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Grégoire Gomes
Grenoble INP
gregoire.go-

mes@gmail.com

ABSTRACT
Storage Class Memory (SCM) is a novel class of memory tech-
nologies that promise to revolutionize database architectures.
SCM is byte-addressable and exhibits latencies similar to those
of DRAM, while being non-volatile. Hence, SCM could replace
both main memory and storage, enabling a novel single-level
database architecture without the traditional I/O bottleneck.
Fail-safe persistent SCM allocation can be considered conditio
sine qua non for enabling this novel architecture paradigm
for database management systems. In this paper we present
PAllocator, a fail-safe persistent SCM allocator whose design
emphasizes high concurrency and capacity scalability. Con-
trary to previous works, PAllocator thoroughly addresses
the important challenge of persistent memory fragmentation
by implementing an efficient defragmentation algorithm. We
show that PAllocator outperforms state-of-the-art persis-
tent allocators by up to one order of magnitude, both in
operation throughput and recovery time, and enables up to
2.39x higher operation throughput on a persistent B-Tree.

1. INTRODUCTION
SCM is a group of emerging memory technologies that promise
to combine the low latency and byte-addressability of DRAM,
with the density, non-volatility, and economic characteristics
of traditional storage media. Most SCM technologies exhibit
asymmetric latencies, with writes being noticeably slower
than reads. Table 1 summarizes current characteristics of two
SCM candidates, Phase Change Memory (PCM) [16] and Spin
Transfer Torque RAM (STT-RAM) [14], and compares them with
current memory technologies. Like flash memory, SCM sup-
ports a limited number of writes, yet, some SCM candidates,
from a material perspective, promise to be as enduring as
DRAM. These candidates also promise to feature even lower
latencies than DRAM. However, while its manufacturing tech-
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Table 1: Comparison of current memory technolo-
gies with SCM candidates [18].

Parameter NAND DRAM PCM STT-RAM

Read Latency 25 µs 50 ns 50 ns 10 ns
Write Latency 500 µs 50 ns 500 ns 50 ns
Byte-addressable No Yes Yes Yes
Endurance 104–105 >1015 108–109 >1015

nology matures, we expect the first few generations of SCM
to exhibit higher latencies than DRAM, especially for writes.
Other promising SCM candidates that were subject to indus-
try announcements include Intel and Micron’s 3D XPoint,
Resistive RAM (RRAM) [13], and HP’s Memristors [26]. Given
its non-volatility, idle SCM memory cells do not consume
energy, in contrast to DRAM cells that constantly consume
energy to maintain their state. Consequently, SCM has the
potential to drastically reduce energy consumption. Given
its byte-addressability and low latency, data in SCM can be
accessed via load and store semantics through the CPU caches,
without buffering it in DRAM. Current file systems, such as
ext4 with Direct Access (DAX), already support this access
method by offering zero-copy memory mapping that bypasses
DRAM, offering direct SCM access to the application layer.

Therefore, SCM can be architected as universal memory,
i.e., as main memory and storage at the same time. This
architecture enables a novel single-level database architecture
that is able to scale to much larger main memory capacities
while removing the traditional I/O bottleneck. Databases
that implement this paradigm start to emerge, such as Pelo-
ton [3], FOEDUS [15], and our database SOFORT [22]. Persistent
memory allocation is a fundamental building block for en-
abling this novel database architecture. In this paper we
present SOFORT’s memory management component, called
PAllocator, a highly scalable, fail-safe, and persistent allo-
cator for SCM, specifically designed for databases that require
very large main memory capacities. PAllocator uses in-
ternally two different allocators: SmallPAllocator, a small
block persistent allocator that implements a segregated-fit
strategy; and BigPAllocator, a big block persistent allo-
cator that implements a best-fit strategy and uses hybrid
SCM-DRAM trees to persist and index its metadata. The use of
hybrid trees enables PAllocator to also offer a fast recovery
mechanism. Besides, PAllocator addresses fragmentation
in persistent memory, which we argue is an important chal-
lenge, and implements an efficient defragmentation algorithm
that is able to reclaim the memory of fragmented blocks by
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leveraging the hole punching feature of sparse files. To the
best of our knowledge, PAllocator is the first SCM allocator
that proposes a transparent defragmentation algorithm as a
core component for SCM-based database systems. Our eval-
uation shows that PAllocator improves on state-of-the-art
persistent allocators by up to two orders of magnitude in op-
eration throughput, and by up to three orders of magnitude
in recovery time. Besides, we integrate PAllocator and a
state-of-the-art persistent allocator in a persistent B-Tree,
and show that PAllocator enables up to 2.39x better opera-
tion throughput than its counterpart.

The rest of this paper is organized as follows: We con-
tribute in Section 2 an analysis of the challenges posed by
SCM that we drew from our experience in designing and
implementing SOFORT. Then, Section 3 discusses related
work, with a focus on state-of-the-art persistent allocators.
Thereafter, Section 4 presents our PAllocator, its different
components, its defragmentation algorithm, and its recovery
mechanism. Section 5 presents a detailed performance evalu-
ation of PAllocator against state-of-the-art SCM allocators.
Finally, Section 6 concludes this paper.

2. PERSISTENT MEMORY CHALLENGES
With the unique opportunities brought by SCM comes a set of
novel programming challenges, from which we identify: (1)
data consistency; (2) data recovery; (3) persistent memory
leaks; (4) partial writes; (5) persistent memory fragmentation;
and (6) virtual address space fragmentation. We detail these
challenges in the following.

Data consistency
SCM is managed using an SCM-aware file system that grants
the application layer direct access to SCM through memory
mapping. This enables CPUs to access SCM directly with load
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Figure 1: Vo-
latility chain in
x86-like CPUs.

and store semantics. The path from
SCM to CPU registers is long and
mostly volatile, as illustrated in Fig-
ure 1. It includes store buffers,
CPU caches, and the memory con-
troller buffers, over all of which soft-
ware has little to no control. Ad-
ditionally, modern CPUs implement
complex out-of-order execution and
either partial store ordering (Intel
x86) or relaxed-memory ordering
(IBM PowerPC). Consequently, me-
mory stores need to be explicitly or-
dered and persisted to ensure consis-
tency. Current x86 CPUs provide the
CLFLUSH, MFENCE, SFENCE, and non-

temporal store instructions to enforce memory ordering and
data durability. Additionally, CLFLUSHOPT and CLWB have
been announced for future platforms [1]. CLFLUSH evicts syn-
chronously a cache line and writes it back to memory. Thus,
data needs to be aligned to cache-line boundaries to avoid
accidentally evicting falsely shared data. SFENCE is a memory
barrier that serializes all pending stores, while MFENCE seri-
alizes both pending loads and stores. Non-temporal stores
bypass the cache by writing to a special buffer, which is
evicted either when it is full, or when an SFENCE is issued.
CLFLUSHOPT is the asynchronous version of CLFLUSH and re-
quires an MFENCE to be serialized. Finally, CLWB writes back a
cache line to memory without evicting it, which is beneficial
when data is accessed shortly after it is persisted.

Until recently the memory controller buffers were consid-
ered to be part of the volatility chain. Since then Intel has
announced support for Asynchronous DRAM Self-Refresh (ADR)
in all platforms that will support persistent memory1. ADR

protects data still pending in memory controller buffers from
power failures using capacitors. Hence, it is safe to assume
that a cache line flush guarantees persistence.

Data recovery
When a program restarts, it loses its previous address space,
invalidating any stored virtual pointers. Hence, there is a
need to devise ways of discovering and recovering data stored
in SCM. Using a file system on top of SCM provides a way of
discovering data after a restart.

Reads and writes to a file created and memory mapped
by an SCM-aware file system are made with direct load and
store instructions. Hence, SCM-aware file systems should not
have a negative performance impact on the application. A
state-of-the-art technique to recover data is using persistent
pointers in the form of a file ID and an offset relative to that
file [27]; we follow this approach in this paper.

Persistent memory leaks
Memory leaks pose a greater problem with persistent memory
than with volatile memory: they are persistent. Besides,
persistent memory faces a new class of memory leaks resulting
from software failures. To illustrate this problem, consider
the example of a linked-list insertion. If a crash occurs after
a new node was allocated but before it was linked to the
previous node, the persistent allocator will remember the
allocation while the data structure will not, leading to a
persistent memory leak. We elaborate on our approach to
avoid memory leaks in Section 4.2 .

Partial writes
We define a p-atomic store as one that executes in a single
CPU cycle; that is, a store that is immune to partial writes.
Current x86 CPUs support only 8-byte p-atomic stores; larger
write operations are prone to partial writes since the CPU can
speculatively evict a cache line at any moment. For instance,
if a thread is writing a 64-byte cache-line-aligned string,
it might write 16 bytes, then get descheduled. Meanwhile
the CPU might evict the cache line where the string resides,
persisting the written first 16 bytes. A failure at this time
will corrupt the string in SCM. A common way of addressing
this problem is using flags that can be written p-atomically
to indicate whether a larger write operation has completed.

Persistent memory fragmentation
Persistent memory allocations have a longer lifespan than
transient ones, and therefore have more impact on the overall
application. While a restart remains a valid, but last-resort
way of defragmenting volatile memory, it is not effective in
the case of persistent memory. This is a similar problem
to that of file systems. However, file system defragmenta-
tion solutions cannot be applied to SCM, because file systems
have an additional indirection step: they use virtual me-
mory mappings and buffer pages in DRAM, which enables
them to transparently move physical pages around to de-
fragment memory. In contrast, persistent memory mappings
give direct physical memory access to the application layer
without buffering in DRAM. Hence, persistent memory can-
not be transparently moved as it is bound to its memory

1
https://software.intel.com/en-us/blogs/2016/09/12/

deprecate-pcommit-instruction
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mapping. As a consequence, we argue that fragmentation
avoidance is a core requirement for any persistent memory
allocator. Within our PAllocator solution we propose a
defragmentation algorithm, detailed in Section 4.6.

Address space fragmentation
Given the existence of systems with tens of TBs of main
memory, and given the currently limited amount of address
space supported by both software and hardware, we antic-
ipate that the larger main memory capacities SCM enables
will pose the unprecedented challenge of address space frag-
mentation. Indeed, SCM enables main memory capacities of
hundreds of TBs. Current Intel x86 processors use 48 bits
for address space, which amounts to a maximum capacity
of 256 TB. However, Linux uses only 47 bits as one bit is
reserved for the kernel. Hence, Linux currently supports
up to 128 TB of address space. Two challenges arise: this
capacity will not be sufficient for next-generation servers that
use SCM, and the amount of physical memory approaches the
limits of available virtual address space making the latter
prone to fragmentation. Hence, memory mapping a file that
resides in SCM might fail because of the lack of a large-enough
contiguous virtual memory region. To remedy this issue,
starting from Linux kernel v4.12, the page table will be ex-
tended to 5 levels instead of 4, enabling support for 128 PB

of virtual address space [9].
From all these challenges, we derive the following require-

ments for persistent allocators: provide data discovery and
recovery mechanisms, prevent persistent memory leaks, and
minimize fragmentation, or even better, offer a defragmenta-
tion mechanism, all of which are fulfilled by our PAllocator.

3. RELATED WORK
Among early works on managing SCM, Condit et al. [8] pro-
posed BPFS, a high performance transactional file system that
runs on top of SCM. Since then, many other SCM-aware file
systems have been proposed, such as SCMFS [28], PMFS [11],
NOVA [29], and HiNFS [20]. While these works focus on man-
aging SCM from a storage perspective, we focus on managing
SCM on top of a file system in a main-memory-like fashion.

To address SCM challenges, Volos et al. [25] proposed
Mnemosyne, a collection of libraries to program SCM that re-
quire kernel modifications and compiler support. Mnemosyne

uses an SCM-aware version of Hoard [4] for small block allo-
cations, and a transactional version of dlmalloc2 for large
allocations. Following a similar approach, Coburn et al. [7]
proposed NVHeap, a persistent heap that implements garbage
collection through reference counting. Later, Chatzister-
giou et al. [6] proposed REWIND, a log-based user-mode li-
brary, targeted at database systems, that manages persistent
data structures in SCM in a recoverable state. While all
these approaches are laudable, we argue that transactional-
memory-like approaches suffer from additional overhead due
to systematic logging of modified data, which is amplified by
the higher latency of SCM.

Moraru et al. [19] propose NVMalloc, a general purpose SCM
allocator whose design emphasizes wear-leveling and memory
protection against erroneous writes. The authors propose to
extend CPU caches with line counters to track which lines have
been flushed. Yu et al. [30] proposed WAlloc, a persistent
memory allocator optimized for wear leveling. In contrast to

2
http://g.oswego.edu/dl/html/malloc.html

NVMalloc and WAlloc, we focus on performance and defrag-
mentation, and ignore wear-leveling which we envision will
be addressed at the hardware level. Indeed, several works,
such as [23], have already proposed efficient, hardware-based
wear-leveling techniques to increase the lifetime of SCM.

Schwalb et al. [24] propose nvm malloc, a general pur-
pose SCM allocator based on jemalloc3. It uses a three-step
allocation strategy, first proposed by libpmem from NVML,
namely reserving memory, initializing it, and then activating
it. nvm malloc creates a single, dynamically resizable pool
and uses link pointers, which represent offsets within the
pool, to track objects. nvm malloc uses a segregated-fit algo-
rithm for blocks smaller than 2 KB, and a best-fit algorithm
for larger blocks.
NVML [2] is an open-source, actively developed collection of

persistent memory libraries from Intel. The most relevant
library to our work is libpmemobj, which provides, among
other features, an advanced fail-safe memory allocator, which
is the only one, besides our PAllocator, to account for
fragmentation, a very important challenge as explained in
Section 2. It uses a best-fit algorithm for memory allocations
larger than 256 KB, and a segregated-fit algorithm with 35
size classes for smaller allocations. In the latter case, to
minimize fragmentation, a chunk of 256 KB is divided into
blocks of 8× the class size, which are then inserted into a tree.
Hence, each chunk can service allocations of up to 8× their
class size. Nevertheless, in contrast to our PAllocator, NVML
does not have a defragmentation mechanism. NVML handles
concurrency by maintaining thread local caches.

More recently, Bhandari et al. [5] presented Makalu, a fail-
safe persistent memory allocator that relies on offline garbage
collection to relax metadata persistence constraints, result-
ing in faster small-block allocations, and enabling Makalu

to catch persistent memory leaks that stem from program-
ming errors. Makalu’s allocation scheme is similar to that of
nvm malloc, but differs in that it enforces the persistence of
only a minimal set of metadata, and reconstructs the rest
during recovery. Potential inconsistencies that might arise
during a failure are cured using garbage collection during
recovery. Makalu relies on normal volatile pointers, and keeps
them valid across restarts by memory mapping its pool at a
fixed address (using the MAP FIXED flag of mmap). However,
besides being a security issue, fixed-address mappings will
unmap any objects that are mapped in the requested range.
Finally, garbage collection can limit certain functionalities
of unmanaged-memory languages, such as C++, that are
usually used for building database systems.

To the best of our knowledge, only Mnemosyne, NVML,
nvm malloc, Makalu, and NVMalloc are publicly available.
We compare the performance of PAllocator against NVML,
Makalu, and nvm malloc; we exclude NVMalloc since it does
not provide a recovery mechanism (see Section 5 for fur-
ther details), and Mnemosyne since its default allocator is
outperformed by Makalu [5].

4. PALLOCATOR
In this section we present in detail our proposed PAllocator.

4.1 Design goals and decisions
We identify the following design goals for persistent memory
allocators tailored for large-scale SCM-based systems:
• The ability to adapt to changes in memory resources; This

is particularly important in a cloud environment.
3
http://jemalloc.net/
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Figure 2: Architecture overview of PAllocator.

• High concurrency scalability; Large main-memory systems
usually run on multi-socket systems with up to 1000 cores.
Thus, it is important for the persistent allocator to provide
robust and scalable performance.

• Provide robust performance for all sizes of allocations, as
database-system allocation sizes cover a wide range, from
a few bytes to hundreds of gigabytes.

• Fast recovery; Currently there are instances of single-node
main-memory database systems such as SAP HANA [12]
with up to 48 TB of main memory. With SCM this capacity
will quickly exceed 100 TB. Thus, the persistent allocator
must exhibit fast recovery and should not rely on scanning
memory to recover its metadata.

• Defragmentation ability; Database systems run for a very
long time, much longer than general-purpose applications,
making fragmentation much more likely to happen.

So far, state-of-the-art persistent allocators, such as NVML,
nvm malloc, and Makalu have been engineered as general-
purpose allocators, taking inspiration from existing general-
purpose transient allocators. We argue that they are unfit
for large-scale SCM-based database systems because:
• They all use a single pool (file), which is difficult to both

grow and shrink (to the best of our knowledge, none of
them can grow or shrink their pool beyond its initial size).

• They put an emphasis on the scalability of small-block
allocations (from a few bytes up to a few kilobytes), and
neglect that of middle-sized and large-block allocations.

• They do not provide defragmentation capabilities.
• They often rely on scanning memory to recover their meta-

data during recovery.
PAllocator is not a general-purpose allocator. It fulfills
the above design goals following radically different design
decisions than state-of-the-art persistent allocators:
• We use multiple files instead of a single pool, which allows

us to easily grow and shrink our pool of persistent memory.
• We use large files to avoid having a large number of them

which would hit the limitations of current file systems.
• We use three different allocation strategies for small, big,

and huge allocation sizes, mostly independent from each
other, to ensure robust performance for all allocation sizes.

• We aggressively cache free memory by not removing free
files. Instead, we keep them to speed up future allocations.
This is acceptable since main-memory database systems
usually have dedicated resources.

• Instead of thread-local pools, we use one allocator object
per physical core. Database systems can create and termi-
nate threads at a high rate during query processing. Using

thread-local pools in this case might hurt performance
and complicates fail-safety management as the local pool
has to be given back and integrated in the global pool
upon thread termination. Using striping per physical core
combined with aggressive caching provides a stable, robust,
and scalable allocation and deallocation performance.

• To defragment memory, we leverage the hole punching
feature of sparse files. This is an additional advantage of
using multiple files.

• To provide fast recovery, we persist most of PAllocator’s
metadata and rely on hybrid SCM-DRAM trees to trade off
between performance and recovery time when necessary.

4.2 Programming Model
We assume that SCM is managed by a file system that pro-
vides direct access to the application layer through memory
mapping. To retrieve data, we use persistent pointers, which
consist of an 8-byte file ID and an 8-byte offset within that
file. We devise two classes: PPtrBase and PPtr. PPtrBase

is an untyped persistent pointer, equivalent to void*. PPtr

inherits from PPtrBase and is a template, that is, it is aware
of its type, and it also provides a cast function:

class alignas(16) PPtrBase {

uint64_t fileID;

ptrdiff_t offset;

void* toPtrBase(); // Swizzling function

};

template<typename T>

class PPtr : PPtrBase {

T* toPtr(); // Swizzling function

template<typename U>

PPtr<U>& as(); // Cast function

};

Persistent pointers are aligned to 16-bytes to make sure that
the file ID and the offset reside in the same cache line. Since
persistent pointers are 16-byte large, they cannot be assigned
p-atomically. To remedy this issue, we adopt the convention
that a null pointer is a pointer with fileID equal to -1. Thus,
by setting the offset first, then the file ID, we ensure that the
persistent pointer is moved p-atomically from a null value to
a valid value. As will be explained in Section 4.3, persistent
pointers can be swizzled (converted) to ordinary, virtual
memory pointers and vice versa.

To prevent memory leaks, we changed the allocation inter-
face to take as argument a reference to a PPtrBase:

allocate(PPtrBase &p, size_t allocationSize)

deallocate(PPtrBase &p)
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The data structure must provide a persistent pointer that
resides in SCM, where the allocate function can write the
address of the allocated memory before returning. This
ensures that the data structure has always a handle on its
requested allocation, even in case of a crash. Hence, the
responsibility of avoiding memory leaks is split between the
allocator and the requesting data structure: If a crash occurs
before the allocate function has persistently written the
address of the allocated memory into the provided PPtrBase,
it is the allocator’s responsiblity to catch the memory leak
during recovery; otherwise, the allocator considers that the
allocation has successfully completed, and the data structure
has a handle on the allocated memory. In addition, the
deallocate function resets the provided persistent pointer to
null in order to prevent dangling persistent pointers.

4.3 PAllocator Architecture
PAllocator is a highly scalable persistent allocator specifi-
cally designed for SCM-based databases that use large amounts
of memory. PAllocator does not keep a single memory pool
like previous works. Instead, it creates multiple files, referred
to as segments, on a need basis.

Figure 2 illustrates the architecture of PAllocator. It uses
three different allocators: SmallPAllocator, BigPAllocator,
and HugePAllocator. SmallPAllocator handles allocations
in the range [64 B, 16 KB), while BigPAllocator handles
allocations in the range [16 KB, 16 MB). Larger allocations are
handled by HugePAllocator. For concurrency, PAllocator
maintains one SmallPAllocator and one BigPAllocator ob-
ject per core, while maintaining only a single HugePAllocator,
as huge allocations are bound by the operating system and file
system performance. Indeed, HugePAllocator creates one
segment per allocation, and deletes that segment on deallo-
cation. Although simple, this approach has the advantage of
avoiding any memory fragmentation. SmallPAllocator and
BigPAllocator objects are instantiated in transient memory
and initialized with references to their persistent metadata.
The internals of SmallPAllocator and BigPAllocator are
detailed in Sections 4.4 and 4.5, respectively.
PAllocator maintains a special segment, called Anchor

Segment, where it keeps critical metadata for recovery pur-
poses (See Figure 2). Besides, PAllocatorAnchor keeps one
PageListManager (PLMi) and one BigBlockManager (BBMi)
for each SmallPAllocator and BigPAllocator, respectively.
The use of these structures is detailed in Sections 4.4 and 4.5,
respectively. Additionally, the different allocators rely on
micro-logs to ensure the allocation and deallocation atomicity
across failures. These micro-logs are referred to as Recov-
ery Items. The RecoveryItemManager maintains one such
recovery item for each allocator object.

PSegmentHeader PLogicalPage1

PLogicalPage2 PLogicalPage3

PLogicalPage4 PLogicalPage5

PSegment (128 MB)
PLogicalPage (64 KB)

NextSegmentPPtr
SegID
NumPages
PageSize
NumAllocatedPages
FirstFreePageOffset

PSegmentHeader

PPageHeader

Block1 Block2

Block5 Block6 Block7 Block8

Block3 Block4

NextPagePPtr
BlockSize
SegID
NumBlockEntries
LocalPageOffset
NumAllocatedBlocks
NextFreeBlockOffset

PPageHeader

Block Entries

NextFreeBlockOffset

BlockEntry

Figure 4: Data organization in SmallPAllocator.

SegmentListManager is a central component of our design
and is responsible for creating segments. It has a transient
part and a persistent part. The persistent part maintains a
global segment counter, a shared list of free segments, and
for each SmallPAllocator, a list of active segments (ASLi)
as well as a list of full segments (FSLi). The use of these
lists is explained in Section 4.4.

The transient part of SegmentListManager maintains the
following segment mappings (See DRAM side of Figure 2):
• SegIDToAddress: It maps segment IDs to their correspond-

ing virtual addresses. This map is used to swizzle persistent
pointers to ordinary pointers by fetching the address of a
segment and adding the offset.

• AddressToSegInfo: It maps the virtual address of a seg-
ment to its ID and size. This map is used to swizzle ordi-
nary pointers to persistent pointers by getting an upper
bound of the address, checking whether it is in the address
range of the returned segment using its size, computing the
offset and returning the corresponding persistent pointer.

• SegIDToAllocID: It maps a segment ID to its owner alloca-
tor ID. Segments are not shared between allocator objects,
which implies that the allocator object that allocated a
block is also responsible for deallocating it. Indeed, alloca-
tor objects operate independently from each other. This
map is used in deallocations to identify which allocator
object should perform the deallocation.

These mappings are stored in transient memory for better
performance, and are easily retrieved from persistent meta-
data during recovery, as detailed in Section 4.7.

4.4 SmallPAllocator
SmallPAllocator relies on a segregated-fit allocation algo-
rithm. It has 40 size classes, ranging from 64 B to 15 KB.
We align all allocations to a cache-line-size (typically 64 B)
in order to avoid false sharing of cache lines which could
unintentionally evict adjacent data when flushed. Figure 3
gives an overview of the architecture of SmallPAllocator.
Its two main auxiliary data structures are PageListManager

and SmallRcItem. PageListManager consists of an array
that contains a persistent pointer to the first partially free
page of a class size. It interacts with SegmentListManager

to get new free pages when needed upon allocations, and
to return completely free pages upon deallocation. Each
SmallPAllocator owns a set of segments which are repre-
sented by the ActiveSegmentsList and FullSegmentsList

in SegmentListManager. SmallRcItem is a 64-byte long re-
covery item. It is used to log ongoing allocation or dealloca-
tion information to ensure their atomicity in case of a crash.
For instance, ArgumentPPtr stores the persistent address of
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the persistent pointer provided by the requester, which en-
ables SmallPAllocator to inspect it upon recovery to see
whether it completed the allocation process.

Figure 4 illustrates data organization in SmallPAllocator.
Each segment is 128 MB large, and is divided into logical
pages of 64 KB, the first of which serves as the segment header.
Segments are chained together using NextSegmentPPtr to
form either the active or the full segments list whose heads
are stored in SegmentListManager. Similarly, pages of the
same size class are linked using NextPagePPtr to a list whose
head is stored in PageListManager. Pages are in turn divided
into blocks of the same size. To track its blocks, a page stores
one 2-byte BlockEntry per block, which represents the offset
of the next free block, hence forming a list whose head is
referenced by NextFreeBlockOffset in the page header.

To illustrate how all the components of SmallPAllocator
interact together, we depict in Figure 5 its allocation process.
For the sake of simplicity and due to space constraints, we
do not include operations on recovery items. First, the
requested size is rounded up to the nearest predefined size
class. Then, PageListManager checks whether there is a
partially free page of this size, in which case it reserves
the block pointed to by NextFreeBlockOffset in the page
header by popping the head of the list of blocks; or if no free
page is available, then PageListManager requests a free page
from SegmentListManager, which returns a page from the
head of the active segments list, creating a segment in the
process if the latter is empty. Thereafter, the page header
and block entries are initialized and a block is reserved.

Note that if a segment becomes empty after a deallocation,
it is not returned to the system. Rather, free segments are
chained in the FreeSegmentsList of SegmentListManager

to avoid the cost of segment creation and page faults. This
is a commonly used technique for transient memory in main-
memory databases which implement their own internal me-
mory management [12, 17].

4.5 BigPAllocator
BigPAllocator is a tree-based allocator that uses a best-fit
algorithm. It is responsible for allocating blocks ranging
from 16 KB to 16 MB. To enable defragmentation (see Sec-
tion 4.6), all blocks are aligned to a system page size (usually
4 KB). Figure 6 gives an overview of BigPAllocator. It com-
prises two main auxiliary data structures: BigBlockManager

and BigRcItem, which is a 128-byte recovery item used
to ensure fail-safe atomicity of BigPAllocator’s operations.
BigBlockManager is responsible for keeping the topology of
allocated and free blocks. To this aim, it comprises two trees:

BigBlockAllocator

BigBlockManager*
BigRcItem*
AllocID
Lock

BigBlockManager

Set<BlockSize, BlockPPtr>
Map<BlockPPtr, BlockInfo>

BigRcItem

ArgumentPPtr
CurBlockPPtr
CoalesceRightPPtr
CoalesceLeftPPtr
ArgumentSize
SplitBlockSize
StateCounter
IsDeallocating
IsDefragmenting

BlockInfo

IsUsed
IsLastBlock
IsHole
BlockSize

SCMDRAM

Figure 6: Architecture overview of BigPAllocator.
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• Free blocks tree: It is a set of pairs of a block size and its
persistent pointer. It keeps track of free blocks.

• BlockInfo tree: It maps the persistent pointers of all
existing blocks to their corresponding BlockInfo.

A BlockInfo is 8-bytes long and consists of the block size and
three flags: IsUsed indicates whether a block is allocated;
IsLastBlock indicates whether a block is at the end of a
segment; and IsHole indicates whether a block is a hole.

Figure 7 illustrates data organization in BigPAllocator.
Similarly to SmallPAllocator, it uses segments of 128 MB

that are then divided with a best-fit strategy into blocks of
different sizes. We purposefully make SmallPAllocator and
BigPAllocator segments of the same size to enable both
to fetch segments from FreeSegmentsList. The trees of
BigBlockManager are implemented using the FPTree [21], a
hybrid SCM-DRAM persistent tree, which store a linked list of
leaf nodes in SCM and keep inner nodes in DRAM for better
performance. Upon recovery, the leaf nodes are scanned to
rebuild the inner nodes. These hybrid trees use the small
block allocators to allocate their leaf nodes. We chose to use
the FPTree because it provides near-DRAM performance
while recovering up to two orders of magnitude than a full
rebuild of a transient counterpart.

To explain how the different components of BigPAllocator
interact together, we depict its allocation process in Figure 8.
For the sake of simplicity and due to space constraints, we do
not include operations on recovery items. First, with a lower
bound operation on the free blocks tree, using as search key
the requested size and a null pointer, the smallest free block
that is larger than the requested block is retrieved. If no
block was found, then a request for a new segment is made to
SegmentListManager, and the returned segment is inserted
in the free blocks tree. Thereafter, if the block is larger than
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Figure 8: Allocation process of BigPAllocator.

the requested size, it is split into two blocks: the left one is
kept free and its size updated both in the free blocks tree
and its BlockInfo, while the right one, whose size is equal
to the requested size, is inserted as a new allocated block in
the BlockInfo tree.

4.6 Defragmentation
NVML and nvm malloc do not have any mechanism to defrag-
ment persistent memory. Both create a single memory pool
which exacerbates fragmentation in the presence of frequent
large allocations and deallocations. The segregated-fit ap-
proach of PAllocator, NVML, and nvm malloc already limits
fragmentation for small blocks. In contrast, the tree-based
big block allocators of the aforementioned allocators are more
prone to fragmentation. To make matters worse, NVML and
NVMalloc service huge allocation requests through their re-
spective pool, which makes them fail when no matching free
contiguous block exists in the pool. PAllocator, however,
creates one segment per huge allocation, enabling it to avoid
any fragmentation that might arise from huge allocations.
This highlights the benefits of having multiple segments
instead of a single large pool. Additionally, PAllocator im-
plements an efficient defragmentation mechanism that we
detail in this section.

To defragment memory, PAllocator relies on the hole
punching feature of sparse files. When an allocation fails
because PAllocator was unable to create a segment, the
allocation request is first redirected to the other allocator
objects in a round-robin fashion, until one of them succeeds,
because one of them might have a partially free segment
with a matching free block. If all of them fail, then a de-
fragmentation request of the requested segment size is made.
The defragmentation process first checks the free segments
list in SegmentListManager and removes as many of them
as needed. If that is not enough, then the segments of
BigPAllocator are defragmented. The latter process is il-
lustrated in Figure 9.

The defragmentation process starts by getting the largest
free block available in the free blocks tree. Then, it updates
its BlockInfo by setting IsHole to true, and punches a
hole of the size of the block in the corresponding segment.
We use fallocate4 with the flags FALLOC FL PUNCH HOLE and
FALLOC FL KEEP SIZE to perform the hole punch. Note that
the latter flag enables the segment to keep its apparent size,
which is required since collapsing the punched hole could
invalidate the offsets of existing persistent pointers. Punching
holes in free blocks is safe because they are aligned to a system
page size. Thereafter, the defragmentation process erases

4
http://man7.org/linux/man-pages/man2/fallocate.2.html
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Figure 9: Defragmentation process of BigPAllocator.

the current block from the free blocks trees, and gets handles
on its left and right neighbors from the BlockInfo tree. If the
left neighbor is a hole, then it is coalesced with the current
block by updating its size and erasing the current block from
the BlockInfo tree. The current block is then set to the left
neighbor. If the right neighbor is a hole, then it is coalesced
with the current block by updating the size of the current
block and erasing the right neighbor from the BlockInfo

tree. Finally, if the size of the current block is equal to that
of a segment, then the whole segment is a hole, in which case
it is deleted both from the BlockInfo tree and from the file
system. This process is repeated until either we reach the
requested size, or no more free blocks exist.

Figure 9 does not show the use of the recovery items. Nev-
ertheless, the defragmentation process uses them to achieve
fail-safe atomicity. In case of a failure during defragmen-
tation, PAllocator rolls forward during recovery only the
defragmentation iteration that was ongoing at failure time.
The recovery is greatly simplified since removing from a tree
and punching a hole in a file are both idempotent operations.

One limitation of our defragmentation algorithm is that
holes are still memory mapped, hence blocking address space.
To mitigate this shortcoming, we propose to collapse holes
that are located at the end of a segment and remap the
segment by shrinking the existing memory mapping.

Additionally, SmallPAllocator can also be defragmented
by punching holes in free logical pages, and subtracting them
from the number of pages in the segment header, which
allows us to account for logical page holes when deciding if
a segment if empty.

4.7 Recovery
PAllocator uses the status flag in the anchor segment to
check whether a failure occurred before the end of the initial-
ization process, in which case the initialization is restarted
from scratch. If a failure occurs after the initialization com-
pleted, then PAllocator starts recovery by memory mapping
all existing segments and reconstructing SegIDToAddress

and AddressToSegInfo of SegmentListManager. Thereafter,
PAllocator instantiates the allocator objects and calls their
respective recovery functions, which check the recovery items
and restore the allocator to a consistent state in case the
failure happened during an allocation or a deallocation. Note
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that the recovery of BigPAllocator involves reconstructing
the inner nodes of its hybrid trees from the persistent leaf
nodes. Finally, PAllocator recovers the SegIDToAllocID

map in the following steps:
1. All segments are initially assigned to HugePAllocator.
2. The active segments list and full segments list, located in
SegmentListManager, of each SmallPAllocator are scanned.
This enables to restore segment ownership information of
all SmallPAllocators.

3. The recovery of a hybrid tree involves scanning the per-
sistent leaf nodes to retrieve the max key in each one of
them, which are in turn used to reconstruct the inner
nodes. We extend the recovery of the BlockInfo tree to
extract a list of encountered segments while scanning the
leaf nodes, which is sufficient to restore segment ownership
information of all BigPAllocators.

4. The segments present in the FreeSegmentsList are not
assigned to any allocator.

5. The remaining segments whose ownership has not been
updated remain assigned to HugePAllocator.

Recovery time is dominated by the recovery of the trees of
BigPAllocator when these are large. Nevertheless, hybrid
trees recovery is one to two orders of magnitude faster than
that of transient counterparts. Note that the recovery of
segments that contain holes does not pose any challenge and
are recovered in the same way as segments without holes.

5. EVALUATION
Experimental setup. We run our experiments on an SCM

emulation system provided by Intel. It is equipped with 4
8-core Intel Xeon E5-4620 v2 processors clocked at 2.60 GHz.
Each core has 32 KB L1 data and 32 KB L1 instruction cache
and 256 KB L2 cache. The cores of one processor share a 20 MB

last level cache. To emulate SCM, two sockets are disabled
and their memory is interleaved at a cache-line granularity
and reserved as a separate persistent memory region. Thanks
to a special BIOS, the latency of this memory region can be
configured to a specified value. A detailed description of this
system is publicly available [10]. The system has 64 GB of
DRAM and 359 GB of emulated SCM on which we mount ext4
with DAX. The system runs Linux kernel 4.8.0-rc4.

In addition to PAllocator, we evaluate the following state-
of-the-art persistent allocators:
• NVML v1.15: We use libpmemobj’s POBJ ALLOC to allocate

and POBJ FREE to deallocate.
• nvm malloc6: We use nvm reserve + nvm activate to

allocate, and nvm free to deallocate. To keep track of allo-
cated objects, we provide the allocation and deallocation
functions with a single link pointer.

• Makalu7: We use MAK malloc/MAK free to allocate/deallo-
cate. We track allocated objects using a linked list.

We intentionally exclude NVMalloc8 from our experiments
because it uses anonymous memory mapping as a means to
emulate SCM, and does not provide any recovery mechanism.
As a baseline, we also include in our experiments the following
state-of-the-art transient memory allocators:
• ptmalloc: The GNU C library allocator. We use glibc v2.19.
• jemalloc v4.2.1: An allocator designed for fragmentation

avoidance and high concurrency scalability.

5
https://github.com/pmem/nvml/releases

6
https://github.com/IMCG/nvm-malloc

7
https://github.com/HewlettPackard/Atlas/tree/makalu

8
https://github.com/efficient/nvram/

• tcmalloc (gperftools v2.5): An allocator designed for high
concurrency scalability through thread-caching.

We compile all tests with gcc-4.8.5 with full optimizations.
We let the operating system schedule the threads but we
forbid thread migration between sockets in order to get more
stable results. In all experiments where we vary the number
of threads, we set the latency of SCM to the minimum latency,
namely 160 ns, which corresponds to the normal remote-
socket latency. This gives us the best performance evaluation
since higher latencies are emulated using microcode and
do not account for out-of-order execution and instruction
prefetchers. All reported results are the average of 5 runs.

Standalone allocation and deallocation
To evaluate standalone allocation and deallocation perfor-
mance, we designed a micro-benchmark that takes as parame-
ters a fixed object size, a number of threads, and the number
of allocations per thread N . The program first executes the
requested allocations as a warm-up, then it deallocates all
objects and allocates them again. We measure the time of
the latter deallocation and allocation phases separately. We
set N = 500k for object sizes 128 B, 1 KB, and 8 KB, N = 80k
for 64 KB, and N = 10k for 512 KB. The goal of the warm-up
phase is to trigger all page faults to decouple the performance
of the allocators from kernel operations. This is especially
important in concurrent environments where kernel locking
can be an important performance factor. We report the
results in Figure 10 and Figure 11. Note that we depict
results of nvm malloc only for object sizes 128 B and 1 KB,
because nvm malloc uses a non-balanced binary tree to index
allocated and free blocks greater than 2 KB. Since the object
size is fixed in this experiment, the binary trees degenerate
into linked-lists, thus incurring severe performance issues.

Figures 10a-10e show allocation throughput per thread for
different allocation sizes. For small sizes (128 B and 1 KB),
we observe that PAllocator scales linearly; it retains nearly
the same throughput per thread with 16 threads as with one
thread. NVML scales nearly linearly as well, but with a drop
from 8 to 16 threads. In contrast, Makalu and nvm malloc

scale less than the aforementioned counterparts. Indeed,
Makalu and nvm malloc are the fastest single-threaded but
the slowest with 16 threads. Worse, Makalu’s performance
degrades linearly for sizes 1 KB and higher, because it uses
thread-local allocation only for small blocks, and relies on
a global structure for larger blocks, which results in poor
scalability. Overall, PAllocator scales better and signifi-
cantly outperforms NVML and Makalu, and nvm malloc with
16 threads. For 128 B allocations, transient allocators are
one to two orders of magnitude faster than the persistent
ones. This is expected since persistent allocators use expen-
sive flushing instructions. Yet, the performance gap narrows
significantly at 16 threads, except for jemalloc which re-
mains one order of magnitude faster. For 1 KB allocations
however, only tcmalloc is one to two orders of magnitude
faster than persistent counterparts with one thread. With
16 threads, PAllocator outperforms ptmalloc and tcmalloc,
and performs in the same order of magnitude than jemalloc.

For medium sizes (8 KB and 64 KB), we observe that
PAllocator still scales linearly, while NVML scales less com-
pared with the small objects case. This is because the design
of NVML emphasizes fragmentation avoidance and thus grants
chunks of only 256 KB at once to local thread caches. This
leads to lock contention as thread local caches request more
often chunks with 1 KB allocations than with 128 B ones.
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Figure 10: Allocation performance for different object sizes and SCM latencies.
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Figure 11: Deallocation performance for different object sizes and SCM latencies.

PAllocator is able to significantly outperform all transient
allocators with 16 threads. In fact, the larger the alloca-
tion size, the less the transient allocators scale, especially
ptmalloc which is outperformed by both PAllocator and
NVML with only two threads.

For large sizes (512 KB), we observe that PAllocator is the
only allocator that scales linearly, and it outperforms NVML

and all transient allocators with only 2 threads. We note that
NVML is faster than PAllocator with one thread: NVML uses
transient trees to index its large blocks, while we use hybrid
SCM-DRAM trees which incur a small additional overhead but
enable much faster recovery (see recovery experiments below).

Figures 10f-10j show allocation throughput per thread
for different allocation sizes, varying SCM latencies, and 16
threads. We observe that performance degrades with higher
latencies by up to 54%, 43%, 44%, and 57% for PAllocator,
NVML, Makalu, and nvm malloc, respectively, with an SCM

latency of 650 ns compared with 160 ns. We also observe
that for allocation sizes 64 KB and 512 KB, PAllocator seems
to suffer more from higher SCM latencies than NVML. This is
explained by two factors: (1) the bottleneck for NVML with
16 threads is synchronization rather than persistence; and
(2) accessing the leaf nodes of PAllocator’s hybrid trees
becomes more expensive with higher SCM latencies.

Figures 11a-11e show deallocation throughput per thread
for different allocation sizes. Similar to allocations, PAllocator
scales linearly for all allocation sizes. NVML exhibits similar
behaviour to its allocations as well and has lower throughput
than PAllocator except for sizes 64 KB and 512 KB with

up to 4 threads. This is again explained by the fact that
PAllocator uses its big block allocator for these allocation
sizes, which involves operations on its hybrid trees that incur
an extra overhead compared with NVML’s transient counter-
parts. We note that nvm malloc has 2× higher throughput
for deallocations than for allocations for sizes 128 B and
1 KB, and outperforms PAllocator even with 16 threads. In-
deed, in contrast to its allocations, nvm malloc deallocations
scale linearly. As for Makalu, it is the fastest for 128 B, but
its performance drops linearly in all cases. Interestingly,
with 16 threads and for sizes 8 KB and larger, PAllocator
outperforms again all allocators including transient ones.

Figures 11f-11j show deallocation throughput per thread
for different allocation sizes, varying SCM latencies, and 16
threads. We observe the same patterns as with allocations.
We note that the performance of all persistent allocators
degrades gradually with increasing SCM latencies up to 60%,
46%, 48%, and 64% for PAllocator, NVML, Makalu, and
nvm malloc, respectively, with an SCM latency of 650 ns com-
pared with 160 ns. We argue that this drop is still acceptable
given the 4× higher latency.

Random allocation and deallocation
In this experiment we evaluate the performance of mixed
random allocations and deallocations. The experiment con-
sists in executing 10 iterations of N allocations followed by
N deallocations of random size per thread. We fix the range
of object sizes between 64 B and 128 KB, and we consider
three different object size distributions: (1) Uniform distri-
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Figure 12: Random allocation/deallocation benchmark with different distributions.

bution; (2) Binomial distribution with skew factor 0.01 to
emphasize smaller sizes; (3) Binomial distribution with skew
factor 0.7 to emphasize larger sizes. We set N = 500k for
Binomial small, and N = 50k for Uniform and Binomial
large. Figure 12 depicts the results.

Figures 12a-12c show operation throughput per thread.
We observe that PAllocator scales linearly for all distri-
butions. Besides, it manages to outperform all transient
allocators in the Uniform and Binomial large cases, while
outperforming only ptmalloc in the Binomial small case. In
the Uniform case, PAllocator outperforms NVML, Makalu,
and nvm malloc by up to 7.5×, 49.7×, and 6.7×, respec-
tively. nvm malloc’s performance degrades significantly in
the case of Binomial large because of its binary trees and is
19× slower than PAllocator. Makalu’s behavior is similar to
the previous experiment as its performance degrades linearly
with increasing threads.

Figures 12d-12f show operation throughput per thread for
varying SCM latencies with 16 threads. The drop in the perfor-
mance of PAllocator is limited to 47% with an SCM latency of
650 ns compared with 160 ns. Nevertheless, PAllocator still
outperforms Makalu, NVML, and nvm malloc. The latter two
show little performance degradation with higher SCM laten-
cies since with 16 threads, their bottleneck is synchronization
in addition to the binary trees for nvm malloc.

Larson benchmark
We adapt the Larson benchmark from the Hoard9 allocator
benchmark suite [4] to the evaluated persistent allocators.
The Larson benchmark simulates a server. In its warm-up
phase, it creates N objects of random size per thread and
shuffles the ownership of these objects between the threads.
Thereafter, in a loop, it randomly selects a victim object
to deallocate and replaces it with a newly allocated one of
random size. After the warm-up phase, each thread executes
in a loop N × L times the last sequence of the warm-up
phase, where N = 1k and L = 10k in our experiments. We
experiment with three object size ranges: 64 B–256 B (small),
1 KB–4 KB (medium), and 64 KB–256 KB (large). Results are
depicted in Figure 13.

Figures 13a-13c show operation throughput per thread for
different object size ranges. We observe that PAllocator is
the only allocator to scale linearly in all three object size
ranges. It outperforms NVML, Makalu, and nvm malloc by
up to 4.5×, 1.6×, and 3.9×, respectively, and is able to
outperform jemalloc and tcmalloc in size range 64 KB–256 KB

with 16 threads. We note, however, that Makalu outperforms
PAllocator in size range 64 B– 256B until 4 threads, partially
thanks to the fact that the total size of allocated objects
does not grow. Also, we note that nvm malloc outperforms
PAllocator in size range 64 B– 256B until 8 threads, and
in size range 1 KB– 4 KB with one thread. Surprisingly,

9
https://github.com/emeryberger/Hoard/

nvm malloc scales well in size range 64 KB–256 KB, in contrast
to size range 1 KB–4 KB, and outperforms PAllocator until
16 threads where the performances of the two allocators meet.
This is explained by two factors: (1) the small number of
allocated objects in this experiment maintains the binary
trees of nvm malloc very small; and (2) nvm malloc rounds
up allocation sizes to multiples of 4 KB starting from 2 KB

requests. Consequently, in the range 1 KB–4 KB, half of
the allocations are rounded up to 4 KB allocations, making
the binary trees degenerate into linked-lists, while these are
relatively balanced for size range 64 KB–256 KB.

Figures 13d-13f show operation throughput per thread for
different object size ranges, different SCM latencies, and 16
threads. We observe that for size ranges 64 B–256 B and
64 KB–256 KB, the performance of the persistent allocators
degrades in a similar way: up to 57%, 45%, 54%, and 56% for
PAllocator, NVML, Makalu, and nvm malloc, respectively, for
an SCM latency of 160 ns compared with 160 ns. For size range
1 KB–4 KB however, we note that PAllocator is more sensitive
to higher SCM latencies than NVML, Makalu, and nvm malloc.
This is partly explained by the fact that NVML, Makalu, and
nvm malloc suffer from other bottlenecks (synchronization)
than persistence with 16 threads. Nevertheless, we found
that NVML was consistently the least sensitive allocator to
higher SCM latencies throughout all previous experiments.

We expect significant performance improvements with the
new CLWB instruction, because PAllocator reads and flushes
recovery items multiple times per operation. CLFLUSH evicts
the recovery items from the CPU caches, leading to repeated
cache misses as recovery items are accessed again shortly after.
CLWB would remedy this issue and improve performance.

Recovery time
In this experiment we measure recovery time of PAllocator,
NVML, and nvm malloc– we exclude transient allocators. To
do so, we first execute a fixed amount of allocation requests
of sizes uniformly distributed between 64 B and 128 KB using
16 threads. Then, in a second run we measure the recovery
time of the persistent allocator.
nvm malloc re-creates upon recovery its arenas as if they

were full, that is, all their chunks have no free blocks. Chunks
can be recovered in two ways: (1) either nvm malloc receives
a deallocation request of a block that resides in a not-yet-
recovered chunk, in which case the chunk is discovered and
recovered; (2) or by a background thread created by the re-
covery process. If nvm malloc receives an allocation request
before its chunks have been recovered, it will create new ones,
even if the non-recovered ones contain enough free space to
service the allocation request. This has the effect of exacer-
bating (permanent) fragmentation, which is not acceptable,
especially since nvm malloc cannot defragment its memory.
Hence, to avoid this, and to measure the total recovery time
of nvm malloc, we changed its recovery function to recover
fully existing chunks before returning.
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Figure 13: Larson benchmark with different random allocation ranges.
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Figure 14: Recovery time for different total alloca-
tion sizes and SCM latencies (lower is better).

Makalu has two recovery modes: Upon normal process
shutdown, Makalu flushes its metada to SCM and considers
that garbage collection is not needed upon restart. If, how-
ever, the process was terminated due to a failure, Makalu
runs an offline garbage collection process during recovery. In
this experiment, we consider the second case.

Figure 14 depicts the results. In Figure 14a we fix the
latency of SCM to 160 ns and vary the total size of alloca-
tions. We observe that PAllocator recovers significantly
faster than NVML, Makalu, and nvm malloc: with a total size
of allocations of 61 GB, PAllocator recovers in 45 ms, while
NVML, Makalu, and nvm malloc recover in 210 ms, 23.5 s and
1.3 s, respectively. Makalu is the slowest to recover because
it needs to execute an offline garbage collection, in addition
to scanning its persistent metadata to rebuild its transient
metadata. nvm malloc is the second slowest to recover be-
cause it needs to scan persistent memory for existing blocks,
while PAllocator and NVML keep enough metadata persisted
to swiftly recover their allocation topology. The difference
between PAllocator and NVML comes from the fact that NVML
indexes metadata in transient trees, while PAllocator em-
ploys hybrid SCM-DRAM trees that are up to two orders of
magnitude faster to recover than transient ones. Note that
all four allocators implement only single-threaded recovery
and could benefit from parallelizing their recovery process.

In Figure 14b we fix the total size of allocations to 61 GB,
and vary the latency of SCM between 160 ns and 650 ns. We
note that recovery time increases slowly with higher SCM

latencies. Indeed, at an SCM latency of 650 ns, recovery times
increased compared to those at an SCM latency of 160 ns by
100%, 54%, 260%, and 1.29% for PAllocator, NVML, and
nvm malloc, respectively. These increases are reasonable
for an SCM latency increase of 4×. This is explained by
the fact that the recovery processes of all three allocators
involve mainly sequential reads which are more resilient to
higher memory latencies thanks to hardware prefetching. The
higher increase for PAllocator is explained by the recovery
of the hybrid trees which dominates total recovery time.
Since their leaf nodes are persisted in SCM as a list, scanning
them during recovery involves sequential reads within a leaf
node, but breaks the prefetching pipeline when accessing the
next leaf node, hence resulting in a higher sensitivity to SCM

latencies. Extrapolated to a total allocations size of 1 TB,

Table 2: Fragmentation stress test.
Allocator #allocs Defrag. Runtime Max block

Pallocator 2.1m 512 GB 358 s 2 GB
NVML 55.6k na 8 s 128 KB
Makalu 303k na 172 s 128 KB

nvm malloc 0 na na 64 KB

recovery times would be 0.75 s, 3.5 s, 394.5 s, and 22.5 s for
PAllocator, NVML, Makalu, and nvm malloc, respectively.

Defragmentation
In this experiment we focus on testing resilience to memory
fragmentation of PAllocator, NVML, and nvm malloc– we
exclude transient allocators. NVML’s pool size is set to the
maximum available emulated SCM (359 GB). The warm-up
phase consists of allocating 256 GB of 64 KB objects. There-
after, we perform in a loop: (1) deallocate every other object
until half of the allocated memory (i.e. 128 GB) is freed; and
(2) allocate 128 GB of objects of double the previous allocation
size. We deallocate objects in a sparse way to exacerbate
fragmentation. We repeat this process until either the first
allocation fails or we reach object size of 2 GB. The experi-
ment is run single-threaded. We report the total number of
allocated objects, the amount of defragmented memory for
PAllocator, and the total runtime (excluding the warm-up
phase) in Table 2. We notice that NVML and Makalu fail early
and manage to execute only a small number of allocations,
while nvm malloc does not even complete the warm-up phase.
Note that for Makalu, we had to increase the maximum num-
ber of sections in its configuration file from 1 K to 1 M for
the warm-up phase to run through. PAllocator manages
to reach the 2 GB object size threshold by defragmenting
512 GB of memory through several iterations, managing to
execute 2.1M allocations. This demonstrates the ability of
PAllocator to efficiently defragment memory. Note that for
sizes larger than 16 MB, in contrast to NVML and nvm malloc,
PAllocator does not create any fragmentation as it creates
one segment per allocation.

Allocator impact on a persistent B-Tree performance
In this experiment we study the impact of allocator per-
formance on a persistent B-Tree, a popular data struc-
ture in database systems. To do so, we use the concur-
rent, variable-size key version of the FPTree [21] (in con-
trast to the single-threaded, fixed-size key version used in
BigPAllocator), which stores keys in the form of a persis-
tent pointer. Thus, every insertion and deletion operation
involves a key allocation or deallocation, respectively. The
tested FPTree version employs Hardware Transactional Me-
mory (HTM) in its concurrency scheme. Unfortunately, the
emulation system does not support HTM. Hence, we use
for this experiment a system equipped with two Intel Xeon
E5-2699 v4 processors that support HTM. Each one has 22

cores (44 with HyperThreading) running at 2.1GHz. The
local-socket and remote-socket DRAM latencies are respectively
85 ns and 145 ns. We mount ext4 with DAX on a reserved
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DRAM region belonging to the second socket, and bind our ex-
periments to the first socket to emulate a higher SCM latency.
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Figure 15: Alloca-
tor impact on the
FPTree. Solid (dash-
dotted) lines depict
PAllocator (NVML).

We measure the performance
of FPTree insertions, deletions,
and a mix of 50% insertions
and 50% find operations, us-
ing PAllocator and NVML. In
all experiments, we first warm
up the tree with 50M key-
values, then execute 50M op-
eration for a varying number
of threads. Keys are 128-byte
strings while values are 8-byte
integers. We report the normal-
ized throughput per thread in
Figure 15. The solid lines repre-
sent PAllocator results while
the dash-dotted lines represent

NVML results. We observe that with one thread, using
PAllocator yields 1.34x, 1.26x, and 1.25x better through-
put than using NVML for insertions, deletions, and mixed
operations, respectively. These speedups surge up to 2.39x,
1.52x, and 1.67, respectively, with 44 threads. This shows
that the FPTree scales better with PAllocator than with
NVML, especially when using hyperthreads. We conclude that
the performance of a persistent allocator impacts that of
SCM-based data structures.

6. CONCLUSION
In this paper we tackle the problem of SCM allocation as a
fundamental building block for SCM-based database systems.
We presented PAllocator, a highly scalable fail-safe persis-
tent allocator for SCM that comprises two allocators, one for
small block allocations, and the other one for big block alloca-
tions, where metadata is persisted in hybrid SCM-DRAM trees.
Additionally, we highlighted the importance of persistent me-
mory fragmentation, proposing an efficient defragmentation
algorithm. Through an experimental analysis, we showed
that PAllocator scales linearly for allocations, deallocations,
mixed operations with different size distributions, and server-
like workloads. Overall, it significantly outperforms NVML,
Makalu, and nvm malloc, both in operation performance and
recovery time. Throughout all experiments, PAllocator

showed robust and predictable performance, which we argue
is an important feature for an allocator. Finally, we showed
that a persistent B-Tree performs up to 2.39x better with
PAllocator than with NVML, demonstrating the importance
of efficient memory allocation for SCM-based data structures.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable

feedback which helped greatly improve the paper. This
work is partly funded by the German Research Foundation
(DFG) within the Cluster of Excellence cfaed (Orchestration
Path, Resilience Path) and in the context of the project
“Self-Recoverable and Highly Available Data Structures for
NVRAM-centric Database Systems” (LE-1416/27-1).

8. REFERENCES
[1] Intel 64 and IA-32 Architectures Software Developer Manuals.

http://software.intel.com/en-us/intel-isa-extensions.

[2] NVML Library. http://pmem.io/nvml/.

[3] J. Arulraj, M. Perron, and A. Pavlo. Write-behind logging.
PVLDB, 10(4):337–348, 2016.

[4] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: A scalable memory allocator for multithreaded
applications. ACM Sigplan Notices, 35(11):117–128, 2000.

[5] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Makalu:
Fast recoverable allocation of non-volatile memory. In
OOPSLA 2016, pages 677–694. ACM, 2016.

[6] A. Chatzistergiou, M. Cintra, and S. D. Viglas. REWIND:
Recovery write-ahead system for in-memory non-volatile
data-structures. PVLDB, 8(5):497–508, 2015.

[7] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. NV-Heaps: making persistent
objects fast and safe with next-generation, non-volatile
memories. ACM Sigplan Notices, 46(3):105–118, 2011.

[8] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through byte-addressable,
persistent memory. In SOSP, pages 133–146. ACM, 2009.

[9] J. Corbet. Linux 5-Level Page Table.
https://lwn.net/Articles/717293/.

[10] S. R. Dulloor. Systems and Applications for Persistent
Memory. PhD thesis, Georgia Institute of Technology, 2016.

[11] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System software for
persistent memory. In EuroSys, page 15. ACM, 2014.

[12] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and
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