e., w(vi, vj) ≤ δ|R|; oth-
erwise Cavg < 1

δ
· |E||V | . Intuitively, such an edge (vi, vj) with

w(vi, vj) ≤ δ|R| is a potential edge for splitting since the overlap
between vi and vj is small.

LYRESPLIT Illustration. We describe a version of LYRESPLIT
that accepts as input a parameter δ, and then recursively applies
partitioning until the overall Cavg < 1

δ
· |E||V | ; we will adapt this

to Problem 1 later. The pseudocode is provided in the technical
report [9], and we illustrate its execution on an example in Figure 7.

As before, we are given a version tree T = (V,E). We start
with all of the versions in one partition. We first check whether
|R||V | < |E|

δ
. If yes, then we terminate; otherwise, we pick one

edge e∗ with weight e∗.w ≤ δ|R| to cut in order to split the par-
tition into two. According to Lemma 1, if |R||V | ≥ |E|

δ
, there

must exist some edge whose weight is no larger than δ|R|. The
algorithm does not prescribe a method for picking this edge if there
are multiple; the guarantees hold independent of this method. For
instance, we can pick the edge with the smallest weight; or the one
such that after splitting, the difference in the number of versions
in the two partitions is minimized. In our experiments, we use the
latter. In our example in Figure 7(a), we pick the red edge to split
the version tree T into two partitions—as shown in Figure 7(b), we
get one partition P1 with the blue nodes (versions) and another P2

with the red nodes (versions).
After each edge split, we update the number of records, versions

and bipartite edges, and then we recursively call the algorithm on
each partition. In the example, we terminate for P2 but we split
the edge (v2, v4) for P1, and then terminate with three partitions—
Figure 7(c). We define ` be the recursion level number. In Figure 7
(a) (b) and (c), ` = 0, ` = 1 and ` = 2 respectively. We will use
this notation in the performance analysis next.

v1

v2 v3

v5

a.

v6 v7v4

7

10

8101230

46

8

6 8 76

v1

v2 v3

v5 v6 v7v4

7

10

8101230

6

8

6 8 76

v1

v2 v3

v5 v6 v7v4

7

10

8101230

6

8

8 76

ℓ=0 b. ℓ=1 c. ℓ=2

Figure 7: Illustration of LYRESPLIT (δ = 0.5)
Now that we have an algorithm for the δ case, we can simply

apply binary search on δ and obtain the best δ for Problem 1. We
can show that for two δ such that one is smaller than the other, the
edges cut in the former is a superset of the latter.

Performance Analysis. Overall, the lowest storage cost is |R| and
the lowest checkout cost is |E||V | respectively. We now analyze the

performance in terms of these quantities: an algorithm has an ap-
proximation ratio of (X,Y) if its storage cost S is no larger than
X · R while its checkout cost Cavg is no larger than Y · |E||V | . We
first study the impact of a single split edge.

LEMMA 2. Given a bipartite graph G = (V,R,E), a version
tree T = (V,E) and a parameter δ, let e∗ ∈ E be the edge that is
split in LYRESPLIT, then after splitting the storage cost S must be
within (1 + δ)|R|.
Now, overall, we have:

THEOREM 2. Given a parameter δ, LYRESPLIT results in a
((1 + δ)`, 1

δ
)-approximation for partitioning.

Complexity. The total time complexity is O(n`), where ` is the
recursion level number when the algorithm terminates.

Generalizations. We can naturally extend our algorithms for the
case where the version graph is a DAG: in short, we first construct
a version tree T̂ based on the original version graph G, then apply
LYRESPLIT on the constructed version tree T̂. We describe the
details for this algorithm in our technical report [9].

4.3 Incremental Partitioning
LYRESPLIT can be explicitly invoked by users or by ORPHEUSDB

when there is a need to improve performance or a lull in activity.
We now describe how the partitioning identified by LYRESPLIT is
incrementally maintained during the course of normal operation,
and how we reduce the migration time when LYRESPLIT identi-
fies a new partitioning. We only describe the high-level ideas here;
details and guarantees can be found in the technical report [9].

Online Maintenance. When a new version vi is committed, OR-
PHEUSDB applies the same intuition as LYRESPLIT to determine
whether to add vi to an existing partition, or to create a new par-
tition: if vi shares a large number of records in common with
one of its parent versions vj , then vi is added to the partition Pk
that parent is in, or else a new partition is created. Specifically, if
w(vi, vj) ≤ δ∗|R| and S < γ, where δ∗ was the splitting param-
eter used during the last invocation of LYRESPLIT, then we create
a new version. This way, the added storage cost is minimized, and
the added checkout cost is guaranteed to be small, as in Lemma 1.
Even with the proposed online maintenance scheme, the checkout
cost tends to diverge from the best checkout cost that LYRESPLIT
can identify under the current constraints. This is because LYRES-
PLIT performs global partitioning using the full version graph as in-
put, while online maintenance makes small changes to the existing
partitioning. To maintain the checkout performance, ORPHEUSDB
allows for a tolerance factor µ on the current checkout cost (users
can also set µ explicitly). We let Cavg and C∗avg be the current
checkout cost and the best checkout cost identified by LYRESPLIT
respectively. If Cavg > µC∗avg , the migration engine is triggered,
and we reorganize the partitions by migrating data from the old par-
titions to the new ones; until then, we perform online maintenance.
In general, when µ is small, the migration engine is invoked more
frequently. Next, we discuss how migration is performed.

Migration Approach. Given the existing partitioning P = {P1,
P2, . . . ,Pα} and the new partitioningP ′ = {P ′1,P ′2, ...,P ′β} iden-
tified by LYRESPLIT, we need an algorithm to efficiently migrate
the data from P to P ′ without dropping all existing tables and
recreating the partitions from scratch, which could be very costly.
To do so, ORPHEUSDB needs to identify, for every P ′i ∈ P ′, the
closest partition Pj ∈ P , in terms of modification cost, defined
as |R′i \ Rj | + |Rj \ R′i|, where R′i \ Rj and Rj \ R′i are the
records needed to be inserted and deleted respectively to transform
Pj to P ′i . Since this is expensive to calculate, ORPHEUSDB in-
stead approximates this quantity by using the number of versions

1137

in common betweenPi andP ′i , along with operating on the version
graph to identify common records, and then greedily identifying the
“closest” partitions.

5. PARTITIONING EVALUATION
While Section 3.2 explores the performance of data models, this

section evaluates the impact of partitioning. In Section 5.2 we eval-
uate if LYRESPLIT can be more efficient than existing partitioning
techniques; in Section 5.3, we ask whether versioned databases
strongly benefit from partitioning; and lastly, in Section 5.4 we
evaluate how LYRESPLIT performs for online scenarios.

5.1 Experimental Setup
Datasets. We evaluated the performance of LYRESPLIT using the
versioning benchmark datasets from Maddox et al. [33]; see details
in [9]. The versioning model used in the benchmark is similar to
git, where a branch is a working copy of a dataset. We selected the
Science (SCI) and Curation (CUR) workloads since they are most
representative of real-world use cases. The SCI workload simulates
the working patterns of data scientists, who often take copies of an
evolving dataset for isolated data analysis. Thus, the version graph
is analogous to a tree with branches. The CUR workload simulates
the evolution of a canonical dataset that many individuals are con-
tributing to—these individuals not just branch from the canonical
dataset but also periodically merge their changes back in, resulting
in a DAG of versions. We varied the following parameters when
we generated the benchmark datasets: the number of branches B,
the total number of records |R|, as well as the number of inserts
(or updates) from parent version(s) I. We list our configurations
in Table 2. For instance, dataset SCI_1M represents a SCI work-
load dataset where the input parameter corresponding to |R| in the
dataset generator is set to 1M records. In all of our datasets, each
record contains 100 attributes, each of which is a 4-byte integer.

Table 2: Dataset Description
Dataset |V | |R| |E| |B| |I|

SCI_1M 1K 944K 11M 100 1000
SCI_2M 1K 1.9M 23M 100 2000
SCI_5M 1K 4.7M 57M 100 5000
SCI_8M 1K 7.6M 91M 100 8000
SCI_10M 10K 9.8M 556M 1000 1000
CUR_1M 1.1K 966K 31M 100 1000
CUR_5M 1.1K 4.8M 157M 100 5000
CUR_10M 11K 9.7M 2.34G 1000 1000

Setup. We conducted our evaluation on a HP-Z230-SFF worksta-
tion with an Intel Xeon E3-1240 CPU and 16 GB memory running
Linux OS (LinuxMint). We built ORPHEUSDB as a wrapper writ-
ten in C++ over PostgreSQL 9.5, where we set the memory for
sorting and hash operations as 1GB. In addition, we set the buffer
cache size to be minimal to eliminate the effects of caching on per-
formance. In our evaluation, for each dataset, we randomly sam-
pled 100 versions and used them to get an estimate of the checkout
time. Each experiment was repeated 5 times, with the OS page
cache being cleaned before each run. Due to experimental vari-
ance, we discarded the largest and smallest number among the five
trials, and then took the average of the remaining three trials.

Algorithms. We compare LYRESPLIT against two partitioning al-
gorithms in the NScale graph partitioning project [37]: the Ag-
glomerative Clustering-based one (Algorithm 4 in [37]) and the
KMeans Clustering-based one (Algorithm 5 in [37]), denoted as
AGGLO and KMEANS respectively: KMEANS had the best perfor-
mance, while AGGLO is an intuitive method for clustering versions.
After mapping their setting into ours, like LYRESPLIT, NScale [37]’s
algorithms group versions into different partitions while allowing
the duplication of records. However, the NScale algorithms are tai-
lored for arbitrary graphs, not for bipartite graphs (as in our case).

We implement AGGLO and KMEANS as described. AGGLO starts
with each version as one partition and then sorts these partitions
based on a shingle-based ordering. Then, in each iteration, each
partition is merged with a candidate partition that it shares the largest
number of common shingles with. The candidate partitions have
to satisfy two conditions (1) the number of the common shingles
is larger than a threshold τ , which is set via a uniform sampling-
based method, and (2) the number of records in the new partition
after merging is smaller than a constraint BC. To address Prob-
lem 1 with storage threshold γ, we conduct a binary search on BC
and find the best partitioning scheme under the storage constraint.

For KMEANS, there are two input parameters: partition capacity
BC as in AGGLO, and the number of partitions K. Initially, K
random versions are assigned to partitions. Next, we assign the re-
maining versions to their nearest centroid based on the number of
common records, after which each centroid is updated to the union
of all records in the partition. In subsequent iterations, each version
is moved to a partition, such that after the movement, the total num-
ber of records across partitions is minimized, while respecting the
constraint that the number of records in each partition is no larger
than BC. The number of KMEANS iterations is set to 10. In our
experiment, we vary K and set BC to be infinity. We tried other
values for BC; the results are similar to that when BC is infinity.
Overall, with the increase ofK, the total storage cost increases and
the checkout cost decreases. Again, we use binary search to find
the best K for KMEANS and minimize the checkout cost under the
storage constraint γ for Problem 1.

5.2 Comparison of Partitioning Algorithms
In these experiments, we consider both datasets where the ver-

sion graph is a tree, i.e., there are no merges (SCI_5M and SCI_10M),
and datasets where the version graph is a DAG (CUR_5M and
CUR_10M). Experiments on additional datasets can be found in [9].
We first compare the effectiveness of different partitioning algo-
rithms: LYRESPLIT, AGGLO and KMEANS, in balancing the stor-
age size and the checkout time. Then, we compare the efficiency of
these algorithms by measuring their running time.

1 2 3 4 5 6 7 8 9 10
Storage Size (in GB)

2

4

6

8

10

Ch
ec

ko
ut

 T
im

e
(in

 S
ec

on
d)

a. SCI_5M

LyreSplit
AGGLO
KMEANS

0 10 20 30 40 50
Storage Size (in GB)

0

5

10

15

20

25

30
Ch

ec
ko

ut
 T

im
e

(in
 S

ec
on

d)

b. SCI_10M

LyreSplit
AGGLO
KMEANS

0 5 10 15 20
Storage Size (in GB)

2
3
4
5
6
7
8
9

10

Ch
ec

ko
ut

 T
im

e
(in

 S
ec

on
d)

c. CUR_5M

LyreSplit
AGGLO
KMEANS

0 10 20 30 40 50
Storage Size (in GB)

0
5

10
15
20
25
30
35

Ch
ec

ko
ut

 T
im

e
(in

 S
ec

on
d)

d. CUR_10M

LyreSplit
AGGLO
KMEANS

Figure 8: Storage Size vs. Checkout Time
Effectiveness Comparison.
Summary of Trade-off between Storage Size and Checkout Time. LYRES-
PLIT dominates AGGLO and KMEANS with respect to the storage size and
checkout time after partitioning, i.e., with the same storage size, LYRES-
PLIT’s partitioning scheme provides a smaller checkout time.

1138

In order to trade-off between S and Cavg , we vary δ for LYRE-
SPLIT, BC for AGGLO and K for KMEANS to obtain the overall
trend between the storage size and the checkout time. The results
are shown in Figure 8, where the x-axis depicts the total storage
size for the data table in gigabytes (GB) and the y-axis depicts the
average checkout time in seconds for the 100 randomly selected
versions. Each point in Figure 8 represents a partitioning scheme
obtained by one algorithm with a specific input parameter value.
We terminated the execution of KMEANS when its running time
exceeded 10 hours for each K, which is why there are only two
points with star markers in Figure 8(b) and 8(d) respectively. The
overall trend for AGGLO, KMEANS, and LYRESPLIT is that with
the increase in storage size, the average checkout time first de-
creases and then tends to a constant value—the average checkout
time when each version is stored as a separate table.

Furthermore, LYRESPLIT has better performance than the other
two algorithms in both the SCI and CUR datasets in terms of the
storage size and the checkout time, as shown in Figure 8. For in-
stance, in Figure 8(a), with 2.3GB storage budget, LYRESPLIT can
provide a partitioning scheme taking 2.9s for checkout on average,
while both KMEANS and AGGLO give schemes taking more than
7s. Thus, with equal or lesser storage size, the partitioning scheme
selected by LYRESPLIT achieves much less checkout time than the
ones proposed by AGGLO and KMEANS, especially when the stor-
age budget is small. The reason is that LYRESPLIT takes a “global”
perspective to partitioning, while AGGLO and KMEANS take a “lo-
cal” perspective. Specifically, each split in LYRESPLIT is decided
based on the derivation structure and similarity between various
versions, as opposed to greedily merging partitions with partitions
in AGGLO, and moving versions between partitions in KMEANS.

SCI_1M SCI_5M SCI_10M100
101
102
103
104
105
106
107
108
109

Ru
nn

in
g

Ti
m

e
(in

 m
s)

33ms 17ms

0.3s

7s
18s

0.8h

5.4h 10h 10hcutoff

(a) Total Running Time
SCI_1M SCI_5M SCI_10M100

101
102
103
104
105
106
107
108
109

Ru
nn

in
g

Ti
m

e
(in

 m
s)

3ms 3ms

53ms

0.7s
6s

119s

0.5h

3.7h 10hcutoff

(b) Running Time Per Iteration

LyreSplit AGGLO KMEANS

Figure 9: Algorithms’ Running Time Comparison (SCI_*)
Efficiency Comparison.
Summary of Comparison of Running Time of Partitioning Algorithms.
When minimizing the checkout time under a storage constraint (Prob-
lem 1), LYRESPLIT is on average 103× faster than AGGLO, and more
than 105× faster than KMEANS for all SCI_* and CUR_* datasets.

In this experiment, we set the storage threshold as γ = 2|R|, and
terminate the binary search process when the resulting storage cost
S meets the constraint: 0.99γ ≤ S ≤ γ. We discuss the results
for the SCI datasets: the CUR dataset performance is similar [9].
Figure 9a shows the total running time during the end-to-end binary
search process, while Figure 9b shows the running time per binary
search iteration. Again, we terminate KMEANS and AGGLO when
the running time exceeds 10 hours. Consider the largest dataset
SCI_10M in Figure 9 as an example: with LYRESPLIT the entire
binary search procedure and each binary search iteration took 0.3s
and 53ms respectively; AGGLO takes 50 minutes in total; while
KMEANS does not even finish a single iteration in 10 hours.

Overall, LYRESPLIT is 102× faster than AGGLO for SCI_1M,
103× faster for SCI_5M, and 104× faster for SCI_10M respec-
tively, and more than 105× faster than KMEANS for all datasets.
This is mainly because LYRESPLIT only needs to operate on the
version graph while AGGLO and KMEANS operate on the version-
record bipartite graph, which is much larger than the version graph.

Furthermore, KMEANS can only finish the binary search process
within 10 hours for SCI_1M. Thus our proposed LYRESPLIT is
much more scalable than AGGLO and KMEANS. Even if KMEANS
is closer to LYRESPLIT in performance (as seen in the previous
experiments), it is impossible to use in practice.

5.3 Benefits of Partitioning
Summary of Checkout Time Comparison with and without Partitioning:
With only a 2× increase on the storage, we can achieve a substantial 3×,
10× and 21× reduction on checkout time for SCI_1M, SCI_5M, and
SCI_10M respectively.

We now study the impact of partitioning and demonstrate that
with a relatively small increase in storage, the checkout time can
be substantially reduced. We conduct two sets of experiments with
the storage threshold as γ = 1.5 × |R| and γ = 2 × |R| respec-
tively, and compare the average checkout time with and without
partitioning. Figure 10(a) illustrates the comparison on the check-
out time for different datasets, and Figure 10(b) displays the cor-
responding storage size comparison. Each collection of bars in
Figure 10 corresponds to one dataset. Consider SCI_5M in Fig-
ure 10 as an example: the checkout time without partitioning is
16.6s while the storage size is 2.04GB; when the storage thresh-
old is set to be γ = 2 × |R|, the checkout time after partitioning
is 1.71s and the storage size is 3.97GB. As illustrated in Figure 10,
with only 2× increase in the storage size, we can achieve 3× reduc-
tion on SCI_1M, 10× reduction on SCI_5M, and 21× reduction on
SCI_10M for the average checkout time compared to that without
partitioning. Thus, with partitioning, we can eliminate the time for
accessing irrelevant records. Consequently, the checkout time re-
mains small even for large datasets. The results for CUR is similar
and can be found in the technical report [9].

SCI_1M SCI_5M SCI_10M0
5

10
15
20
25
30
35
40
45

Ch
ec

ko
ut

 T
im

e
(in

 S
ec

on
d)

4.21

16.60

35.99

1.26 1.81 1.821.21 1.71 1.68

(a) Checkout Time (SCI_*)
SCI_1M SCI_5M SCI_10M0

2

4

6

8

10

St
or

ag
e

Si
ze

 (i
n

GB
)

0.41

2.04

4.24

0.56

2.99

6.19

0.73

3.97

8.17

(b) Storage Size (SCI_*)

Without-partitioning LyreSplit (γ=1.5|R|) LyreSplit (γ=2|R|)

Figure 10: Comparison With and Without Partitioning
5.4 Maintenance and Migration

We now evaluate the performance of ORPHEUSDB’s partition-
ing optimizer over the course of an extended period with many ver-
sions being committed to the system. We employ our SCI_10M
dataset, which contains the largest number of versions (i.e. 10k).
Here, the versions are streaming in continuously; as each version
commits, we perform online maintenance based on the mechanism
described in Section 4.3. When Cavg

C∗avg
reaches the tolerance factor

µ, the migration engine is automatically invoked, and starts to per-
form the migration of data from the old partitions to the new ones
identified by LYRESPLIT. We first examine how our online main-
tenance performs, and how frequently migration is invoked. Next,
we test the latency of our proposed migration approach. The stor-
age threshold is set to be γ = 1.5|R|. Similar results on γ = 2|R|
can be found in our technical report [9].

Online Maintenance.
Summary of Online Maintenance Compared to LYRESPLIT. With our
proposed online maintenance mechanism, the checkout cost Cavg di-
verges slowly from the best checkout cost C∗avg identified by LYRESPLIT.
When µ = 1.5, our migration engine is triggered only 7 times across a
total of 10,000 committed versions .

1139

As shown in Figure 11a, the red line depicts the best checkout cost
C∗avg identified by LYRESPLIT (note that LYRESPLIT is lightweight
and can be run very quickly after every commit), while the blue and
green lines illustrate the current checkout cost Cavg with tolerance
factor µ = 1.5 and µ = 2, respectively. We can see that with online
maintenance, the checkout cost Cavg (blue and green lines) starts to
diverge from C∗avg (red line). When Cavg

C∗avg
exceeds the tolerance fac-

tor µ, the migration engine is invoked, and the blue and green lines
jump back to the red line once migration is complete. As depicted
in Figure 11a, when µ = 1.5, migration is triggered 7 times, while
it is only triggered 3 times when µ = 2, across a total of 10000 ver-
sions committed. Thus, our proposed online maintenance performs
well, diverging slowly from LYRESPLIT.

0 2000 4000 6000 8000 10000
of Verisons Committed

0.00

0.05

0.10

0.15

0.20

0.25

Ch
ec

ko
ut

 C
os

t
(in

 M
ill

io
ns

 o
f R

ec
or

ds
)

LyreSplit
Online (µ=1.5)
Online (µ=2)

(a) Online Maintenance

0 2000 4000 6000 8000 10000
of Verisons Committed

0

50

100

150

200

250

300

350

400

M
ig

ra
tio

n
Ti

m
e

(in
 S

ec
on

d)

Naive µ=1.05
Intell µ=1.05
Intell µ=1.2
Intell µ=1.5
Intell µ=2
Intell µ=2.5

(b) Migration Time

Figure 11: Online Partitioning and Migration (SCI_10M)
Migration Time.
Summary of Comparison of Running Time of Migration. When µ = 1.05,
the migration time with our proposed method is on average 1

10
of that with

naive approach of rebuilding the partitions from scratch . As µ decreases,
the migration time with our proposed method decreases.

Figure 11b depicts the migration time when the migration en-
gine is invoked. Figure 11b is in correspondence with Figure 11a
sharing the same x-axis. For instance, with µ = 2, when the
5024th version commits, the migration engine is invoked as shown
by the green line in Figure 11a. Correspondingly, the migration
takes place, and we record the migration time with the green cir-
cle (µ = 2) in Figure 11b. Hence, there are three green circles in
Figure 11b, corresponding to the three migrations in Figure 11a.

We now compare our intelligent migration approach from Sec-
tion 4.3, denoted intell, with the naive approach of rebuilding parti-
tions from scratch, denoted naive. The points with upward triangles
in Figure 11b all have µ = 1.05, with the red points representing
intell, and the brown representing naive: we see that intell takes at
most 1

3
, and on average 1

10
of the time of naive. For the sake of clar-

ity, we omit the migration times for different µ using naive, since
they roughly fall on the same line as that of µ = 1.05. Next, con-
sider the migration time with different µ using intell. Overall, as µ
decreases, the migration time decreases. To see this, one can con-
nect the points corresponding to each µ (denoted using different
markers) to form lines in Figure 11b. When µ is smaller, migra-
tion takes place more frequently, due to which the new partitioning
scheme identified by LYRESPLIT is more similar to the current one,
and hence fewer modifications need to be performed. Essentially,
we are amortizing the migration cost across multiple migrations.

6. RELATED WORK
We now survey work from multiple areas related to ORPHEUSDB.

Dataset Version Control. A recent vision paper on Datahub [12]
acknowledges the need for database systems to support collabora-
tive data analytics—we execute on that vision by supporting col-
laborative analytics using a traditional relational database. Deci-
bel [33] describes a new version-oriented storage engine designed

“from the ground up” to support versioning. Unfortunately, the ar-
chitecture involves several choices that make it impossible to sup-
port within a traditional relational database without substantial cha-
nges at all layers of the stack. For example, the eventual solution
requires the system to log and query tuple membership on com-
pressed bitmaps, reason about and operate on “delta files”, and ex-
ecute new and fairly complex algorithms for even simple operations
such as branch (in our case checkout) or merge (in our case com-
mit). It remains to be seen how this storage engine can be made to
interact with other components, such as the parser, the transaction
manager, and the query optimizer. We are approaching the problem
from a different angle—the angle of reuse: how do we leverage
relational databases to support versioning without any substantial
changes to existing databases, which have massive adoption and
open-source development that we can tap into. Starting from this
perspective, the novelty of ORPHEUSDB lies in evaluating various
designs of the representation scheme for capturing versioning in-
formation, and the partitioning algorithm for faster version control
operations. Recent work on the principles of dataset versioning
is also relevant [13] in that it shares the concerns of minimizing
storage and recreation cost; however, the paper considered the un-
structured setting from an algorithmic viewpoint, and did not aim
to build a full-fledged dataset versioning system. Lastly, Chavan et
al. [15] describe a query language for versioning and provenance,
but do not develop a system that can support such a language—our
system can support an important subset of this language already.

The problem of incremental view maintenance, e.g., [10], is also
related since it implicitly considers the question of storage versus
query efficiency, which is one of the primary concerns in data ver-
sioning. However, the considerations and challenges are very dif-
ferent, making the solutions not applicable to data versioning. Fi-
nally, Buneman et al. [14] introduce a range encoding approach
to track the versioning of hierarchical data in scientific databases,
but their method focuses on XML data and is not applicable to the
relational datasets.

Temporal Databases. There is a rich body of work on time travel
(or temporal) databases, e.g., [21, 36, 42], focusing on data man-
agement when the state of the data at a specific time is important.
Temporal databases support a linear clock, or a linear chain of ver-
sions, whereas our work focuses on enabling non-linear histories.
There has been some work on developing temporal databases by
“bolting-on” capabilities to a traditional database [43], with DB2
[40] and Teradata [11] supporting time-travel in this way. Other
systems adopt an “in-database” approach [25]. Kaufmann et al. [26]
provide a good summary of the temporal features in databases,
while Kulkarni et al. [27] describe the temporal features in SQL2011.

The canonical approach to recording time in temporal databases
is via attributes indicating the start and end time, which differs a
bit depending on whether the time is the “transaction time” or the
“valid time”. In either case, if one extends temporal databases to
support arrays capturing versions instead of the start and end time,
we will end up as a solution like the one in Figure 1b, which as
shown severely limits performance. Thus, the techniques we de-
scribe in the paper on evaluating efficient data models and parti-
tioning are still relevant and complement this prior work.

Most work in this area focuses on supporting constructs that do
not directly apply to ORPHEUSDB, such as: (a) queries that probe
interval related-properties, such as which tuples were valid in a spe-
cific time interval, via range indexes [38], or queries that roll back
to specific points [31]; (b) temporal aggregation [25] to aggregate
some attributes for every time interval granularity, and temporal
join [20] to join tuples if they overlap in time; (c) queries that in-
volve time-related constructs such as AS OF, OVERLAPS, PRE-
CEDES.

1140

There has been limited work on branched temporal databases [29,
39], with multiple chains of linear evolution as opposed to arbitrary
branching and merging. While there has been some work on devel-
oping indexing [30, 22] techniques in that context, these techniques
are specifically tailored for queries that select a specific branch, and
a time-window within that branch, which therefore have no cor-
respondences in our context. Moreover, these techniques require
substantial modifications to the underlying database.

Restricted Dataset Versioning. There have been some open-source
projects on versioning topics. LiquiBase [6] tracks schema evolu-
tion as the only applicable modifications giving rise to new ver-
sions: in our case, we focus primarily on the data-level modifica-
tions, but also support schema modifications as described in [9]. On
the other hand, DBV [4] is focused on recording SQL operations
that give rise to new versions such that these operations can be “re-
played” on new datasets—thus the emphasis is on reuse of work-
flows rather than on efficient versioning. As other recent projects,
Dat [2] can be used to share and sync local copies of dataset across
machines, while Mode [7] integrates various analytics tools into a
collaborative data analysis platform. However, neither of the tools
are focused on providing advanced querying and versioning capa-
bilities. In addition, git and svn can be made to support dataset
versioning, however, recent work shows these techniques are not
efficient [33], and do not support sophisticated querying.

Graph Partitioning. There has been a lot of work on graph parti-
tioning [24, 32, 19, 23], with applications ranging from distributed
systems and parallel computing, to search engine indexing. The
state-of-the-art in this space is NScale [37], which proposes algo-
rithms to pack subgraphs into the minimum number of partitions
while keeping the computation load balanced across partitions. In
our setting, the versions are related to each other in very specific
ways; and by exploiting these properties, our algorithms are able to
beat the NScale ones in terms of performance, while also providing
a 103× speedup. Kumar et al. [28] study workload-aware graph
partitioning by performing balanced k-way cuts on the tuple-query
hypergraph for data placement and replication on the cloud; in their
context, however, queries are allowed to touch multiple partitions.

7. CONCLUSIONS
We presented ORPHEUSDB, a dataset version control system

that is “bolted on” a relational database, thereby seamlessly ben-
efiting from advanced querying as well as versioning capabilities.
We proposed and evaluated four data models for storing CVDs in a
database. We further optimized the best data model (split-by-rlist)
via the LYRESPLIT algorithm that applies intelligent but lightweight
partitioning to reduce the amount of irrelevant data that is read dur-
ing checkout. We also adapt LYRESPLIT to operate in an incremen-
tal fashion as new versions are introduced. Our experimental results
demonstrate that LYRESPLIT is 103× faster in finding the effective
partitioning scheme compared to other algorithms, can improve the
checkout performance up to 20× relative to schemes without parti-
tioning, and is capable of operating efficiently (with relatively few
and efficient migrations) in a dynamic setting.

Acknowledgements. We thank the anonymous reviewers for their
valuable feedback. We acknowledge support from ISTC for Big
Data, grant IIS-1513407, IIS-1633755, and IIS-1652750, awarded
by the National Science Foundation, grant 1U54GM114838 awarded
by NIGMS and 3U54EB020406-02S1 awarded by NIBIB through
funds provided by the trans-NIH Big Data to Knowledge (BD2K)
initiative (www.bd2k.nih.gov), and funds from Adobe, Google, and
the Siebel Energy Institute. The content is solely the responsibility
of the authors and does not necessarily represent the official views
of the funding agencies and organizations.

8. REFERENCES
[1] Array in MySql. https://dev.mysql.com/worklog/task/?id=2081.
[2] Dat. http://datproject.org/.
[3] DB2 9.7 array. https://www.ibm.com/support/knowledgecenter/

SSEPGG_9.7.0/com.ibm.db2.luw.sql.ref.doc/doc/r0050497.html.
[4] dbv. https://dbv.vizuina.com/.
[5] For big-data scientists, ‘janitor work’ is key hurdle to insights.

http://www.nytimes.com/2014/08/18/technology/
for-big-data-scientists-hurdle-to-insights-is-janitor-work.html?_r=0.

[6] Liquibase. http://www.liquibase.org/.
[7] Mode. https://about.modeanalytics.com/.
[8] PostgreSQL9.5. www.postgresql.org/docs/current/static/intarray.html.
[9] ORPHEUSDB: Bolt-on versioning for relational databases. In Technical Report,

Available at: http://data-people.cs.illinois.edu/papers/orpheus-tr.pdf .
[10] Y. Ahmad et al. Dbtoaster: Higher-order delta processing for dynamic,

frequently fresh views. VLDB Endowment, 5(10):968–979, 2012.
[11] M. Al-Kateb et al. Temporal query processing in teradata. In EDBT’13.
[12] A. Bhardwaj et al. Datahub: Collaborative data science & dataset version

management at scale. CIDR, 2015.
[13] S. Bhattacherjee et al. Principles of dataset versioning: Exploring the

recreation/storage tradeoff. VLDB, 8(12):1346–1357, 2015.
[14] P. Buneman et al. Archiving scientific data. TODS, 29(1):2–42, 2004.
[15] A. Chavan et al. Towards a unified query language for provenance and

versioning. In TaPP, 2015.
[16] G. O. Consortium et al. Gene ontology consortium: going forward. Nucleic

acids research, 43(D1):D1049–D1056, 2015.
[17] C. De Castro, F. Grandi, and M. R. Scalas. On schema versioning in temporal

databases. In Recent advances in temporal databases, pages 272–291. 1995.
[18] C. De Castro, F. Grandi, and M. R. Scalas. Schema versioning for

multitemporal relational databases. Information Systems, 22(5):249–290, 1997.
[19] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem.

Algorithmica, 29(3):410–421, 2001.
[20] D. Gao, S. Jensen, T. Snodgrass, and D. Soo. Join operations in temporal

databases. The VLDB Journal, 14(1):2–29, 2005.
[21] C. S. Jensen and R. T. Snodgrass. Temporal data management. IEEE

Transactions on Knowledge and Data Engineering, 11(1):36–44, 1999.
[22] L. Jiang, B. Salzberg, D. B. Lomet, and M. B. García. The bt-tree: A branched

and temporal access method. In VLDB, pages 451–460, 2000.
[23] G. Karypis et al. Multilevel k-way hypergraph partitioning. VLSI design, 11(3).
[24] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SISC, 20(1):359–392, 1998.
[25] M. Kaufmann et al. Timeline index: A unified data structure for processing

queries on temporal data in sap hana. In SIGMOD 2013, pages 1173–1184.
[26] M. Kaufmann et al. Benchmarking bitemporal database systems: Ready for the

future or stuck in the past? In EDBT, pages 738–749, 2014.
[27] K. Kulkarni and J.-E. Michels. Temporal features in sql: 2011. ACM Sigmod

Record, 41(3):34–43, 2012.
[28] K. A. Kumar et al. Sword: workload-aware data placement and replica selection

for cloud data management systems. The VLDB Journal, 23(6).
[29] G. M. Landau et al. Historical queries along multiple lines of time evolution.

The VLDB Journal, 4(4):703–726, 1995.
[30] S. Lanka and E. Mays. Fully persistent B+-trees, volume 20. ACM, 1991.
[31] J. W. Lee, J. Loaiza, M. J. Stewart, W.-M. Hu, and W. H. Bridge Jr. Flashback

database, Feb. 20 2007. US Patent 7,181,476.
[32] D.-R. Liu and S. Shekhar. Partitioning similarity graphs: A framework for

declustering problems. Information Systems, 21(6):475–496, 1996.
[33] M. Maddox et al. Decibel: The relational dataset branching system. VLDB, 9(9).
[34] H. J. Moon et al. Scalable architecture and query optimization

fortransaction-time dbs with evolving schemas. In SIGMOD 2010.
[35] H. J. Moon et al. Managing and querying transaction-time databases under

schema evolution. VLDB, 2008.
[36] G. Ozsoyoglu et al. Temporal and real-time databases: A survey. TKDE, 7(4).
[37] A. Quamar, A. Deshpande, and J. Lin. Nscale: neighborhood-centric large-scale

graph analytics in the cloud. The VLDB Journal, pages 1–26, 2014.
[38] B. Salzberg and V. J. Tsotras. Comparison of access methods for time-evolving

data. ACM Computing Surveys (CSUR), 31(2):158–221, 1999.
[39] B. J. Salzberg and D. B. Lomet. Branched and Temporal Index Structures.

College of Computer Science, Northeastern University, 1995.
[40] C. M. Saracco, M. Nicola, and L. Gandhi. A matter of time: Temporal data

management in db2 for z. IBM Corporation, New York, 2010.
[41] D. Szklarczyk et al. The string database in 2011: functional interaction

networks of proteins, globally integrated and scored. Nucleic acids research.
[42] A. U. Tansel et al. Temporal databases: theory, design, and implementation.

Benjamin-Cummings Publishing Co., Inc., 1993.
[43] K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum approaches to temporal

dbms implementation. In IDEAS’98, pages 4–13. IEEE, 1998.
[44] L. Xu, S. Huang, S. Hui, A. Elmore, and A. Parameswaran. ORPHEUSDB: A

lightweight approach to relational dataset versioning. In SIGMOD’17 Demo.

1141

