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ABSTRACT
Existing work on subgraph isomorphism search mainly fo-
cuses on a-query-at-a-time approaches: optimizing and an-
swering each query separately. When multiple queries ar-
rive at the same time, sequential processing is not always
the most efficient. In this paper, we study multi-query opti-
mization for subgraph isomorphism search. We first propose
a novel method for efficiently detecting useful common sub-
graphs and a data structure to organize them. Then we
propose a heuristic algorithm based on the data structure
to compute a query execution order so that cached interme-
diate results can be effectively utilized. To balance memory
usage and the time for cached results retrieval, we present
a novel structure for caching the intermediate results. We
provide strategies to revise existing single-query subgraph
isomorphism algorithms to seamlessly utilize the cached re-
sults, which leads to significant performance improvement.
Extensive experiments verified the effectiveness of our solu-
tion.
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1. INTRODUCTION
Given a data graph G and a query graph (a.k.a graph

pattern) q, subgraph isomorphism search is to find all sub-
graphs of G that are isomorphic to q. Subgraph isomor-
phism is a fundamental requirement for graph databases,
and is widely used as a basis for many other algorithms.
The problem is known to be NP-complete, and many heuris-
tic algorithms have been proposed to speed-up subgraph
isomorphism search. These existing algorithms focus on
single-query settings, where queries are isolated and evalu-
ated independently.

However, in some scenarios multiple queries can be pro-
cessed as a batch. For example, in semantic web applica-
tions, multiple SPARQL queries often need to be processed
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together [13]. In detecting criminal networks in social graphs
[15] or finding special structures in biological networks [16],
a user may be interested in finding subgraphs isomorphic to
any one in a collection of query graphs, or she may not know
the exact structure of the query graph, and submit a group
of possible queries instead. In such cases, multiple query
graphs can be evaluated at the same time. Recently, graph
functional dependencies [7], keys [5] and association rules [6]
are all defined based on subgraph isomorphism. We envis-
age that batch subgraph isomorphism search will be useful
in checking the satisfaction of a set of graph functional de-
pendencies and/or keys, as well as in verifying collections of
graph association rules.

Motivated by the above, we study the problem of mul-
tiple query optimization (MQO) for subgraph isomorphism
search in this paper. Given a data graph G and a set of
query graphs Q = {q1, . . . , qn}, our aim is to efficiently find
all subgraphs of G that are isomorphic to one of the query
graphs. Specifically, (1) when there are significant overlaps
(i.e., common subgraphs) among the query graphs, we want
to make maximum use of the intermediate results of these
common subgraphs to speed-up the process, so that the over-
all processing time is significantly shorter than if we process
the queries in Q one by one sequentially. (2) When there
are little or no overlaps among the query graphs, we want
to be able to detect it quickly so that the total processing
time will be about the same as sequential processing.

Challenges Although the basic idea of MQO is simple, there
are some challenging technical issues. First, how to iden-
tify overlaps among query graphs that are worthwhile to ex-
tract? Since detecting and extracting common subgraphs
takes time, we need to ensure the benefits of extracting
and evaluating the common subgraphs outweigh the over-
head. Second, how to compute an optimal processing order
that enable us to effectively share the intermediate results?
Third, how should we store the intermediate results, i.e., the
matchings of the common subgraphs, to ensure a good trade-
off between memory usage and the time to retrieve these
intermediate results? Last, how can we integrate the inter-
mediate results into current state-of-the-art subgraph iso-
morphism search algorithms to maximize the performance?
We will address these issues in this paper and provide an ef-
fective solution to the multi-query processing problem in the
context of subgraph isomorphism search. To the best of our
knowledge, our work is the first on multi-query processing
for subgraph isomorphism search over general graphs.

Contributions The main contribution of this paper is an
effective solution to the multi-query optimization problem
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for subgraph isomorphism search. Specifically,

(1) We introduce the concept of tri-vertex label sequence
and propose a novel grouping factor between two query
graphs, which can be used to efficiently filter out graphs
that do not share helpful common subgraphs.

(2) We propose a heuristic algorithm to compute a good
query execution order, which guarantees the cached
results can be shared effectively, and enables efficient
cache memory usage.

(3) We propose a new type of graph partition, based on
which we design a novel structure to store the query
results of common subgraphs in main memory. This
structure can effectively balance the cache memory size
and efficiency of utilizing the cached results. We prove
the new graph partition problem is NP-complete, and
provide a heuristic algorithm that can produce a good
partition for our purpose.

(4) We present strategies to revise the current state-of-the-
art sequential query optimizers for subgraph isomor-
phism search so that they can seamlessly utilize the
cached intermediate results.

(5) We conduct comprehensive experiments to evaluate our
techniques.

Organization We discuss related work in Section 2 and
introduce the preliminaries in Section 3. In Section 4, we
provide an overview of our approach. The subsequent sec-
tions present the details. Section 5 presents our methods
for common subgraph computation. Section 6 presents the
method to compute a good query execution order. Section 7
presents the data structure for caching intermediate results.
Section 8 presents the strategies for computing the query
answers utilizing the cached intermediate results. Section 9
reports our experiments. Section 10 concludes the paper.

2. RELATED WORK
Subgraph Isomorphism The problem of subgraph iso-
morphism search has been investigated for many years. The
algorithms can be divided into two categories: (1) Given a
graph database consisting of many small data graphs, find
all of the data graphs containing a given query graph. (2)
Given a query graph, retrieve all of the isomorphic sub-
graphs of a single large data graph.

Algorithms falling into the second category include Ull-
mann [22], VF2 [3], GraphQL [10], TurboIso [9], QuickSI [20]
and many others [21, 23]. Most of these algorithms follow
the framework of Ullmann, with improved pruning rules and
matching orders. An experimental comparison was given in
[14]. A graph compression-based approach was introduced
recently in [17]. These algorithms focus on a single query,
they do not consider batch processing of multiple queries.
Our work belongs to the second category. However, differ-
ent from previous work, we treat multiple queries as a batch
and process them together. Our solution can be seamlessly
integrated with the single-query algorithms.

Multi-Query Optimization (MQO) MQO has been well
studied for relational databases [19, 18]. Most works on
relational MQO assume the existence of a cost model based

on statistics about the data, and search for a globally opti-
mal access plan among all possible combinations of access
plans for the individual queries. Each access plan consists
of a sequence of tasks, and some tasks can be shared by
multiple queries. These methods for relational MQO cannot
be directly used for MQO for subgraph isomorphism search,
since we do not assume the existence of statistics or indexes
on the data graph, and some relational optimization strate-
gies (e.g., pushing selection and projection) are inapplicable
to subgraph isomorphism search. Methods for identifying
common relational subexpressions (e.g.[8]) are also difficult
or inefficient to be adapted for common subgraph computa-
tion, just as it is inefficient to evaluate graph pattern queries
by converting them into relational queries [10]. MQO has also
been studied for semi-structured data [2, 11]. For similar
reasons, these methods are difficult to be adapted for our
problem.

More recently, [13] studies MQO for SPARQL queries over
RDF graphs, which is the most closely-related work to ours.
The approach of [13] works as follows. Each SPARQL query
is represented as a graph pattern (GP) which is a set of triple
patterns. Given a batch of graph patterns, (a) it uses com-
mon predicates (i.e., edge labels), Jaccard similarity and the
k-means method to cluster the GPs into disjoint groups. For
the GPs in each group, it uses bottom-up hierarchical clus-
tering and a selectivity-based cost model to further divide
them into finer groups, such that only queries in the same
finer group are likely to benefit from batch optimization. (b)
For each finer group Mi, it rewrites the queries P1, . . . , Pm

within Mi into a single query consisting of the common GP
P and the optional GPs P1−P , . . . , Pm−P . This rewritten
query is then evaluated using a SPARQL engine that has the
ability to answer queries with optional conditions.

Our work and [13] are different in the following aspects:
(1) We do not assume the existence of statistics about the
data graph and a cost model (like most single-query iso-
morphism search algorithms ). The only heuristic for us is
that the larger the MCS, the more beneficial to process the
graphs together. (2) [13] uses edge labels, Jaccard similar-
ity and the k-means method to cluster the GPs into disjoint
groups. The problems with this approach include: (a) The
k-means algorithm assumes a given number of clusters, while
in practice this number is difficult to guess ([13] uses |Q|/40
without explanation). (b) Using the number of common
edge-labels as the basis to measure similarity can put two
graphs that share many disconnected single edges into the
same group, while putting two groups sharing a few number
of connected common edges into different groups. In con-
trast to [13], we use a novel TLS to ensure two graphs in
the same group share a common connected subgraph of at
least 2 edges, and we do not need to pre-give the number
of groups. (3) [13] mainly focuses on grouping the queries
and extracting common sub-patterns. It leaves the task of
result caching to the RDF engine, and relies on the RDF en-
gine’s ability to answer optional queries to reuse the cached
results. In contrast, we devote significant attention to tech-
niques for result caching and efficient algorithms for reusing
the cached results.

Result Caching In-memory result caching is used in some
existing works on subgraph isomorphism search. For exam-
ple, TurboIso [17] stores the embeddings of a path in-memory
as a collection of lists, which is similar to the trivial table
structure discussed in our Section 7. A more recent work
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[1] uses a data structure called compact path index (CPI)
to store the potential embeddings of a spanning tree of the
query graph. The overall structure of a CPI can be seen as
a tree with the same shape as the spanning tree, consisting
of nodes which contain highly-likely candidates of the cor-
responding query vertices. Since the cached embeddings is
that of a tree, the CPI is similar to the fully compressed data
structure discussed in our Section 7. In contrast, we store
the embeddings of a subgraph which is usually not a tree,
and our data structure is based on sophisticated graph par-
tition in order to balance memory usage and cached result
retrieval time. QUBLE [12] is an interactive system where
a user can dynamically add edges to the query. The system
decomposes the large data graph into many small graphlets.
To make query processing fast, it builds indexes for frequent
fragments and small infrequent fragments. Based on the
indexes, an in-memory structure called G-SPIG is used to
record the IDs of the graphlets that may contain the query.
Different from [12], we store the actual embeddings in main
memory, and our data structure is very different from that
used in QUBLE.

3. PRELIMINARIES
Both the dataset and the query set studied in this paper

are undirected labeled graphs. The dataset contains a large
graph G while the query set is a set of small graphs Q =
{q1, . . . , qn}. We use query to refer to a query graph.

Undirected Labeled Graph An undirected labeled graph
is a data structure G = (V , E, Σ, L), where (1) V is the
set of vertices; (2) E is a set of undirected edges; (3) Σ is a
set of vertex labels; (4) L is a function that associates each
vertex v in V with a label L(v) ∈ Σ.

Subgraph Isomorphism Given two graphs G1 = (V1, E1,
Σ1, L1) and G2 = (V2, E2, Σ2, L2), an embedding of G1 in
G2 (or, from G1 to G2) is an injective function f : V1 → V2

such that:

(1) L1(v) = L2(f(v)) for any vertex v ∈ V1;

(2) For any edge (v1, v2) ∈ E1, there exists an edge (f(v1),
f(v2)) ∈ E2.

The embedding f can be represented as a set of vertex pairs
(u, v) where u ∈ V1 is mapped to v ∈ V2. If there is an
embedding of G1 in G2, we say G1 is subgraph isomorphic
to G2 and denote it by G1 � G2. If G1 � G2 and G2 � G1,
we say G1 is isomorphic to G2, denoted G1

∼= G2.
There may be multiple embeddings of G1 in G2 if G1 �

G2. We use F (G1, G2) to denote the set of all such em-
beddings. For each f ∈ F (G1, G2), we define VCover(f) ≡
{f(v)|v ∈ V1}, and call the vertices in VCover(f) the covered
vertices of G2 by f .

Partial Embedding A partial embedding of graph q in
graph G is an embedding in G of a vertex-induced subgraph
of q. The following lemma is obvious.

Lemma 1. Let f be an embedding from q to G. Let V ′q be
a subset of the vertices in q. Restricting f to V ′q will always
produce a partial embedding from q to G.

Maximal Common Subgraph Given two graphs G1 and
G2, a maximal common subgraph(MCS) of G1 and G2 is a
connected graph G′ such that

(1) G′ � G1 and G′ � G2.

(2) there is no connected graph G′′ such that G′′ � G1,
G′′ � G2, and G′ � G′′, but G′ � G′′.

Note that the MCS is required to be connected. Clearly,
there can be multiple MCSs between two graphs.

4. OVERVIEW OF OUR APPROACH
Given a data graph G and a set of query graphs Q =
{q1, . . . , qn}, our problem is to efficiently find all embeddings
in G of the query graphs. An overview of our solution is
given in Algorithm 1.

Algorithm 1: MQOsubiso

Input: Data graph G and query set Q = {q1, . . . , qn}
Output: All embeddings of qi in G, ∀qi ∈ Q

1 PCM = DetectCommonSubgraph(Q)
2 EOrder = QueryExecutionOrder(PCM)
3 Cache = ∅
4 for each qi ∈ EOrder do
5 if qi has PCM parents then
6 R = SubIsoSearchMqo(PCM, Cache, qi, G)
7 for each parent qj of qi do
8 if all qj ’s children are processed then
9 Clear Cache(qj)

10 else
11 R = SubIsoSearch(qi, G)
12 if qi has unprocessed children then
13 Add R to Cache(qi)

A crucial first step is to detect subgraphs shared by the
queries. We organize the common subgraphs and the orig-
inal queries in a structure called pattern containment map
(PCM) (Line 1). Based on the PCM, we compute a query ex-
ecution order (Line 2) which is an order for processing the
queries in the PCM. The purpose of the execution order is
to guarantee the results of the common subgraphs can be
reused, and to enable efficient memory use by releasing non-
longer useful cached results as early as possible. For each
query graph in the PCM, we evaluate it using a framework re-
vised from single-query isomorphism search that can utilize
the cached results of its PCM parents (Line 6). For each par-
ent qj of qi, we release the cache for qj if all qj ’s children are
processed (Lines 7 ∼ 9). We cache the results of qi if it has
unprocessed children in the PCM (Line 12,13). The results
are cached in main memory for fast retrieval. To balance
cache memory usage and result retrieval time, we design a
special data structure to store the results. The key idea is
to partially compress the result set by dividing the query
vertices into disjoint lists based on a special type of graph
partition, and if several results map a list of query vertices
into the same list of data vertices, we store this list of data
vertices only once.

5. DETECTING COMMON SUBGRAPHS
In this section, we present the process of detecting com-

mon subgraphs for the query set. We are only interested in
MCSs that are likely to help in reducing the overall query
processing time. We do not consider single-edge MCSs as
such MCSs are considered not very helpful, and there can
be too many of them. In the following, when we say MCS,
we mean an MCS with 2 or more edges.

The naive strategy to compute the MCSs of all pairs of
queries is impractical when the query set is large, and a
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Figure 1: Building Pattern Containment Map

random query pair often do not share any MCSs. To address
these problems, we design a grouping factor based on the
concept of tri-vertex label sequence. We use it to divide the
queries into groups, where queries within the same group
are likely to have an MCS. Then we will divide the queries
in the same group into random pairs. For each pair we
will compute their MCS. We treat the MCSs as new queries
and repeat the process until we get all the MCSs for the
whole group. These MCSs and the original queries will be
organized into a hierarchy called a pattern containment map
(PCM).

The following subsections give the details.

5.1 Grouping Factor
We first define tri-vertex label sequence.

Definition 1 (Tri-Vertex Label Sequence). Given a
pair of connected edges (vi, vj) and (vj , vk) of a graph q,
assuming L(vi) ≤ L(vk), we call the label sequence L(vi)-
L(vj)-L(vk) a Tri-Vertex Label Sequence (TLS), and (vi, vj,
vk) an instance of the TLS in q.

We will use TLS(q) to denote the set of all TLSs in q. It
is easy to verify |TLS(q)| ≤ 1

2
(|Vq| × dq(dq − 1)), where Vq is

the vertex set of q, and dq is the maximum vertex degree in
q. Each TLS may have multiple instances in the graph. Two
instances of the same or different TLSs are connected if they
share common vertices. Multiple connected instances form
a connected subgraph, referred to as an instance subgraph
hereafter. Given a subset of TLS(q), there may be multiple
instance subgraphs corresponding to it. For example, con-
sider the subset {(A-B-C), (A-C-B), (B-A-C), (D-C-E)} of
TLSs of q4 in Figure 1. The instances of the first three TLSs

form an instance subgraph, and the instance of (D-C-E)
forms another.

Intuitively, if two graphs share a connected common sub-
graph of 2 or more edges, they must share a TLS, and the
more TLSs they have in common, the more overlap they
have. Furthermore, if two graphs share a large connected
common subgraph, they must share common TLSs whose
instances in each of them form a large instance subgraph.
Based on this observation, we define a grouping factor be-
tween a pair of query graphs. Before that, we need the
following notation.

Let t be a TLS of graph q. We call the number of times
t occurs in q, i.e., the number of instances of t in q, the
frequency of t in q, and denote it by t.freq(q). The sum
of the frequencies of all TLSs in q is denoted TLS(q).size.
Given two graphs qi and qj , we use TLS(qi, qj) to denote
the set of all TLSs shared by qi and qj . That is, TLS(qi, qj)
= TLS(qi) ∩ TLS(qj). Consider the graphs q3 and q4 in

Figure 1. TLS (q3, q4) ={(A-B-C), (A-C-B), (B-A-C), (D-
C-E)}. We use LI (qi, TLS(qi, qj)) to denote the number of
instances in the largest instance subgraph of qi correspond-
ing to the TLSs in TLS(qi, qj). For example, for q3 and q4 in
Figure 1, LI (q4, TLS(q3, q4)) =3 and LI (q3, TLS(q3, q4)) =4.

Definition 2 (Grouping factor). The grouping fac-
tor between two query graphs qi and qj, denoted GF (qi, qj),
is defined as

GF (qi, qj) =
min(LI (qi, TLS(qi, qj)),LI (qj , TLS(qi, qj))

min(TLS(qi).size, TLS(qj).size)
(1)

The grouping factor has the following properties:

(1) 0 ≤ GF (qi, qj) = GF (qj , qi) ≤ 1.

(2) If qi � qj , GF (qi, qj) = 1.

(3) If qi and qj do not have an MCS, GF (qi, qj) = 0.

We will use the GF to divide the query graphs into groups.
Queries will be put into the same group if and only if their
pairwise grouping factor are all above a specified threshold,
and this threshold can be used as a parameter to control the
group size so as to balance the PCM building time and the
number of MCSs detected.

Once we have divided the queries into groups, we can
compute multiple levels of MCSs, and organize them into a
PCM, as discussed in the next subsection.

5.2 Pattern Containment Map
We give a formal definition of pattern containment map

first.

Definition 3 (Pattern Containment Map). Given
a query set Q = {q1, . . . , qn}, a pattern containment map is
a directed graph PQ ={Vpcm, Epcm} where each qpcm ∈ Vpcm

represents an undirected vertex-labelled graph, such that

(1) ∀qi ∈ Q, there is a qpcm ∈ Vpcm such that qi ∼= qpcm;

(2) ∀q ∈ Vpcm, there exists qi ∈ Q such that q � qi;

(3) There are no two nodes q and q′ in Vpcm such that
q′ ∼= q;

(4) A directed edge (q, q′) ∈ Epcm exists only if q � q′ and
there is no q′′ ∈ Vpcm such that q′ � q′′, q � q′′, and
q′′ � q′.

Intuitively, a PCM is a structure that represents the sub-
graph isomorphic relationships among a set of graphs. Each
node in the PCM is either a query in Q, or a subgraph of some
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other nodes in the PCM. Each query in Q either appears as
a node in the PCM, or is isomorphic to a node in the PCM (if
some queries in Q are isomorphic to each other, only one of
them will appear in the PCM). Conditions (3) and (4) in the
above definition ensure that the PCM is a DAG. Figure 1(d)
shows an example PCM for the queries in Figure 1(a).

We can now present the process for computing the MCSs
and the PCM for these queries.

We first build a matrix based on the grouping factor of
each query pair. The process of building the group matrix
M is given in Algorithm 2. For each query q, we use a
hashmap H(q) to contain its TLS set with each TLS as key
and its corresponding instances as value (Line 2-3). Then
for each query pair qi, qj , we compute its grouping factor
using Equation (1). If the grouping factor is larger than the
given threshold Φ, we mark the element corresponding to qi
and qj as 1 in the matrix.

Algorithm 2: TLSGroupMatrix

Input: A query set Q={q1, . . . , qn}
Output: TLSGroupMatrix M of Q, threshold Φ

1 initialize M and set all cells to 0
2 for each q ∈ Q do
3 H(q)← ComputeTLSSet(q)
4 for each pair qi, qj ∈ Q do
5 Compute GF (qi, qj)
6 if GF (qi, qj) > Φ then
7 M [qi][qj ]← 1
8 return M

With the query set and the matrix as input, Algorithm 3
proceeds to compute the final PCM. It runs a clique detec-
tion process over the matrix where each “1” element rep-
resents an edge (Line 1). Each clique detected represents
a group of queries. Within each group, we create a PCM

node for each query (Line 4). We divide the nodes in each
group into random disjoint pairs (we put the last query into
NextLevelGroup if there are odd number of queries). Lines
6 to 14 compute the MCSs for each pair, put the MCSs into
NextLevelGroup, and add corresponding PCM edges (rep-
resented as a children list). The same process is repeated
for queries in NextLevelGroup until there is no more than
one query left (Line 15∼17). Finally we do a merge for the
isomorphic PCM nodes (Line 18) and a transitive reduction
(Line 19) to remove redundant edges.

Example 1. For the queries in Figure 1(a), the grouping
factors are shown in Figure 1(b). After applying the thresh-
old Φ=0.35, the group matrix is shown in Figure 1(c). Two
cliques can be detected from the matrix, which are (q1, q3,
q4) and (q3, q4, q5). Consider the first group and take q1 and
q3 as a pair, q1 is the MCS. A PCM edge (q1, q3) is added.
Then the algorithm puts q1 and q4 into NextLevelGroup
and computes their MCS (q6 in Figure 1(e)). For the sec-
ond group, we can choose the first pair (q3, q4) and find
two MCSs (q6 and q7 in the figure), put them and q5 into
NextLevelGroup, and compute the MCS of q5 and q7. The
final PCM is shown in Figure 1(d).

Complexity The TLS set building for each query is O(nd2)
where n is the number of vertices and d is the maximum
degree. The complexity for building TLS matrix is O(n2)
where n is the number of queries. The group matrix is usu-
ally sparse, therefore the clique detection can be very quick.

Algorithm 3: Build PCM

Input: Query set Q, TLS group matrix M
Output: Patten Containment Map PCM

1 Gr ← cliqueDetection(M )
2 for each group g ∈ Gr do
3 NextLevelGroup← ∅
4 create a PCM node for each query in g
5 divide the queries in g into disjoint pairs
6 for each random pair q, q′ do
7 Qmcs ← computeMCSs(q, q′)
8 for each qmcs ∈ Qmcs do
9 if qmcs

∼= q (assuming |q| ≤ |q′|) then
10 add q into NextLevelGroup
11 add q′ into q.children
12 else
13 add qmcs into NextLevelGroup
14 add both q, q′ into qmcs.children

15 if |NextLevelGroup| > 1 then
16 g ← NextLevelGroup
17 Repeat from line 3

18 mergeIsomorphicNodes(PCM)
19 transitiveReduction(PCM)
20 return PCM

As the query graphs are small, the MCS computation can
be fast in practice.

6. QUERY EXECUTION ORDER
In this section, we investigate the issue of query execu-

tion order. Our target is to minimize the number of cached
results in memory.

Figure 2: PCMs

To make sure the results of PCM parents can be utilized by
their children, we must process the parents first and cache
their results. Therefore the query processing order needs to
be a topological order. There can be multiple topological
orders available for the PCM, some of them will lead to the
problem of inefficient memory usage.

Consider the PCM in Figure 2(a). To effectively share the
results of common subgraphs, the results of PCM parents of
q101 which are q3 to q6 and q99 have to be cached before
q101 is processed. If we choose a query execution order as
the increasing order of the PCM node ID, the results of q101’s
parents will stay in memory when we process q7 to q99. This
may lead to the memory leak problem if too many cached
results are kept in memory. Assuming we choose an or-
der (q1, q3 ∼ q6, q99, q101, q2, q7 ∼ q10, q100, q102, . . . ). All
results for q101’s parents can be released after q101 is pro-
cessed, thus the memory can be more effectively used.

Next we present a heuristic algorithm, Algorithm 4, for
finding a good query execution order, which combines both
topological order and priority weight together. The basic
idea is as follows. (1) Each node will not be added to the list
EOrder(Execution order) until all of its parents have been
added. (2) A priority weight is assigned to each query that
has not been added to EOrder : Initially all weights are 0. If
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a node cannot be added to EOrder because it has unadded
parents, the weight of these parents will be increased by 1,
and this increase will propagate to the ancestors of these
parents as well. (3) For a given set of unadded queries that
have no unadded parents, priority will be given to those that
have the highest weight.

Algorithm 4: QueryExecutionOrder

Input: PCM of a query set Q, weights are initialized 0
Output: A query execution order EOrder

1 Roots← q ∈ PCM and q has no parents
2 q ← nextQueryGraph(Roots)
3 while q is not null do
4 Topo(q)
5 q ← nextQueryGraph(Roots)

Subroutine Topo(query q)
1 if q has parents not added to EOrder then
2 changeParentsWeight(q)

else
4 add q to EOrder, mark q as added
5 q′ ← nextQueryGraph(q.children)
6 while q′ is not null do
7 Topo(q′)
8 q′ ← nextQueryGraph(q.children)

Subroutine changeParentsWeight(query q)
1 for each parent q′ of q not added to EOrder do
2 q′.weight++
3 changeParentsWeight(q′)

Subroutine nextQueryGraph(queryGraphList ζ)
1 if S ≡ {q ∈ ζ|q.added =

false, q has no unadded parent} 6= ∅} then
2 Choose q from S with the highest weight
3 return q

else
5 return null

Algorithm 4 starts from grouping query graphs having
no PCM parents into a Roots list (Line 1). Subroutine
nextQueryGraph takes a queryGraphList ζ as parameter
and returns a query q from ζ where q is not added to EOrder
yet, but all of its parents have been added, and q has the
highest weight among such queries. Algorithm 4 iterates
over all the queries in the Roots and calls a Topo subroutine
for each of them (Line 3-5). In Subroutine Topo, if q has
unadded parents, we increase the parent’s weight and prop-
agate the increment to the ancestors (Line 1-2). Otherwise
we add q to the EOrder and mark it as added (Line 4-5).
For each of the unadded children of q whose parents have
all been added, we recursively call Topo (Line 6-8).

Example 2. Consider the PCM in Figure 2(b). The Roots
list is initialized as {q1, q7}. Starting from q1, it proceeds to
q2 after q1 is added. q2 is also added because all of its parents
have been added. Then it comes to q5 and q6. However only
q5 is added since q6 has one unadded parent q4. Recursively,
we increase the weight of q4 and q4’s parent q7. Then it
comes to q7. After q7 is added, the algorithm adds q4 first
as q4 has larger weight than that of q3 and q8. After q3 and
q8 are added, and the algorithm terminates.

Complexity Algorithm 4 costs O(nmk) where n is the
number of nodes in PCM, m is the maximum number of edges
among the ancestors of a node, and k is the maximum num-
ber of a parents of a node. In practice, both m and k are
very small, and the time for computing the execution order
is trivial.

7. CACHING RESULTS
In this section, we study the data structure and algorithm

to cache the intermediate results. The challenge here is to
find a structure that balances effective memory use and fast
cached result retrieval.

Assuming a fixed order of the query vertices, an embed-
ding can be represented as a list of corresponding data ver-
tices. A trivial structure for caching the embeddings is a
table where each row stores an embedding. An example is
shown in Figure 3(b). This structure allows very fast re-
trieval of the embeddings. However, the problem with this
structure is that it may take too much memory. To see this,
consider a query graph with 10 vertices, we use 4 bytes to
represent one vertex and 40 bytes to store one embedding.
It needs 40M to store 1 million embeddings of this query. It
is not unusual for a single query to have millions of embed-
dings in a large graph. In our experiment, even for Human
data set which contains only 4675 vertices, the space of em-
beddings for 50 graphs can easily be over 500MB. Thus,
this structure is impractical when dealing with graphs with
millions of vertices.

Figure 3: Trivial Structures for Caching Results

An intuitive improvement over the table structure is to
group the data vertices together and add corresponding edges
of the query edges to link the data vertices. The result is a
compressed embedding graph which is a subgraph of the data
graph. Figure 3(c) is a compressed embedding graph and we
have (A1, B1),(A1, D1),(B1, C1),(C1, D1) derived from em-
bedding {A1,B1,C1,D1}. This structure saves cache space,
but the process of retrieving the embeddings is a subgraph
isomorphism search over the compressed embedding graph,
hence can be too slow.

To balance the space cost and the time efficiency, we pro-
pose a data structure Compressed Linked List for the storage
of intermediate results. Before that, we need to define graph
partition.

Definition 4 (Graph partition). Given a graph G,
a partition of G is a graph G′ where

(1) each node1 in G′ is a non-empty set of vertices in G;

(2) the vertex sets corresponding to different nodes of G′

are disjoint;

(3) there is an edge between two nodes Ci and Cj in G′

iff there is an edge (u, v) in G such that u ∈ Ci and
v ∈ Cj.

The size of the largest vertex set in G′ is called the partition
width. When G′ is a tree, it is called a tree partition of G.

Consider the graphG in Figure 4(a). The graphs in Figure
4(b) and (c) are partitions of G with partition widths of 2
and 3 respectively.
1For clarity, we use node to refer to the vertex of G′, and vertex
to refer to the vertex of G.
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Figure 4: Graph Partitions

Let q be a query graph. Given a partition q′ of q which di-
vides the vertices of q into K groups, an embedding of q in G
can be divided into K lists accordingly, with each list corre-
sponding to a node in q′ (or equivalently, a vertex list in q).
Actually, each list represents an embedding of the graph in-
duced by the corresponding vertex group. We link two lists
together if and only if there is an edge between the two cor-
responding nodes in q′. For instance, for the partition shown
in Figure 4(b), the embedding (A1, B1, C1, D1, E1, G1) can
be represented as a linked list (A1, B1)-(C1, D1)-(E1, F1)-
(G1). For the partition shown in Figure 4(c), the same em-
bedding can be represented as the lists (A1,B1,E1), (C1 ,F1,
G1), (D1) pairwise linked together. With this in mind, if
multiple embeddings map the vertices in a node of q′ to the
same list of vertices in the data graph, we only need to cache
the list once. In this way, we save cache space, and mean-
while we can retrieve the embeddings easily following the
links between the lists.

Formally, we define a data structure called compressed
linked lists (CLL) for the storage of intermediate embeddings.

Definition 5 (Compressed Linked Lists). Given a
data graph G, a query graph q and a partition q′ of q, the
compressed linked lists (CLL) of q with respect to q′ and G
consists of the set of lists defined and linked as follows:

(1) For every embedding f of q in G, and every node C of
q′, there is a list which is the projection of f onto the
vertices in C.

(2) There is a link between two lists if they can be obtained
from the same embedding of q in G, and there is an
edge between the corresponding nodes in q′.

Intuitively, the CLL of q w.r.t q′ and G is a compact rep-
resentation of all embeddings of q in G, which stores every
embedding of the graph induced by each vertex group in
q′ exactly once. Moreover, every individual embedding of q
can be retrieved from the CLL by following the links between
the lists. For example, consider the query G in Figure 4(a)
and its tree partition Figure 4(b) and graph partition Fig-
ure 4(c). The embeddings of G are given in Figure 5(a), the
CLLs based on these partitions are as shown in Figure 5(b)
and (c) respectively.

It is worth noting that each query graph may have many
partitions and each of them leads to a different CLL. Different
CLLs have different performance in terms of space and the
time for retrieval. Intuitively, the larger the partition width
k, the more space we will need. For instance, when K = |V |,
all vertices of G are put into one group and the partition
consists of a single node, but the embeddings of G will be
stored as a single table. Also, for a fixed K, the closer
the partition is to a tree, the quicker it is to assemble the
original embeddings as for tree edges we can just follow the
links, while for non-tree edges we need to do extra check to
ensure connectivity. Based on these observations, it is clear
that a tree partition of small width, if it exists, will be ideal.

Figure 5: Cached Results

However, the tree partition width (which is the minimum
partition width at which there exists a tree partition) is
often too large. Therefore, we propose to use a partition
of bounded width which is closest to a tree, called bounded-
width tree-like partition to generate the CLL.

Given a connected graph G′ with node set V ′ and edge set
E′, we define χ(G′) ≡ |E′| − |V ′| + 1 and call it number of
non-spanning tree edges of G′. Intuitively, a spanning tree
of G′ has |V ′| − 1 edges, and |E′| − |V ′| + 1 is the number
of edges we must remove from G′ to obtain a spanning tree.

Definition 6 (Bounded-widthTree-likePartition).
Given a graph G and an integer K, a Bounded-Width Tree-
like Partition (BTLP) of G is a partition G′ of G such that

(1) G′ has partition width at most K.

(2) G′ has the least number of non-spanning tree edges
among all partitions of width K or less.

The complexity of the bounded-width tree-like partition
problem is NP-complete. To prove this claim, we only need
to prove the following decision problem is NP-complete.

Definition 7 (BTLP problem). Given graph G = (V ,
E) and integers K < |V |, M < |E|, is there a graph parti-
tion G′ of G with partition width ≤ K and χ(G′) ≤M?

Theorem 1. The BTLP problem is NP-complete.

Proof sketch. Clearly the BTLP problem is in NP. To
show it is NP-complete, we reduce the bounded-width tree
partition (BTP) problem, which is known to be NP-complete
[4], to an instance of the BTLP problem. The BTP problem
is: Given graph G = (V,E) and integer K < |V |, is there a
tree partition of G with partition width ≤ K?

Given G = (V,E) and integers K < |V |, M < |E|,
we construct a new graph as follows: construct M cliques
c1, . . . , cM of size 3K, and connect one vertex in each clique
to a vertex in G. Denote this new graph by G1. It can be
easily verified that G has a tree partition of width ≤ K iff
G1 has a graph partition of width ≤ K with no more than
M non-spanning tree edges (we omit the details here).

As discussed earlier, given query graph q, we would like
to find a graph partition of q with width no more than K,
and with the minimum number of non-spanning tree edges.
However, since the problem is NP-complete, we use a heuris-
tic procedure to find a partition which meets the partition
width requirement strictly, and the number of spanning tree
edges is likely to be small.
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Our heuristic procedure consists of two steps: In Step
1, we use the algorithm in [4] (referred to as the MTP
algorithm hereafter) to compute a maximal tree partition
(MTP), which is a tree partition where splitting any node
will make the partition no longer a tree. Given graph q, the
MTP algorithm uses BFS to divide the vertices into different
levels: L(1) contains a random vertex v, L(i + 1) contains
vertices which are adjacent to those vertices in L(i) but not
in L(i) or previous levels. It then splits the vertices in each
level into disjoint nodes: two vertices at L(i) are put in the
same node iff they are connected via vertices at the same
level or vertices at L(i+ 1). For example, for the graph q in
Figure 6 (a), the resulting MTP is shown in Figure 6 (b). In
Step 2, we check each node in the MTP starting from nodes
at the largest level. If there is a node N such that |N | > K,

we will split it into
⌈
|N |
K

⌉
groups of size no more than K with

some simple heuristic rules: if there are K-vertices in N that
are not connected to other vertices in N via vertices in N ,
or via the same node at the next level, we will put these ver-
tices into N1 and the other vertices into N2. Otherwise we
split N into N1 and N2 such that |N1| = K randomly. This

process is repeated until N is split into
⌈
|N |
K

⌉
groups. For

example, for the MTP in Figure 6 (b) and K = 3, the ver-
tices u2, u3, u4 are not connected to the vertices u5, u6 via
the same node below them, therefore, we can split the node
{u2, u3, u4, u5, u6} into two nodes {u2, u3, u4} and {u5, u6}.

Figure 6: BTLP Steps

The MTP algorithm takes O(m) where m is the number
of edges in q. Our heuristic process also takes O(m). In
practice the MTP algorithm is likely to find a tree partition
with small width. If the width is ≤ K, we are done. Other-
wise our heuristic rules will split the big nodes in a way that
is likely to produce fewer additional edges than a random
split.

8. SUBGRAPH ISOMORPHISM SEARCH
In this section, we present our approach for multi-query

subgraph isomorphism search which efficiently utilizes the
PCM and cached results. For queries that have no PCM par-
ents, we just relay them to the single-query subgraph iso-
morphism algorithm to process. For queries that do have
PCM parents, we must revise the single-query subgraph iso-
morphism algorithm so as to utilize the cached results of the
PCM parents.

Most single-query subgraph isomorphism algorithms fol-
low the framework proposed in [14], which is a backtracking
strategy looking for solutions by incrementing partial solu-
tions or abandoning them when it determines they cannot be
completed. In the framework, (1) InitializeCandidates is
to prepare promising candidates for each query vertex. (2)
IsJoinable is to decide whether a candidate can be matched
to the query vertex by various pruning rules, given those
query vertices already matched. (3) NextQueryVertex

returns the next query vertex according to the mapping or-
der. Before presenting our strategies to revise this frame-
work, we need to define the concept of a joint graph.

Definition 8 (Joint Graph). Given a query q=(Vq,
Eq, Σq, Lq) and a set of embeddings P from q’s PCM parents
to q, we construct a joint graph qP = {NP , EP } as follows:

(1) For any f ∈ P , there is a node n ∈ NP such that
n = VCover(f).

(2) For each non-covered vertex u ∈ Vq, there is a node
n ∈ NP such that n = {u}.

(3) there exists an edge (ni, nj) ∈ EP iff ni ∩ nj 6= ∅ OR
there exists (ui, uj) ∈ Eq where ui ∈ ni and uj ∈ nj.

The nodes (resp. edges) in a joint graph will be referred to
as joint nodes (resp. joint edges).

Figure 7: Query Covers

Consider the queries in Figure 7. For clarity, in the fig-
ure (and in subsequent examples) we use a pair qi : f to
indicate that f is an embedding from qi. Given the set of
embeddings P = {q1 : f1, q1 : f2, q2 : f1, q3 : f1}, we have
a joint graph qP with NP = {n1, n2, n3, n4} where n1 =
VCover(q1 : f1), n2 = VCover(q1 : f2), n3 = VCover(q2 : f1)
and n4 = VCover(q3 : f1). We have EP = {(n1, n3), (n3, n4),
(n2, n4)}.

Figure 8: A Data Graph G

The basic idea to revise the single-query framework is to
use a joint graph instead of the original query graph in the
search. Intuitively, the vertices in each joint node can be
mapped to the data vertices as a group, and candidates of
the group are the cached embeddings of the PCM parents. Ob-
viously, if any of the PCM parents has no embeddings, then
there will be no embeddings of the original query graph.
Therefore, we will build a joint graph to replace the original
query graph only when every PCM parent has some embed-
dings.

Given a query graph q and its PCM parents, we can build
different joint graphs by choosing different subsets of em-
beddings from the PCM parents to q. Let P be the set of all
embeddings from the PCM parents to q, and VP be the set of
query vertices covered by these embeddings. To make good
use of the cached results and minimize the number of nodes
in the joint graph, we would like to find a minimum subset
of P that covers VP . This is essentially a set cover prob-
lem which is NP-complete. Therefore, we use Algorithm 5,
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Algorithm 5: BuildingJointGraph

Input: query q, Parent(q)- the set of PCM parents of q, P -
the set of embeddings from q’s parents to q

Output: a subset P ′ of P
1 P ′ ← ∅
2 VP ←

⋃
f∈P VCover(f)

3 V Covered← ∅
4 while |V Covered| < |VP | do
5 f ← ChooseEmbedding(P )
6 add f to P ′

7 V Covered← V Covered ∪ VCover(f)

8 return P ′

which is revised from the well-known greedy algorithm for
set cover, to find a good subset P ′ of P .

Algorithm 5 is very simple. Initially P ′ is empty. A vari-
able V Covered is used to record the covered vertices by
the embeddings in P ′. We add the embeddings one by one
into P ′ untill P ′ covers VP (Lines 4 to 7) using the fol-
lowing heuristic rules: embeddings that can cover the most
not-yet covered vertices come first (this is from the greedy
algorithm), and if several embeddings can cover the same
number of non-covered vertices, then we choose one from a
parent that has the least number of cached results (this is
to reduce the number of candidates for the joint-node). The
function ChooseEmbedding(P ) (Line 5) uses these rules to
choose the next embedding.

Example 3. Consider the query q5 and its parents in
Figure 7. Suppose the data graph is G shown in Figure 8.
The graphs q1, q2, q3 and q4 (parents of q5) have 2, 2, 1,
and 2 embeddings respectively. Using Algorithm 5, we will
start with q3 : f1 to generate the subset {q3 : f1, q1 : f1, q1 :
f2, q2 : f1} or {q3 : f1, q1 : f1, q1 : f2, q4 : f1}.

Once we have a joint graph we will use it as the input
graph, and try to map a joint node (instead of a single ver-
tex) in each iteration, as described below.

InitializeCandidates In the original framework of sub-
graph isomorphism, the candidates for each query vertex
of q are retrieved by utilizing label constraints (and other
filtering conditions such as vertex degree constraints). In the
modified framework, the input graph q is replaced with the
joint graph obtained using Algorithm 5, and the candidates
for each joint node are the embeddings of the correspond-
ing PCM parent in the data graph G. These embeddings are
cached in the CLL and can be easily retrieved.

To accelerate the process, we use two conditions to filter
out impossible candidates:

(1) An embedding f (in G) of the parent graph qparent of
q does not always form an embedding of the subgraph of q
induced by the vertices in the joint nodes. In such cases f
can be safely filtered out. This is because of Lemma 1. For
example, consider the query graphs in Figure 7 and the data
graph G in Figure 8. q1 is a parent of q5, and both (v1, v2, v3)
and (v9, v10, v11) are embeddings of q1 in G. However the
first embedding is an impossible candidate for the joint node
produced by q1 : f2 since it is not an embedding of the
subgraph of q5 induced by the vertices in the joint node.

(2) Suppose the joint node n contains a query vertex u,
and u cannot be mapped to data vertex v due to degree
constraints or other filtering conditions used in single-query
algorithms. Assume n is produced by the embedding h from

qparent to q. Then any candidate of n (i.e., embedding of
qparent) that maps h−1(u) to v can be safely filtered out.
Consider the joint node n produced by q1 : f2 in Figure 7.
Since v2 (degree is 1) in Figure 8 cannot be matched to query
vertex u7 (degree is 3), any embedding of q1 in G that maps
the B-node in q1 to v2 is not a valid candidate for n.

IsJoinable This function must be modified to test whether
a candidate can be matched to the current joint node. Sup-
pose we have matched joint nodes n1, . . . , nk−1 to their can-
didates c1, . . . , ck−1 before, and ck is a candidate of the cur-
rent joint node nk. We must make sure matching nk to ck
(together with matching n1, . . . , nk−1 to c1, . . . , ck−1) will
generate a partial embedding of the query graph in the data
graph, i.e., an embedding of the subgraph induced by the
vertices in n1, . . . , nk. Specifically,

(1) Each vertex in n1, . . . , nk must be mapped to a distinct
data vertex.

(2) If nk and ni (i ∈ [1, k − 1]) have a common vertex
u, then nk and ni must map u to the same data vertex.
Consider the joint node n2 produced by q2 : f1 and n3 by
q3 : f1 in Figure 7. n2 has a common vertex u6 with n3. If we
have mapped n2 to (v3, v4, v5) in Figure 8, then we cannot
map n3 to (v6, v8, v10) because u6 cannot be mapped to v5
and v6 at the same time.

(3) If there are query vertices u′ ∈ nk and u ∈ ni such that
there is an edge (u′, u) in the query graph, and nk and ni

map u′ to v′ and v respectively, then there must be an edge
(v′, v) in the data graph. For example, if we have mapped
the joint node n2 produced by q1 : f2 to (v9, v10, v11), then
we cannot map the joint node n3 produced by q3 : f1 to
(v4, v5, v7), as there is an edge between u5 and u7 but there
is no edge between v7 and v10.

Note that the above conditions (2) and (3) need to be
checked only if there is an edge between nk and ni in the
joint graph.

The correctness of the modified subgraph isomorphism
search is clear from the observation that there is a 1:1 corre-
spondence between the embeddings of q and the embeddings
of the joint graph.

9. EXPERIMENTS
In this section, we report our experiments to evaluate our

solution. Specifically, (1) we compare the effectiveness of
our grouping factor with edge-label based Jaccard similar-
ity which is used in [13]; (2) we evaluate the factors that
affect PCM building time; (3) to evaluate the effectiveness
of our query execution order, we compare the number of
cached queries under different execution orders; (4) for CLL,
we give the results to illustrate the effects of partition width
on the memory usage and the time for retrieving embed-
dings from the CLL; (5) we compare the performance of our
MQO with sequential query processing(SQO), and evaluate the
effects of grouping factor threshold and query similarity on
the performance of our solution.

Datasets. We used three benchmark datasets: Yeast, Hu-
man, and Wordnet. Human and Yeast were used in [9][14][17].
Wordnet was used in [21][17]. The three datasets have dif-
ferent characteristics. Yeast is a graph with small number
of data vertices but many labels. Human is a clip of so-
cial network graph with much larger vertex degrees. Com-
pared with Yeast and Human, Wordnet is a much larger data
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graph, however it is much sparser and has very few vertex
labels. The profiles of the datasets are given in Table 1.

Table 1: Profiles of datasets

Dataset(G) |V | |E| |Σ| Avg. degree

Human 4675 86282 90 36.82
Yeast 3112 12915 184 8.05

Wordnet 82670 133445 5 3.28

Query Graphs. We designed two generators to generate
the query graphs based on the data sets. (1) Random graph
generator, which takes the number of query graphs N and
family2 size S as input, and randomly chooses N

S
data ver-

tices as core-vertices. For each core-vertex v, it picks 5 to
10 vertices within a distance of 5 from v, and generates a
family of S connected queries by randomly connecting the
vertices with an edge. The number of edges in each query
ranges from 5 to 15. Queries within each family share the
same core-vertex and are likely to have more overlaps. Thus
family size acts as a parameter to control the overlaps of
the queries: generally the larger the family size, the more
overlaps among the queries. The family size used in our
experiments ranges from 1 to 10. If family size is 1, the gen-
erator is a pure random graph generator, which generates
queries with rare overlaps. (2) Subgraph generator, which
is used to generate subgraphs of the data graph for testing
result caching strategies. Given the number of queries N , it
randomly chooses N data vertices. For each vertex, it gen-
erates a subgraph around this vertex by random walk. The
number of edges ranges from 5 to 15. Each subgraph gener-
ated this way is guaranteed to have at least one embedding.

Experimental Settings. We implemented 2 recent single-
query subgraph isomorphism algorithms: TurboIso[9] and
TurboIsoBoosted [17]. We also implemented a revised ver-
sion for these two algorithms according to Section 8 so as to
support MQO. All the algorithms were implemented in C++.
All the experiments were carried out under 64-bit Windows
7 on a machine with 4GB memory.

9.1 Grouping Factor Effectiveness
Table 2: Grouping Factor Effectiveness

Dataset
Yeast Human Wordnet

Tls Jac Tls Jac Tls Jac
10% 2077 2288 4192 4218 8867 9134
30% 6337 8436 12577 13085 26625 27497
50% 12002 16600 20963 22109 45068 48920
70% 18018 26662 29348 30956 64847 73674
90% 24854 41170 37789 40464 89497 102027

Intuitively a more effective grouping factor or similarity
measure is the one that can obtain the same number of MCSs
with less trials (a trial means trying to compute the MCS for
one pair of queries). To compare the effectiveness of our TLS-
based grouping factor against the edge-label based Jaccard
similarity, we fix the query set and compare the number
of trials of each method under their maximum threshold
that can obtain a fixed percentage of all MCSs. For each
dataset, we use the random graph generator to generate 500
(family size is 10) queries. The percentage of required MCSs
varies from 10% to 90%. The result is given in Table 2.

2We use “family” instead of “group” to distinguish it from
the groups discussed in Section 5.

As we can see, for all the percentages, our grouping factor
requires significantly fewer trials (note that computing MCS
is an expensive process). The difference between the two
methods is even larger with larger query sets, we omit the
experimental results for larger query sets due to space limit.
The time difference for computing the grouping factor and
the Jaccard similarity is negligible due to the small size of
query graphs.

9.2 PCM Building Time
We conducted three sets of experiments to evaluate the

PCM building time. (1) To evaluate the scalability, we tested
the PCM building time under different query set sizes ranging
from 100 to 1000. The family size was set to 10. The results
are given in Figure 9(a). (2) To evaluate the PCM building
time under different query similarities, we tested the build-
ing time for 10 sets of queries with family sizes from 1 to
10. Each query set has 1000 queries. The results are given
in Figure 9(b). (3) To evaluate the effect of grouping factor
threshold, we tested the PCM building time and the num-
ber of PCM edges detected under different thresholds ranging
from 0.1 to 1. The results are given in Figure 10. All of
the queries for the three tests were generated by the ran-
dom graph generator. The grouping factor threshold used
in tests (1) and (2) is 0.5 for Yeast, 0.6 for Human and 0.9
for Wordnet. The query set size is 1000 and family size is
10 for test (3).

As shown in Figure 9(a), the PCM building time for both
Yeast and Human has a slight increment when the query
set size is increased, while the time for Wordnet shows a
sharper increment. As aforementioned, Wordnet only has 5
labels, which results in much higher possibility of two queries
sharing common subgraphs. For Yeast and Human, due to
the diversity of labels, queries are not easy to share common
subgraphs, and the PCM building time is under 2 seconds for
1000 queries.

As shown in Figure 9(b). For Yeast and Human, the PCM

building time only shows a slight increment with increasing
family size. While the time for Wordnet shows a much larger
increment. Although the PCM building time can be more
than 10 seconds for Wordnet with family size 10, and it
grows with larger family size due to more overlaps, this cost
can be easily paid back because there will be more MCSs
detected, which will lead to much larger query time savings.

(a) Effect of query set size (b) Effect of family size

Figure 9: PCM Building Time

In Figure 10, the horizontal axis represents the grouping
factor threshold, the left vertical axis is the number of PCM
edges, and the right vertical axis is the time for building the
PCM. The lines show the PCM building time, and the bars show
the number of PCM edges. As shown in the figure, both the
time and number of PCM edges increase for all three datasets
when the threshold is decreased. The number of PCM edges
increases faster with smaller thresholds (We omit the bars
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of wordnet whose value is more than 8000). This is because
many of the connected common subgraphs under a small
threshold are small graphs, and it is easy for two queries to
have small common subgraphs while it is much harder for
them to have a large one.

Figure 10: Effects of Grouping Factor Threshold

9.3 Query Execution Order
To evaluate the effectiveness of our execution order, we

compare the number of cached queries of our heuristic ex-
ecution order (H) with that of a random topological order
(R). When the algorithm reaches the stage to compute the
subgraph isomorphism for any query, we record the num-
ber of cached queries at this time point. For each dataset
and for each order, we use Peak and Average to represent
the highest number and the average number at all the time
points respectively. The results are given in Table 3. The
query set size is 1000 and generated by the random graph
generator. As we can see, both the peak and the average
number of our order is less than that of the random topo-
logical order. Especially for Wordnet and Human, our order
significantly reduced the peak number of cached queries.

Table 3: Number of Cached Queries

Dataset
Yeast Human Wordnet
H R H R H R

Peak 5 6 23 56 120 161
Average 1 1 6 8 23 89

9.4 Intermediate Result Caching
To evaluate the power of CLL, we tested the effects of par-

tition width on the memory use and the time cost for retriev-
ing embeddings from the CLL. For each of the three datasets,
we used the Subgraph Generator to generate one query set
containing 50 different queries. We first conducted subgraph
isomorphism search under different cache settings for each
of the queries and cached all the final embeddings after the
search. Then we did an embedding enumeration to test the
time for recovering the embeddings from the cache.

Table 4: Cache Memory Use in KB

Data\Width 1 2 3 4 5 Raw

Yeast 9 11 17 19 21 255×103

Human 24 137 358 672 1483 583 ×103

Wordnet 12 13 13 13 13 399×103

The memory cost of different types of cache results is given
in Table 4. Width represents the partition width of the graph
partition of the queries. When width is set to 1, it only al-
lows one vertex in each partition node. This is equal to the
trivial structure of compressed embedding graph. The last
column is marked as Raw which represents the trivial ta-
ble structure without any grouping of vertices. As shown,

the sizes of the cache for the table structure are much larger
than that of the grouped results. For Human data set which
is a relatively dense graph with small size, the trivial table
structure can use more than 500MB for caching the results
of only 50 queries. 500M is not a problem for modern com-
puters with gigabytes of memory. However, it can be much
worse for larger and denser data graphs. The cached result
sizes show an overall increasing trend with the increment of
the partition width. Not surprisingly, the sizes of cached
results for Wordnet become stable when the partition width
is larger than 2. This is because Wordnet is a sparse graph,
the queries generated from Wordnet are sparse graphs as
well. Thus the queries can be partitioned into trees with
small width. The partition would not change much given
a larger allowed width as our algorithm usually produces a
tree partition of the least partition width.

Table 5: Embedding Retrieval Time(ms)

Data\Width 1 2 3 4 5

Yeast 226 202 159 126 137
Human 3247 1628 952 858 770
Wordnet 3930 2314 1412 1400 1306

The embedding retrieval time is shown in Table 5. As
expected, the retrieval time shows an decreasing trend with
the increment of the partition width. A smaller partition
width may lead to more non-spanning tree edges, checking
the connection of these edges when retrieving the embed-
dings takes more time.

9.5 Query Processing Time

(a) TurboIso over Yeast (b) TurboBoosted over Yeast

(c) TurboIso over Human (d) TurboBoosted over Human

(e) TurboIso over Wordnet (f) TurboBoosted over Wordnet

Figure 11: Performance Comparison and Scalability Test
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In this subsection, we present the comparisons of the per-
formances of MQO and sequential query processing (SQO). We
report the results from three perspectives. (1) The scalabil-
ity of the query processing. For each query set, we generated
10 query sets, with set size ranging from 100 to 1000. The
family size was set to 10. The grouping factor threshold was
set to 0.5 for Yeast, 0.6 for Human and 0.9 for Wordnet.
The partition width is set to 3 for all data sets. The results
are given in Figure 11. (2) The effects of query similarity
over the query processing time. We used different family
sizes (from 1 to 10) when generating the queries. The query
set size is 1000. (3) The effects of different grouping factor
thresholds over the query processing time. We used query
sets with 1000 queries and the family size was set to 10.
Due to space limit, we only present the results for Human
for experiments (2) and (3) in Figure 12.

As shown in Figure 11, our MQO approach achieved signifi-
cant improvement over SQO for all three datasets. Compared
with Yeast, both Human and Wordnet achieved larger im-
provement. There are two possible reasons for this:(1) Yeast
is a small graph where the average query processing time is
short, hence the space for time savings is not as big as for
the other data sets. (2) Yeast contains many labels which
makes the queries harder to share common subgraphs. The
improvement of MQO over SQO for TurboIso is larger than
that for TurboIsoBoosted for all datasets in terms of abso-
lute time saved (note the different time units in the figures).

(a) Effects of query similarity (b) Effects of threshold

Figure 12: Effects of query similarity and GF threshold

As shown in Figure 12(a), with the increment of the family
size, the performance of MQO show larger improvement over
SQO. We used two horizontal lines to represent the average
SQO processing time over all queries for TurboIso and Tur-
boBoosted respectively (note that the family size does not
affect the average time cost of SQO). As can be seen, when
the family size is 1 (which means the queries have little over-
lap), the performance of our MQO is only slightly worse than
that of SQO.

As shown in Figure 12(b), neither a very large nor a very
small grouping factor threshold can achieve the best perfor-
mance. The former leads to many useful MCSs not being
detected, and the latter leads to relatively long PCM building
time with many small common subgraphs being detected.
The PCM building time cannot be easily paid back in such
cases.

10. CONCLUSION
We presented a solution for MQO for subgraph isomor-

phism search in this paper. Our experiments show that, us-
ing our techniques, the overall query processing time when
multiple queries are processed together can be significantly
shorter than if the queries are processed separately when
the queries have many overlaps. Furthermore, the larger

the data set or the more time it takes for an average query,
the more savings we can achieve. When the queries have no
or little overlap, our filtering technique can detect it quickly,
resulting in only a slight overhead compared with SQO.
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