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ABSTRACT
Incentivized social advertising, an emerging marketing model, pro-
vides monetization opportunities not only to the owners of the so-
cial networking platforms but also to their influential users by of-
fering a “cut” on the advertising revenue. We consider a social net-
work (the host) that sells ad-engagements to advertisers by insert-
ing their ads, in the form of promoted posts, into the feeds of care-
fully selected “initial endorsers” or seed users: these users receive
monetary incentives in exchange for their endorsements. The en-
dorsements help propagate the ads to the feeds of their followers.
Whenever any user engages with an ad, the host is paid some fixed
amount by the advertiser, and the ad further propagates to the feed
of her followers, potentially recursively. In this context, the prob-
lem for the host is is to allocate ads to influential users, taking into
account the propensity of ads for viral propagation, and carefully
apportioning the monetary budget of each of the advertisers be-
tween incentives to influential users and ad-engagement costs, with
the rational goal of maximizing its own revenue.

We show that, taking all important factors into account, the prob-
lem of revenue maximization in incentivized social advertising cor-
responds to the problem of monotone submodular function maxi-
mization, subject to a partition matroid constraint on the ads-to-
seeds allocation, and submodular knapsack constraints on the ad-
vertisers’ budgets. We show that this problem is NP-hard and de-
vise two greedy algorithms with provable approximation guaran-
tees, which differ in their sensitivity to seed user incentive costs.

Our approximation algorithms require repeatedly estimating the
expected marginal gain in revenue as well as in advertiser payment.
By exploiting a connection to the recent advances made in scal-
able estimation of expected influence spread, we devise efficient
and scalable versions of our two greedy algorithms. An extensive
experimental assessment confirms the high quality of our proposal.

1. INTRODUCTION
The rise of online advertising platforms has generated new op-

portunities for advertisers in terms of personalizing and targeting
their marketing messages. Social networking platforms particularly
can gather large amounts of users’ shared posts that stretches be-
yond general demographic and geographic data. This offers more
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advanced interest, behavioral, and connection-based targeting op-
tions, enabling a level of personalization that is not achievable by
other online advertising channels. Hence, advertising on social net-
working platforms has been one of the fastest growing sectors in
the online advertising landscape: a market that did not exist un-
til Facebook launched its first advertising service in May 2005, is
projected to generate $11 billion revenue by 2017, almost doubling
the 2013 revenue1.

Social advertising. Social advertising models are typically em-
ployed by platforms such as Twitter, Tumblr, and Facebook through
the implementation of promoted posts that are shown in the “news
feed” of their users.2 A promoted post can be a video, an image, or
simply a textual post containing an advertising message. Social ad-
vertising models of this type are usually associated with a cost per
engagement (CPE) pricing scheme: the advertiser does not pay for
the ad impressions, but pays the platform owner (hereafter referred
to as the host) only when a user actively engages with the ad. The
engagement can be in the form of a social action such as “like”,
“share”, or “comment”: in this paper we blur the distinction be-
tween these different types of actions, and generically refer to them
all as engagements or clicks interchangeably.

Similar to organic (i.e., non-promoted) posts, promoted posts can
propagate from user to user in the network3, potentially triggering a
viral contagion: whenever a user u engages with an ad i, the host is
paid some fixed amount by the advertiser (the CPE). Furthermore,
u’s engagement with i appears in the feed of u’s followers, who are
then exposed to ad i and could in turn be influenced to engage with
i, producing further revenue for the host [5, 35].

Incentivized social advertising. In this paper, we study the novel
model of incentivized social advertising. Under this model, users
selected by the host as seeds for the campaign on a specific ad i,
can take a “cut” on the social advertising revenue.

A recent report4 indicates that Facebook is experimenting with
the idea of incentivizing users. YouTube launched a revenue-
sharing program for prominent users in 2007. Twitch, the streaming
platform of choice for gamers, lets partners make money through
revenue sharing, subscriptions, and merchandise sales. YouNow, a
streaming platform popular among younger users, earns money by
taking a cut of the tips and digital gifts that fans give its stars.

1
http://www.unified.com/historyofsocialadvertising/

2According to a recent report, Facebook’s news feed ads have 21 times higher
click-through rate than standard web retargeting ads and 49 times the click-through
rate of Facebook’s right-hand side display ads: see https://blog.adroll.com/
trends/facebook-exchange-news-feed-numbers.
3Tumblr’s CEO D. Karp reported (CES 2014) that a normal post is reposted on aver-
age 14 times, while promoted posts are on average reposted more than 10 000 times:
http://yhoo.it/1vFfIAc.
4
http://www.theverge.com/2016/4/19/11455840/facebook-tip-

jar-partner-program-monetization
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In this work, we consider incentives that are determined by the
topical influence of the seed users for the specific ad. More con-
cretely, given an ad i, the financial incentive that a seed user u
would get for engaging with i is a function of the social influence
that u has exhibited in the past in the topic of i. For instance, a user
who produces attention-capturing content about long-distance run-
ning might be a good seed for endorsing a new model of running
shoes. In this case, her past demonstrated influence on this very
topic would be taken into consideration when defining the lump-
sum amount for her engagement with the new model of running
shoes. The same user could be considered as a seed for a new model
of tennis shoes, but in that case the incentive might be lower, due
to her lower past influence demonstrated. To summarize, incentives
are paid by the host to users selected as seeds. These incentives
count as seeding costs and depend on the topic of the ad and the
user’s past demonstrated influence in the topic.

The incentive model above has several advantages. First, it
captures in a uniform framework both the “celebrity-influencer”,
whose incentives are naturally very high (like her social influence),
and who are typically preferred by more traditional types of adver-
tising such as TV ads; as well as the “ordinary-influencer” [6], a
non-celebrity individual who is an expert in some specific topic,
and thus has a relatively restricted audience, or tribe, that trust her.
Second, incentives not only play their main role, i.e., encourage the
seed users to endorse an advert campaign, but also, as a by-product,
they incentivize users of the social media platform to become influ-
ential in some topics by actively producing good-quality content.
This has an obvious direct benefit for the social media platform.
Revenue maximization. In the context of incentivized social ad-
vertising, we study the fundamental problem of revenue maximiza-
tion from the host perspective: an advertiser enters into an agree-
ment with the host to pay, following the CPE model, a fixed price
cpe(i) for each engagement with ad i. The agreement also speci-
fies the finite budget Bi of the advertiser for the campaign for ad
i. The host has to carefully select the seed users for the campaign:
given the maximum amount Bi that it can receive from the ad-
vertiser, the host must try to achieve as many engagements on the
ad i as possible, while spending as little as possible on the incen-
tives for “seed” users. The host’s task gets even more challenging
by having to simultaneously accommodate multiple campaigns by
different advertisers. Moreover, for a fixed time window (e.g., 1
day, or 1 week), the host can select each user as the seed endorser
for at most one ad: this constraint maintains higher credibility for
the endorsements and avoids the undesirable situation where, e.g.,
the same sport celebrity endorses Nike and Adidas in the same time
window. Therefore two ads i and j, which are in the same topical
area, naturally compete for the influential users in that area.

We show that, taking all important factors (such as topical rel-
evance of ads, their propensity for social propagation, the topical
influence of users, seed incentives and advertiser budgets) into ac-
count, the problem of revenue maximization in incentivized social
advertising corresponds to the problem of monotone submodular
function maximization subject to a partition matroid constraint on
the ads-to-seeds allocation, and submodular knapsack constraints
on the advertisers’ budgets. This problem is NP-hard and further-
more is far more challenging than the classical influence maximiza-
tion problem (IM) [24] and its variants. For this problem, we de-
velop two natural greedy algorithms, for which we provide formal
approximation guarantees. The two algorithms differ in their sensi-
tivity to cost-effectiveness in the seed user selection:
• Cost-Agnostic Greedy Algorithm (CA-GREEDY), which

greedily chooses the seeds based on the marginal gain in the
revenue, without any information about the incentive costs;

• Cost-Sensitive Greedy Algorithm (CS-GREEDY), which
greedily chooses the seed users based on the rate of marginal
gain in revenue per marginal gain in the advertiser’s payment
for each advertiser.

Our results generalize the results of Iyer et al. [22, 23] on sub-
modular function maximization by (i) generalizing from a single
submodular knapsack constraint to multiple submodular knapsack
constraints, and (ii) by handling an additional partition matroid
constraint. Our theoretical analysis leverages the notion of curva-
ture of submodular functions.

Our approximation algorithms require repeatedly estimating the
expected marginal gain in revenue as well in advertiser payment.
We leverage recent advances in scalable estimation of expected in-
fluence spread and devise scalable algorithms for revenue maxi-
mization in our model.
Contributions and roadmap.
• We propose incentivized social advertising, and formulate a

fundamental problem of revenue maximization from the host
perspective (Section 2).
• We prove the hardness of our problem and we devise two

greedy algorithms with approximation guarantees. The first
(CA-GREEDY) is agnostic to users’ incentives during the seed
selection while the other (CS-GREEDY) is not (Section 3).
• We devise scalable versions of our approximation algorithms

(Section 4). Our comprehensive experimentation on real-
world datasets (Section 5) confirms the scalability of our
methods and shows that the scalable version of CS-GREEDY
consistently outperforms that of CA-GREEDY, and is far su-
perior to natural baselines.

Some proofs are omitted here for brevity and can be found in [1].

2. PROBLEM STATEMENT
Business model: the advertiser. An advertiser5 i enters into an
agreement with the host, the owner of the social networking plat-
form, for an incentivized social advertising campaign on its ad. The
advertiser agrees to pay the host:

1. an incentive ci(u) for each seed user u chosen to endorse ad i;
we let Si denote the set of users selected to endorse ad i;

2. a cost-per-engagement amount cpe(i) for each user that engages
with (e.g., clicks) its ad i.

An advertiser i has a finite budget Bi that limits the amount it can
spend on the campaign for its ad.
Business model: the host. The host receives from advertiser i:

1. a description of the ad i (e.g., a set of keywords) which allows the
host to map the ad to a distribution ~γi over a latent topic space;

2. a commercial agreement that specifies the cost-per-engagement
amount cpe(i) and the campaign budget Bi.
The host is in charge of running the campaign, by selecting

which users and how many to allocate as a seed set Si for each
ad i, and by determining their incentives. Given that these deci-
sions must be taken before the campaign is started, the host has
to reason in terms of expectations based on past performance. Let
σi(Si) denote the expected number of clicks ad i receives when us-
ing Si as the seed set of incentivized users. The host models the
total payment that advertiser i needs to make for its campaign,
denoted ρi(Si), as the sum of its total costs for the expected ad-
engagements (e.g., clicks), and for incentivizing its seed users:
5We assume each advertiser has one ad to promote per time window, and use i to refer
to the i-th advertiser and its ad interchangeably.

1239



i.e., ρi(Si) = πi(Si) + ci(Si) where πi(Si) = cpe(i) · σi(Si)
and ci(Si) :=

∑
u∈Si ci(u), where ci(u) denotes the incentive

paid to a candidate seed user u for ad i. We assume ci(u) is a
monotone function f of the influence potential of u, capturing the
intuition that seeds with higher expected spread cost more: i.e.,
ci(u) := f(σi({u})).

Notice that the expected revenue of the host from the engage-
ments to ad i is just πi(Si), as the cost ci(Si) paid by the advertiser
to the host for the incentivizing influential users, is in turn paid by
the host to the seeds. In this setting, the host faces the following
trade-off in trying to maximize its revenue. Intuitively, targeting in-
fluential seeds would increase the expected number of clicks, which
in turn could yield a higher revenue. However, influential seeds cost
more to incentivize. Since the advertiser has a fixed overall budget
for its campaign, the higher seeding cost may come at the expense
of reduced revenue for the host. Finally, an added challenge is that
the host has to serve many advertisers at the same time, with po-
tentially competitive ads, i.e., ads which are very close in the topic
space.
Data model, topic model, and propagation model. The host,
owns: a directed graph G = (V,E) representing the social net-
work, where an arc (u, v) means that user v follows user u, and
thus v can see u’s posts and may be influenced by u. The host also
owns a topic model for ads and users’ interests, defined by a hidden
variable Z that can range over L latent topics. A topic distribution
thus abstracts the interest pattern of a user and the relevance of an
ad to those interests. More precisely, the topic model maps each ad
i to a distribution ~γi over the latent topic space:

γzi = Pr(Z = z|i), with
∑L

z=1
γzi = 1.

Finally, the host uses a topic-aware influence propagation model
defined on the social graph G and the topic model. The propaga-
tion model governs the way in which ad impressions propagate in
the social network, driven by topic-specific influence. In this work,
we adopt the Topic-aware Independent Cascade model6 (TIC) pro-
posed by Barbieri et al. [8] which extends the standard Indepen-
dent Cascade (IC) model [24]: In TIC, an ad is represented by a
topic distribution, and the influence strength from user u to v is
also topic-dependent, i.e., there is a probability pzu,v for each topic
z. In this model, when a node u clicks an ad i, it gets one chance of
influencing each of its out-neighbors v that has not clicked i. This
event succeeds with a probability equal to the weighted average of
the arc probabilities w.r.t. the topic distribution of ad i:

piu,v =
∑L

z=1
γzi · pzu,v. (1)

Using this stochastic propagation model the host can determine the
expected spread σi(Si) of a given campaign for ad i when using
Si as seed set. For instance, the influence value of a user u for
ad i is defined as the expected spread of the singleton seed {u}
for the given the description for ad i, under the TIC model, i.e.,
σi({u}): this is the quantity that is used to determine the incentive
for a candidate seed user u to endorse the ad i.
The revenue maximization problem. Hereafter we assume a fixed
time window (say a 24-hour period) in which the revenue maxi-
mization problem is defined. Within this time window we have h
advertisers with ad description ~γi, cost-per-engagement cpe(i), and
budgetBi, i ∈ [h]. We define an allocation ~S as a vector of h pair-
wise disjoint sets (S1, · · · , Sh) ∈ 2V × · · · × 2V , where Si is the
6Note that the use of the topic-based model is orthogonal to the technical development
and contributions of our work. Specifically, if we assume that the topic distributions of
all ads and users are identical, the TIC model reduces to the standard IC model. The
techniques and results in the paper remain intact.

seed set assigned to advertiser i to start the ad-engagement propa-
gation process. Within the time window, each user in the platform
can be selected to be seed for at most one ad, that is, Si ∩ Sj = ∅,
i, j ∈ [h]. We denote the total revenue of the host from advertisers
as the sum of the ad-specific revenues:

π(~S) =
∑

i∈[h]
πi(Si).

Next, we formally define the revenue maximization problem for
incentivized social advertising from the host perspective. Note that
given an instance of the TIC model on a social graphG, for each ad
i, the ad-specific influence probabilities are determined by Eq. (1).

Problem 1 (REVENUE-MAXIMIZATION (RM)). Given a social
graphG = (V,E), h advertisers, cost-per-engagement cpe(i) and
budget Bi, i ∈ [h], ad-specific influence probabilities piu,v and
seed user incentive costs ci(u), u, v ∈ V , i ∈ [h], find a feasible
allocation ~S that maximizes the host’s revenue:

maximize
~S

π(~S)

subject to ρi(Si) ≤ Bi,∀i ∈ [h],

Si ∩ Sj = ∅, i 6= j, ∀i, j ∈ [h].

In order to avoid degenerate problem instances, we assume that
no single user incentive exceeds any advertiser’s budget. This en-
sures that every advertiser can afford at least one seed node.

3. HARDNESS AND APPROXIMATION
Hardness. We first show that Problem 1 (RM) is NP-hard. We

recall that a set function f : 2U → R≥0 is monotone if for S ⊂
T ⊆ U , f(S) ≤ f(T ). We define the marginal gain of an element
xw.r.t. S ⊂ U as f(x|S) := f(S∪{x})−f(S). A set function f is
submodular if for S ⊂ T ⊂ U and x ∈ U \ T , f(x|T ) ≤ f(x|S),
i.e., the marginal gains diminish with larger sets.

It is well known that the influence spread function σi(·) is
monotone and submodular [24], from which it follows that the ad-
specific revenue function πi(·) is monotone and submodular. Fi-
nally, since the total revenue function, π(~S) =

∑
i∈[h] πi(Si), is

a non-negative linear combination of monotone and submodular
functions, these properties carry over to π(~S). Likewise, for each
ad i, the payment function ρi(·) is a non-negative linear combina-
tion of two monotone and submodular functions, πi(·) and ci(·),
and so is also monotone and submodular. Thus, the constraints
ρi(Si) ≤ Bi, i ∈ [h], in Problem 1 are submodular knapsack
constraints. We start with our hardness result.

Theorem 1. Problem 1 (RM) is NP-hard.

Proof. Consider the special case with one advertiser, i.e., h = 1.
Then we have one submodular knapsack constraint and no partition
matroid constraint. This corresponds to maximizing a submodular
function subject to a submodular knapsack constraint, the so-called
Submodular Cost Submodular Knapsack (SCSK) problem, which
is known to be NP-hard [23]. Since this is a special case of Problem
1, the claim follows.

Next, we characterize the constraint that the allocation ~S =
(S1, · · · , Sh) should be composed of pairwise disjoint sets, i.e.,
Si ∩ Sj = ∅, i 6= j, ∀i, j ∈ [h]. We will make use of the following
notions on matroids.

Definition 1 (Independence System). A set system (E , I) defined
with a finite ground set E of elements, and a family I of subsets
of E is an independence system if I is non-empty and if it satisfies
downward closure axiom, i.e., X ∈ I ∧ Y ⊆ X → Y ∈ I.
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Definition 2 (Matroid). An independence system (E , I) is a ma-
troid M = (E , I) if it also satisfies the augmentation axiom: i.e.,
X ∈ I ∧ Y ∈ I ∧ |Y | > |X| → ∃e ∈ Y \X : X ∪ {e} ∈ I.

Definition 3 (Partition Matroid). Let E1, · · · , El be a partition of
the ground set E into l non-empty disjoint subsets. Let di be an
integer, 0 ≤ di ≤ |Ei|. In a partition matroid M = (E , I), a set X
is defined to be independent iff, for every i, 1 ≤ i ≤ l, |X ∩ Ei| ≤
di. That is, I = {X ⊆ E : |X ∩ Ei| ≤ di, ∀i = 1, · · · , l}.

Lemma 1. The constraint that in an allocation ~S = (S1, · · · , Sh),
the seed sets Si are pairwise disjoint is a partition matroid con-
straint over the ground set E of all (node, advertiser) pairs.

Therefore, the RM problem corresponds to the problem of sub-
modular function maximization subject to a partition matroid con-
straint M = (E , I), and h submodular knapsack constraints.
Approximation analysis. Next lemma states that the constraints of
the RM problem together form an independence system defined on
the ground set E . This property will be leveraged later in developing
approximation algorithms. Given the partition matroid constraint
M = (E , I), and h submodular knapsack constraints, let C denote
the family of subsets, defined on E , that are feasible solutions to the
RM problem.

Lemma 2. The system (E , C) is an independence system.

Our theoretical guarantees for our approximation algorithms to
the RM problem depend on the notion of curvature of submodular
functions. Recall that f(j|S), j 6∈ S, denotes the marginal gain
f(S ∪ {j})− f(S).

Definition 4 (Curvature). [15] Given a submodular function f ,
the total curvature κf of f is defined as

κf = 1−minj∈V
f(j|V \ {j})
f({j}) ,

and the curvature κf (S) of f wrt a set S is defined as

κf (S) = 1−minj∈S
f(j|S \ {j})
f({j}) .

It is easy to see that 0 ≤ κf = κf (V ) ≤ 1. Intuitively, the cur-
vature of a function measures the deviation of f from modularity:
modular functions have a curvature of 0, and the further away f is
from modularity, the larger κf is. Similarly, the curvature κf (S) of
f wrt a set S reflects how much the marginal gains f(j | S) can
decrease as a function of S, measuring the deviation from modu-
larity, given the context S. In the next subsections, we propose two
greedy approximation algorithms for the RM problem. The first
of these, Cost-Agnostic Greedy Algorithm (CA-GREEDY), greed-
ily chooses the seed users solely based on the marginal gain in the
revenue, without considering seed user incentive costs. The second,
Cost-Sensitive Greedy Algorithm (CS-GREEDY), greedily chooses
the seed users based on the rate of marginal gain in revenue per
marginal gain in the advertiser’s payment for each advertiser.

We note that Iyer et al. [22, 23] study a restricted special case
of the RM problem, referred as Submodular-Cost Submodular-
Knapsack (SCSK), and propose similar cost-agnostic and cost-
sensitive algorithms. Our results extend theirs in two major ways.
First, we extend from a single advertiser to multiple advertisers
(i.e., from a single submodular knapsack constraint to multiple
submodular knapsack constraints). Second, unlike SCSK, our RM
problem is subject to an additional partition matroid constraint on
the ads-to-seeds allocation, which naturally arises when multiple
advertisers are present.

3.1 Cost-Agnostic Greedy Algorithm
The Cost-Agnostic Greedy Algorithm (CA-GREEDY) for the

RM problem, whose pseudocode is provided in Algorithm 1,
chooses at each iteration a (node, advertiser) pair that provides the
maximum increase in the revenue of the host. Let Xg ⊆ E de-
note the greedy solution set of (node,advertiser) pairs, returned by
CA-GREEDY, having one-to-one correspondence with the greedy
allocation ~Sg , i.e., Si = {u : (u, i) ∈ Xg}, ∀Si ∈ ~Sg . Let X tg
denote the greedy solution after t iterations of CA-GREEDY. At
each iteration t, CA-GREEDY first finds the (node,advertiser) pair
(u∗, i∗) that maximizes πi(u | St−1

i ), and tests whether adding
this pair to the current greedy solutionX t−1

g would violate any con-
straint: if X t−1

g ∪ {(u∗, i∗)} is feasible, the pair (u∗, i∗) is added
to the greedy solution as the t-th (node,advertiser) pair. Otherwise,
(u∗, i∗) is removed from the current ground set of (node,advertiser)
pairs Et−1. CA-GREEDY terminates when there is no feasible
(node,advertiser) pair left in the current ground set Et−1.

Observation 1. Being monotone and submodular, the total revenue
function π( ~Sg) has a total curvature κπ , given by:

κπ = 1−min(u,i)∈E
πi(u | V \ {u})

πi({u})
.

We will make use of the following notions in our results on ap-
proximation guarantees.

Definition 5 (Upper and lower rank). Let (E , C) be an indepen-
dence system. Its upper rank R and lower rank r are defined as the
cardinalities of the smallest and largest maximal independent sets:

r = min{|X| : X ∈ C and X ∪ {(u, i)} 6∈ C, ∀(u, i) 6∈ X},

R = max{|X| : X ∈ C and X ∪ {(u, i)} 6∈ C, ∀(u, i) 6∈ X}.

When the independence system is a matroid, r = R, as all max-
imal independent sets have the same cardinality.

Theorem 2. CA-GREEDY achieves an approximation guarantee

of
1

κπ

[
1−

(
R− κπ
R

)r]
to the optimum, where κπ is the total

curvature of the total revenue function π(·), r and R are respec-
tively the lower and upper rank of (E , C). This bound is tight.

Proof. We note that the family C of subsets that constitute feasi-
ble solutions to the RM problem form an independence system
defined on E (Lemma 2). Given this, the approximation guaran-
tee of CA-GREEDY directly follows from the result of Conforti et
al. [15, Theorem 5.4] for submodular function maximization sub-
ject to an independence system constraint. However, the tightness
does not directly follow from the tightness result in [15], which we
address next.

We now exhibit an instance to show that the bound is tight. Con-
sider one advertiser, i.e., h = 1. The network is shown in Fig-
ure 1, where all influence probabilities are 1. The incentive costs
for nodes are as shown in the figure, while cpe(.) = 1. The budget
is B = 7. It is easy to see that the lower rank is r = 1, correspond-
ing to the maximal feasible seed set S = {b}, while the upper
rank is R = 2, e.g., corresponding to maximal feasible seed sets
such as T = {a, c}. Furthermore, the total curvature is κπ = 1.
On this instance, the optimal solution is T which achieves a rev-
enue of 6. In its first iteration, CA-GREEDY could choose b as
a seed. Once it does, it is forced to the solution S = {b} as no
more seeds can be added to S. The revenue of CA-GREEDY is

3 =
1

κπ

[
1−

(
R− κπ
R

)r]
OPT = 1

2
· 6.
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Figure 1: Instance illustrating tightness of bound in Theorem 2.
Discussion. We next discuss the significance and the meaning of
the bound in Theorem 2. Notice that when there is just one adver-
tiser, TIC reduces to IC. Even for this simple setting, the bound on
CA-GREEDY is tight. By a simple rearrangement of the terms, we
have:

1

κπ

[
1−

(
R− κπ
R

)r]
≥ 1

κπ

(
1− e

−κπ·
r

R

)
.

Clearly, the cost-agnostic approximation bound improves as
r

R
ap-

proaches 1, achieving the best possible value when r = R. As
a special case, the cost-agnostic approximation further improves
when the independence system (E , C) is a matroid since for a ma-
troid r = R always holds: e.g., consider the standard IM prob-
lem [24] which corresponds to submodular function maximization
subject to a uniform matroid. Here, π(·) = σ(·). Then the approxi-

mation guarantee becomes
1

κπ

(
1− e−κπ

)
, providing a slight im-

provement over the usual (1 − 1/e)-approximation, thanks to the
curvature term κπ .7 This remark is also valid for budgeted influ-
ence maximization [26] with uniform seed costs. For more general
instances of the problem, the guarantee depends on the characteris-
tics of the instance, specifically, the lower and upper ranks and the
curvature. This kind of instance dependent bound is characteristic
of submodular function maximization over an independence sys-
tem [15,25]. Specifically for the RM problem, given its constraints,
the values of r and R are dictated by the values of h payment func-
tions over all feasible allocations. For instance, given our assump-
tion that every advertiser can afford at least one seed, we always
have r ≥ h. The worst-case value r = h corresponds to the case
in which each advertiser i is allocated a single seed node ui whose
payment ρi(ui) exhausts its budget Bi. Similarly for R, without
using any particular assumption on Bi, ∀i ∈ [h], we always have
R ≤ min(n,

∑
i∈[h] bBi/cpe(i)c). Notice also that:

1

κπ

[
1−

(
R− κπ
R

)r]
=

1

κπ

[
1−

(
1− κπ

R

)r]
(2)

≥ 1

κπ

[
1−

(
1− κπ

R

)]
=

1

κπ

κπ
R

=
1

R
(3)

Hence, the worst-case approximation is always bounded by 1/R.

3.2 Cost-Sensitive Greedy Algorithm
The Cost-sensitive greedy algorithm (CS-GREEDY) for the RM

problem is similar to CA-GREEDY. The main difference is that at
each iteration t, CS-GREEDY first finds the (node,advertiser) pair

(u∗, i∗) that maximizes
πi(u | St−1

i )

ρi(u | St−1
i )

, and tests whether the ad-

dition of this pair to the current greedy solution set X t−1
g would

violate any matroid or knapsack independence constraint: if the ad-
dition is feasible, the pair (u∗, i∗) is added to the greedy solution
7Note that κπ ≤ 1 always. Hence, the extent of improvement increases as
the total curvature κπ decreases.

Algorithm 1: CA-GREEDY

Input : G = (V,E), Bi, cpe(i), ~γi, ∀i ∈ [h],
ci(u),∀i ∈ [h], ∀u ∈ V

Output: ~Sg = (S1, · · · , Sh)
1 t← 1, E0 ← E , X 0

g ← ∅
2 S0

i ← ∅, ∀i ∈ [h]

3 while Et−1 6= ∅ do
4 (u∗, i∗)← argmax (u,i)∈Et−1 πi(u | St−1

i )

5 if (X t−1
g ∪ {(u∗, i∗)}) ∈ C then

6 Sti∗ ← St−1
i∗ ∪ {u∗}

7 Stj ← St−1
j , ∀j 6= i∗

8 X tg ← X t−1
g ∪ {(u∗, i∗)}

9 Et ← Et−1 \ {(u∗, i∗)}
10 t← t+ 1

11 else
12 Et−1 ← Et−1 \ {(u∗, i∗)}
13 Si ← St−1

i , ∀i ∈ [h]

14 return ~Sg = (S1, · · · , Sh)

as the t-th (node,advertiser) pair. Otherwise, (u∗, i∗) is removed
from the current ground set Et−1. CS-GREEDY terminates when
there is no (node,advertiser) pair left in the current ground set Et−1.
CS-GREEDY can be obtained by simply replacing Line 4 of Algo-
rithm 1 with

(u∗, i∗)← argmax
(u,i)∈Et−1

πi(u | St−1
i )

ρi(u | St−1
i )

.

Theorem 3. CS-GREEDY achieves an approximation guarantee
of

1− R · ρmax
R · ρmax + (1− max

i∈[h]
κρi) · ρmin

to the optimum where R is the upper rank of (E , C), κρi is the total
curvature of ρi(·), ∀i ∈ [h], ρmax := max

(u,i)∈E
ρi(u) and ρmin :=

min
(u,i)∈E

ρi(u) are respectively the maximum and minimum singleton

payments over all (node, advertiser) pairs.

Proof. We use ~S∗ = (S∗1 , ..., S
∗
h) and ~Sg = (S1, ..., Sh) to denote

the optimal and greedy allocations respectively, and X ∗ and X g
to denote the corresponding solution sets. Specifically, S∗i = {u :
(u, i) ∈ X ∗}, and Si = {u : (u, i) ∈ Xg}. We denote by X tg the
result of the greedy solution after t iterations. LetK = |Xg| denote
the size of the greedy solution. Thus,X g = XKg . By submodularity
and monotonicity:

π( ~S∗) ≤ π( ~Sg)+
∑

(u,i)∈X∗\Xg

πi(u | Si) ≤ π( ~Sg)+
∑

(u,i)∈X∗
πi(u | Si).

At each iteration t, the greedy algorithm first finds the (node,

advertiser) pair (u∗, i∗) ← argmax
(u,i)∈Et−1

πi(u | St−1
i )

ρi(u | St−1
i )

, and tests

whether the addition of this pair to the current greedy solution set
X t−1
g would violate any independence constraint. If (u∗, i∗) is fea-

sible, i.e., if X t−1
g ∪{(u∗, i∗)} ∈ C, then the pair (u∗, i∗) is added

to the greedy solution as the t-th (node, advertiser) pair; otherwise,
(u∗, i∗) is removed from the current ground set Et−1. In what fol-
lows, for clarity, we use the notation (ut, it) to denote the (node,
advertiser) pair that is successfully added by the greedy algorithm
to X t−1

g in iteration t.
Let U t denote the set of (node, advertiser) pairs that the greedy

algorithm tested for possible addition to the greedy solution in
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the first (t + 1) iterations before the addition of the (t + 1)-st
pair (ut+1, it+1) into X tg . Thus, U t \ U t−1 includes the t-th pair
(ut, it) that was successfully added to X t−1

g , as well as all the
pairs that were tested for addition into X tg but failed the indepen-

dence test. Thus, ∀(u, i) ∈ U t \ U t−1, we have
πi(u | Sti )
ρi(u | Sti )

≥

πit+1(ut+1 | Stit+1
)

ρit+1(ut+1 | Stit+1
)

, since they were tested for addition to X tg be-

fore (ut+1, it+1), but failed the independence test. For all (u, i) ∈

U t \ U t−1, we have
πi(u | St−1

i )

ρi(u | St−1
i )

≤
πit(ut | St−1

it
)

ρit(ut | St−1
it

)
. since they

were not good enough to be added to X t−1
g as the t-th pair. Note

that, the greedy algorithm terminates when there is no feasible
pair left in the ground set. Hence after K iterations, EK contains
only the infeasible pairs that violate some matroid or knapsack
constraint. Thus, we have X ∗ =

⋃K
t=1[X

∗ ∩ (U t \ U t−1)]. Let
U∗t := X ∗ ∩ (U t \ U t−1). Notice that X ∗ =

⋃K
t=1 U

∗
t . Then, we

have:

π( ~S∗) ≤ π( ~Sg) +
∑

(u,i)∈X∗

πi(u | Si)

= π( ~Sg) +

K∑
t=1

∑
(u,i)∈U∗

t

πi(u | Si)

≤ π( ~Sg) +
K∑
t=1

∑
(u,i)∈U∗

t

πit(ut | St−1
it

)

ρit(ut | St−1
it

)
· ρi(u | St−1

i ).

The last inequality is due to the fact that ∀(u, i) ∈ U∗t :

πi(u | Si) ≤ πi(u | St−1
i ) ≤

πit(ut | St−1
it

)

ρit(ut | St−1
it

)
· ρi(u | St−1

i ),

where the first inequality follows from submodularity and the sec-
ond follows from the greedy choice of (node, advertiser) pairs.
Continuing, we have:

π( ~S∗) ≤ π( ~Sg) +
K∑
t=1

πit(ut | St−1
it

)

ρit(ut | St−1
it

)

∑
(u,i)∈U∗

t

ρi(u | St−1
i )

≤ π( ~Sg) +
K∑
t=1

πit(ut | St−1
it

)

ρit(ut | St−1
it

)
·
K∑
t=1

∑
(u,i)∈U∗

t

ρi(u)

= π( ~Sg) +

K∑
t=1

πit(ut | St−1
it

)

ρit(ut | St−1
it

)
·
∑

(u,i)∈X∗

ρi(u)

≤ π( ~Sg) + π( ~Sg) ·
R · max

(u,i)∈X∗
ρi(u)

min
t∈[1,K]

ρit(ut | St−1
it

)
(4)

where the last inequality follows from the fact that π( ~Sg) =∑K
t=1 πit(ut | S

t−1
it

) and |X ∗| ≤ R since X ∗ ∈ C. Let
(utm , itm) := argmin

t∈[1,K]

ρit(ut | St−1
it

) and let (umin, imin) :=

argmin
(u,i)∈E

ρi(u | V \ {u}). Being monotone and submodular, each

ρi(·) has the total curvature κρi = 1−minu∈V
ρi(u | V \ {u})

ρi(u)
.

Hence, for ρimin(·), we have:

1− κρimin ≤
ρimin(umin | V \ {umin})

ρimin(umin)
, (5)

where the inequality above follows from the definition of total
curvature. Then, using submodularity and Eq.5, we obtain:

min
t∈[1,K]

ρit(ut | S
t−1
it

) = ρitm (utm | S
tm−1
itm

)

≥ ρitm (utm | V \ {utm})
≥ ρimin(umin | V \ {umin})
≥ (1− κρimin ) · ρimin(umin)
≥ (1−max

i∈[h]
κρi) · min

(u,i)∈E
ρi(u). (6)

Continuing from where we left in Eq.4 and using Eq.6, we have:

π( ~S∗) ≤ π( ~Sg) + π( ~Sg) ·
R · max

(u,i)∈X∗
ρi(u)

min
t∈[1,K]

ρit(ut | St−1
it

)

≤ π( ~Sg) ·

1 +

R · max
(u,i)∈E

ρi(u)

(1−max
i∈[h]

κρi) · min
(u,i)∈E

ρi(u)


= π( ~Sg) ·

1 +
R · ρmax

(1−max
i∈[h]

κρi) · ρmin

 (7)

Rearranging the terms we obtain:

π( ~Sg) ≥ π( ~S∗) ·
(1−max

i∈[h]
κρi) · ρmin

(1−max
i∈[h]

κρi) · ρmin +R · ρmax

= π( ~S∗) ·

1− R · ρmax
R · ρmax + (1−max

i∈[h]
κρi) · ρmin

 .

Discussion. We next discuss the significance and the meaning of
the bounds. Notice that the value of the cost-sensitive approxima-
tion bound improves as the ratio

ρmax
ρmin

decreases, as Eq. 7 shows.

Since ρmax ≤ min
i∈[h]

Bi, we can see that as the value of ρmax de-

creases, intuitively r would increase, for the corresponding maxi-
mal independent set of minimum size could pack more seeds under
the knapsack constraints. Similarly, if the value of ρmin increases,
R would decrease since the corresponding maximal independent
set of maximum size could pack fewer seeds under the knapsack
constraints. Thus, intuitively as

ρmax
ρmin

decreases,
r

R
would in-

crease. When this happens, both cost-agnostic and cost-sensitive
approximations improve.

At one extreme, when κρi = 0, ∀i ∈ [h], i.e., when ρi(·)
is modular ∀i ∈ [h], we have linear knapsack constraints. Thus,
Theorem 2 and Theorem 3 respectively provide cost-agnostic and
cost-sensitive approximation guarantees for the Budgeted Influence
Maximization problem [26,31] for the case of multiple advertisers,
with an additional matroid constraint. At the other extreme, when
max
i∈[h]

κρi = 1, which is the case for totally normalized and saturated

functions (e.g., matroid rank functions), the approximation guaran-
tee of CS-GREEDY is unbounded, i.e., it becomes degenerate. This
is similar to the result of [22] for the SCSK problem whose cost-
sensitive approximation guarantee becomes unbounded. Neverthe-
less, combining the results of the cost-agnostic and cost-sensitive
cases, we can obtain a bounded approximation. On the other hand,
while CA-GREEDY always has a bounded worst-case guarantee,
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our experiments show that CS-GREEDY empirically obtains higher
revenue.8

4. SCALABLE ALGORITHMS
While Algorithms CA-GREEDY and CS-GREEDY provide ap-

proximation guarantees, their efficient implementation is a chal-
lenge, as both of them require a large number of influence spread
estimations: in each iteration t, for each advertiser i and each node
u ∈ V \ St−1

i , the algorithms need to compute πi(u | St−1
i ) and

πi(u | St−1
i )/ρi(u | St−1

i ) respectively.
Computing the exact influence spread σ(S) of a given seed set S

under the IC model is #P-hard [13], and this hardness carries over
to the TIC model. In recent years, significant advances have been
made in efficiently estimating σ(S). A natural question is whether
they can be adapted to our setting, an issue we address next.

4.1 Scalable Influence Spread Estimation
Tang et al. [34] proposed a near-linear time randomized algo-

rithm for influence maximization, called Two-phase Influence Max-
imization (TIM), building on the notion of “reverse-reachable”
(RR) sets proposed by Borgs et al. [10]. Random RR-sets are crit-
ical in the efficient estimation of influence spread. Tang et al. [33]
subsequently proposed an algorithm called IMM that improves
upon TIM by tightening the lower bound on the number of ran-
dom RR-sets required to estimate influence with high probability.
The difference between TIM and IMM is that the lower bound used
by TIM ensures that the number of random RR-sets it uses is suf-
ficient to estimate the spread of any seed set of a given size s. By
contrast, IMM uses a lower bound that is tailored for the seed that
is greedily selected by the algorithm. Nguyen et al. [32], adapting
ideas from TIM [34], and the sequential sampling design proposed
by Dagum et al. [16], proposed an algorithm called SSA that pro-
vides significant run-time improvement over TIM and IMM.

These algorithms are designed for the basic influence maximiza-
tion problem and hence require knowing the number of seeds as
input. In our problem, the number of seeds is not fixed, but is dy-
namic and depends on the budget and partition matroid constraints.
Thus a direct application of these algorithms is not possible.

Aslay et al. [4] recently proposed a technique for efficient seed
selection for IM when the number of seeds required is not predeter-
mined but can change dynamically. However, their technique can-
not handle the presence of seed user incentives which, in our set-
ting, directly affects the number of seeds required to solve the RM
problem. In this section, we derive inspiration from their technique.
First, though we note that for CA-GREEDY, in each iteration, for
each advertiser, we need to find a feasible node that yields the max-
imum marginal gain in revenue, and hence the maximum marginal
spread. By contrast, in CS-GREEDY, we need to find the node that
yields the maximum rate of marginal revenue per marginal gain in
payment, i.e., πi(u | St−1

i )/ρi(u | St−1
i ).

To find such node uti we must compute σi(v|St−1
i ), ∀v : (v, i) ∈

Et−1: notice that node uti might even correspond to the node that
has the minimum marginal gain in influence spread for iteration t.
Thus, any scalable realization of CS-GREEDY should be capable of
working as an influence spread oracle that can efficiently compute
πi(u | St−1

i )/ρi(u | St−1
i ) for all u ∈ {v : (v, i) ∈ Et−1}.

Among the state-of-the-art IM algorithms [32–34], only
TIM [34] can be adapted to serve as an influence oracle. For a
given set size s, the derivation of the number of random RR-sets

8It remains open whether the approximation bound for CS-GREEDY is
tight. Interestingly, on the instance (Fig. 1) used in the proof of Theorem2,
CS-GREEDY obtains the optimal solution T = {a, c}.

that TIM uses is done such that the influence spread of any set of
at most s nodes can be accurately estimated. On the other hand,
even though IMM [33] and SSA [32] provide significant run-time
improvements over TIM, they inherently cannot perform this es-
timation task accurately: the sizes of the random RR-sets sample
that these algorithms use are tuned just for accurately estimating
the influence spread of only the approximate greedy solutions; the
sample sizes used are inadequate for estimating the spread of ar-
bitrary seed sets of a given size. Thus, we choose to extend TIM
to devise scalable realizations of CA-GREEDY and CS-GREEDY,
namely, TI-CARM and TI-CSRM. Next, we describe how to ex-
tend the ideas of RR-sets sampling and TIM’s sample size determi-
nation technique to obtain scalable approximation algorithms for
the RM problem: TI-CARM and TI-CSRM.

4.2 Scalable Revenue Maximization
For the scalable estimation of influence spread, in this sec-

tion we devise TI-CARM and TI-CSRM, scalable realizations of
CA-GREEDY and CS-GREEDY, based on the notion of Reverse-
Reachable sets [10] and adapt the sample size determination pro-
cedure employed by TIM [34] to achieve a certain estimation accu-
racy with high confidence.

Reverse-Reachable (RR) sets [10]. Under the IC model, a ran-
dom RR-setR fromG is generated as follows. First, for every edge
(u, v) ∈ E, remove it from G w.p. 1 − pu,v: this generates a pos-
sible world (deterministic graph) X . Second, pick a target node w
uniformly at random from V . Then, R consists of the nodes that
can reach w in X . For a sufficient sample R of random RR-sets,
the fraction FR(S) of R covered by S is an unbiased estimator of
σ(S), i.e., σ(S) = E[|V | · FR(S)].

Sample Size Determination [34]. Let S ⊆ V be any set of nodes,
and R be a collection of random RR-sets. Given any seed set size
s and ε > 0, define L(s, ε) to be:

L(s, ε) = (8 + 2ε)n ·
` logn+ log

(
n
s

)
+ log 2

OPTs · ε2
, (8)

where ` > 0, ε > 0. Let θ be a number no less than L(s, ε). Then
for any seed set S with |S| ≤ s, the following inequality holds w.p.
at least 1− n−`/

(
n
s

)
:

||V | · FR(S)− σ(S)| < ε

2
·OPTs. (9)

The derivation of the sufficient sample size, depicted in Eq. 8,
requires the number of seeds s as input, which is not available for
RM problem. From the advertisers’ budgets, there is no obvious
way to determine the number of seeds. This poses a challenge as
the required number of RR-sets (θ) depends on s. To circumvent
this difficulty, we use a “latent seed set size estimation” procedure
which first makes an initial guess at s, and then iteratively revises
the estimated value, until no more seeds are needed, while concur-
rently selecting seeds and allocating them to advertisers.

Latent Seed Set Size Estimation. The estimation of the latent seed
set size required by TI-CARM and TI-CSRM can be obtained as
follows: for ease of exposition, let us first consider a single ad-
vertiser i. Let Bi be the budget of advertiser i and let si be the
true number of seeds required to maximize the cost-agnostic (cost-
sensitive) revenue for advertiser i. We do not know si and we es-
timate it in successive iterations as s̃ti . Thus, we start with an esti-
mated value for si, denoted s̃i1, and use it to obtain a corresponding
θ1i . If θti > θt−1

i , we will need to sample an additional (θti − θt−1
i )

RR-sets, and use all RR-sets sampled up to this iteration to select
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Algorithm 2: TI-CSRM
Input : G = (V,E), Bi, cpe(i), ~γi, ∀i ∈ [h],

ci(u), ∀i ∈ [h], ∀u ∈ V
Output: ~Sg = (S1, · · · , Sh)

1 foreach j = 1, 2, . . . , h do
2 Sj ← ∅; Qj ← ∅; // a priority queue
3 sj ← 1; θj ← L(sj , ε); Rj ← Sample(G, γj , θj);
4 assigned[u]← false,∀u ∈ V ;

5 while true do
6 foreach j = 1, 2, . . . , h do
7 (vj , covj(vj))← SelectBestCSNode(Rj) (Alg 5)

FRj (vj)← covj(vj)/θj ;
8 πj(Sj ∪ {vj})← πj(Sj) + cpe(j) · n · FRj (vj);

9 i← argmax h
j=1

πj(vj |Sj)
ρj(vj |Sj)

subject to:

ρj(Sj ∪ {vj}) ≤ Bj ∧ assigned[vj ] = false ;
10 if i 6= NULL then
11 Si ← Si ∪ {vi};
12 assigned[vi] = true;
13 Qi.insert(vi, covi(vi));
14 Ri ← Ri \ {R | vi ∈ R ∧ R ∈ Ri};
15 //remove RR-sets that are covered;
16 else return //all advertisers exhausted; ;
17 if |Si| = si then
18 si ← si+b(Bi−ρi(Si))/(cmaxi +cpe(i)·n·FmaxRi

)c;
19 Ri ← Ri ∪ Sample(G, γi,max{0, L(si, ε)− θi};
20 θi ← max{L(si, ε), θi};
21 πi(Si)← UpdateEstimates(Ri, θi, Si, Qi);

//revise estimates to reflect newly
added RR-sets;

22 ρi(Si)← πi(Si) + ci(Si);

Algorithm 3: UpdateEstimates(Ri, θi, Si, Qi)
Output: πi(Si)

1 πi(Si)← 0 ;
2 for j = 0, . . . , |Si| − 1 do
3 (v, covi(v))← Qi[j] ;
4 cov′i(v)← |{R | v ∈ R,R ∈ Ri}|;
5 Qi.insert(v, covi(v) + cov′i(v));
6 πi(Si)← cpe(i) · n · ((covi(v) + cov′i(v))/θi); //update

coverage of existing seeds w.r.t. new
RR-sets added to collection.

Algorithm 4: SelectBestCANode(Rj)
1 u← argmax v∈V |{R | v ∈ R ∧ R ∈ Rj}|

subject to: assigned[v] = false;
2 covj(u)← |{R | u ∈ R ∧ R ∈ Rj}|;
3 return (u, covj(u))

(s̃ti − s̃t−1
i ) additional seeds. After adding those seeds, if the cur-

rent assigned payment ρi(Si) of i is still less than Bi, more seeds
can be assigned to advertiser i. Thus, we will need another iteration
and we further revise our estimation of si. The new value, s̃t+1

i , is
obtained as follows:

s̃t+1
i ← s̃ti +

⌊
Bi − ρi(Si)

cmaxi + cpe(i) · n · FmaxRi

⌋
(10)

where cmaxi := max
v∈V

ci(v) is the maximum seed user incentive

cost for advertiser i and FmaxRi
:= max

u∈V \Si
FRi(u). This ensures

we do not overestimate as future seeds have diminishing marginal
gains, thanks to submodularity, and incentives bounded by cmaxi .

While the core logic of TI-CSRM (resp. TI-CARM) is still
based on the greedy seed selection outlined for CS-GREEDY (resp.
CA-GREEDY), TI-CSRM (resp. TI-CARM) uses random RR-
sets samples for the scalable estimation of influence spread. Since

Algorithm 5: SelectBestCSNode(Rj)
1 u← argmax v∈V |{R | v ∈ R ∧ R ∈ Rj}|/cj(v)

subject to: assigned[v] = false;
2 covj(u)← |{R | u ∈ R ∧ R ∈ Rj}|;
3 return (u, covj(u))

TI-CARM and TI-CSRM are very similar, differing only in their
greedy seed selection criteria, we only provide the pseudocode
of TI-CSRM (Algorithm 2). Algorithm TI-CSRM works as fol-
lows. For every advertiser j, we initially set the latent seed set size
sj = 1 (a conservative but safe estimate) and create a sample Rj

of θj = L(sj , ε) RR-sets (lines 1 – 4). In the main loop, we fol-
low the greedy selection logic of CS-GREEDY. That is, in each
round, we first invoke Algorithm 5 to find an unassigned candi-
date node vj that has the largest coverage-to-cost ratio 9 for each
advertiser j whose budget is not yet exhausted. Then, we select,
among these (node,advertiser) pairs, the feasible pair (vi, i) that
has the largest rate of marginal gain in revenue per marginal gain
in payment and add it to the solution set, and remove from Ri the
RR-sets that are covered by node vi (lines 9 – 14). While doing
so, whenever |Si| = si, we update the latent seed set size si us-
ing Eq. 10 and sample max{0, L(si, ε) − θi} additional RR-sets
into Ri. Note that, after adding additional RR-sets, we update the
influence spread estimation of current Si w.r.t. the updated sample
Ri by invoking Algorithm 3 to ensure that future marginal gain es-
timations are accurate (line 21). The main loop executes until the
budget of each advertiser is exhausted or no more eligible seed can
be found.

For TI-CARM, there are only two differences. First, line 7 of
Algorithm 2 is replaced by

(vj , covj(vj))← SelectBestCANode(Rj) (Algorithm 4).

Second, line 9 of Algorithm 2 is replaced by

i← h
argmax

j=1
πj(vj |Sj) subject to: ρj(Sj ∪ {vj}) ≤ Bj

∧ assigned[vj ] = false.

Deterioration of approximation guarantees. Since TI-CARM
and TI-CSRM use random RR-sets for the accurate estimation of
σi(·), ∀i ∈ [h], their approximation guarantees slightly deteriorate
from the ones of CA-GREEDY and CS-GREEDY (see Theorems
2 and 3). Such deterioration is common to all the state-of-the-art
IM algorithms [10, 32–34] that similarly use random RR-sets for
influence spread estimation. Our next result provides the deteri-
orated approximation guarantees for TI-CARM and TI-CSRM.
The proof, omitted for brevity, appears in [1].

Theorem 4. TI-CARM (resp. TI-CSRM) achieves an approxi-
mation that satisfies

π( ~̃S) ≥ π( ~S∗) · β −
∑

i∈[h]
cpe(i) · ε ·OPTsi .

where ~S∗ is the optimal allocation, ~̃S = (S̃1, · · · , S̃h) is the ap-
proximate greedy solution that TI-CARM (resp. TI-CSRM) re-
turns, and β is the approximation guarantee given in Theorem 2
(resp. Theorem 3).

9Following the definition of ρj(·) as a function ofπj(·), the node with the largest rate
of marginal gain in revenue per marginal gain in payment for a given ad j corresponds
to the node u with the largest coverage-to-cost ratio for ad j.
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Table 1: Statistics of network datasets.
FLIXSTER EPINIONS DBLP LIVEJOURNAL

#nodes 30K 76K 317K 4.8M
#edges 425K 509K 1.05M 69M

type directed directed undirected directed

Table 2: Advertiser budgets and cost-per-engagement values.
Budgets CPEs

Dataset mean max min mean max min
FLIXSTER 10.1K 20K 6K 1.5 2 1
EPINIONS 8.5K 12K 6K 1.5 2 1

5. EXPERIMENTS
We conducted extensive experiments to evaluate (i) the quality

of our proposed algorithms, measured by the revenue achieved vis
à vis the incentives paid to seed users, and (ii) the efficiency and
scalability of the algorithms w.r.t. advertiser budgets, which indi-
rectly control the number of seeds required, and w.r.t. the number
of advertisers, which effectively controls the size of the graph. All
experiments were run on a 64-bit OpenSuSE Linux server with In-
tel Xeon 2.90GHz CPU and 264GB memory. As a preview, our
largest configuration is LIVEJOURNAL with 20 ads, which effec-
tively yields a graph with 69M × 20 ≈ 1.4B edges; this is compa-
rable with [34], whose largest dataset has 1.5B edges.

Data. Our experiments were conducted on four real-world social
networks, whose basic statistics are summarized in Table 1. We
used FLIXSTER and EPINIONS for quality experiments and DBLP
and LIVEJOURNAL for scalability experiments. FLIXSTER is from
a social movie-rating website (http://www.flixster.com/),
which contains movie ratings by users along with timestamps. We
use the topic-aware influence probabilities and the item-specific
topic distributions provided by Barbieri et al. [8], who learned the
probabilities using MLE for the TIC model, with L = 10 latent
topics. We set the default number of advertisers h = 10 and used
five of the learned topic distributions from the provided FLIXSTER
dataset, in such a way that every two ads are in pure competition,
i.e., have the same topic distribution, with probability 0.91 in one
randomly selected latent topic, and 0.01 in all others. This way,
among h = 10 ads, every two ads are in pure competition with each
other while having a completely different topic distribution than
the rest, representing a diverse marketplace of ads. EPINIONS is a
who-trusts-whom network taken from a consumer review website
(http://www.epinions.com/). Likewise, we set h = 10 and
use the Weighted-Cascade model [24], where piu,v = 1/|N in(v)|
for all ads i. Notice that this corresponds to L = 1 topic for EPIN-
IONS dataset, hence, all the ads are in pure competition.

For scalability experiments, we used two large networks10

DBLP and LIVEJOURNAL. DBLP is a co-authorship graph (undi-
rected) where nodes represent authors and there is an edge between
two nodes if they have co-authored a paper indexed by DBLP. We
direct all edges in both directions. LIVEJOURNAL is an online blog-
ging site where users can declare which other users are their friends.
In all datasets, advertiser budgets and CPEs were chosen in such a
way that the total number of seeds required for all ads to meet their
budgets is less than n. This ensures that no ad is assigned an empty
seed set. For lack of space, instead of enumerating all CPEs and
budgets, we give a statistical summary in Table 2. The same infor-
mation for DBLP and LIVEJOURNAL in provided later.

Seed incentive models. In order to understand how the algorithms
perform w.r.t. different seed user incentive assignments, we used

10Available at http://snap.stanford.edu/.
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Figure 2: Total revenue as a function of α, on FLIXSTER (left)
and EPINIONS (right), for linear (top), constant (middle), and
sublinear (bottom) incentive models.

three different methods11 that directly control the range between
the minimum and maximum singleton payments:
• Linear: proportional to the node’s ad-specific singleton influ-

ence spread, i.e., ci(u) = α · σi({u}), ∀u ∈ V, i ∈ [h],
• Constant: proportional to the average ad-specific singleton in-

fluence spread, i.e., ci(u) = α ·
∑
v∈V σi({v})/n,∀u ∈

V, i ∈ [h],
• Sublinear: proportional to the logarithm of node’s ad-

specific singleton influence spread, i.e., ci(u) = α ·
log(σi({u})),∀u ∈ V, i ∈ [h],

where α > 0 denotes a fixed amount in dollar cents set by the host,
which controls how expensive the seed user incentives are.

On FLIXSTER and EPINIONS we used Monte Carlo simulations
(5K runs12) to compute σi({u}). On DBLP and LIVEJOURNAL,
we use the out-degree of the nodes as a proxy to σi({u}) due to the
prohibitive computational cost of Monte Carlo simulations.

Algorithms. We compared four algorithms in total. Wherever ap-
plicable, we set the parameter ε to be 0.1 for quality experiments
on FLIXSTER and EPINIONS, and 0.3 for scalability experiments
on DBLP and LIVEJOURNAL, following the settings used in [34].
• TI-CSRM (Algorithm 2) that uses Algorithm 5 to find

the best (cost-sensitive) candidate node for each advertiser
(line 7), and selects among those the (node, advertiser) pair
that provides the maximum rate of marginal gain in revenue
per marginal gain in advertiser’s payment (line 9).
• TI-CARM: Cost-agnostic version of Algorithm 2 that uses

Algorithm 4 to find the best (cost-agnostic) candidate node
for each advertiser (replacing line 7), and selects among those

11We also tested superlinear incentives and have omitted them from the paper due to
lack of space. They are included in the full version of the paper [1].

12We didn’t observe any significant change in the influence spread estimation beyond
5K runs for both datasets.
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the (node, advertiser) pair with the maximum increase in the
revenue of the host (replacing line 9).
• PageRank-GR: A baseline that selects a candidate node for

each advertiser based on the ad-specific PageRank ordering
of the nodes (replacing line 7), and selects among those the
(node, advertiser) pair that provides the maximum increase in
the revenue of the host (replacing line 9). Since the selection
is made greedily, we refer to this algorithm as PageRank-GR.
• PageRank-RR: Another PageRank-based baseline that selects

a candidate node for each advertiser based on the ad-specific
PageRank ordering of the nodes (replacing line 7), and uses a
Round-Robin (RR in short) ordering of the advertisers for the
assignment of their candidates into their seed sets.

Revenue vs. α. We first compare the total revenue achieved by the
four algorithms for three different seed incentive models and with
varying levels of α (Figure 2). Recall that by definition, a smaller
α value indicates lower seed costs for all users. Across all differ-
ent values of α and all seed incentive models, it can be seen that
TI-CSRM consistently achieves the highest revenue, often by a
large margin, which increases as α grows. For instance, on EPIN-
IONS, when α = 0.5, TI-CSRM achieved 15.3%, 24.3%, 27.6%
more revenue than TI-CARM, PageRank-RR, and PageRank-GR
respectively on the linear incentive model. Notice that for the con-
stant incentive model, the advantage of being cost-sensitive is nul-
lified, hence TI-CARM and TI-CSRM end up performing iden-
tically as expected. Figure 3 reports the cost-effectiveness of the
algorithms. Across all different values of α and all incentive mod-
els, it can be seen that TI-CSRM consistently achieves the lowest
total seed costs. This is as expected, since its seed allocation strat-
egy takes into account revenue obtained per seed user cost.

Notice that in one of the test cases, i.e., linear seed incentives
on FLIXSTER, TI-CARM has slightly worse performance than the
two PageRank-based heuristics (e.g., about 4–5% drop in revenue).
This can be explained by the fact that, while TI-CARM picks seeds
of high spreading potential (i.e., highest marginal revenue) without
considering costs, the two PageRank-based heuristics may instead
select seeds of low quality (i.e., low marginal revenue), but also of
very low cost. This might create a situation in which the PageRank-
based heuristics may select many more seeds, but with a smaller
total seed cost than TI-CARM, hence, allowing the budget to be
spent more on engagements that translate to higher revenue, mim-
icking the cost-sensitive behavior. On the other hand TI-CSRM
always spends the given budget judiciously by selecting seeds with
the best rate of marginal revenue per cost. Thus, it is able to use
the budget more intelligently, which explains its superiority in all
test cases. This hypothesis is confirmed by our experiments: the av-
erage values of marginal gain in revenue, seed user cost, and rate
of marginal gain per cost obtained by PageRank-GR were respec-
tively 2.67, 0.44, and 7.48, while the corresponding numbers for
TI-CARM were 13.47, 2.7, and 4.89, and those for TI-CSRM
were 1.28, 0.12, and 9.95 respectively. While the two PageRank-
based heuristics could obtain higher revenue on FLIXSTER with lin-
ear seed incentives, they were greatly outperformed by TI-CARM,
hence TI-CSRM, in the other incentive models, showing that such
heuristics are not robust to different seed incentive models, and can
only get “lucky” to the extent they can mimic the cost-sensitive
behavior.

Finally, as shown in Figure 2, the extent to which TI-CSRM
outperforms TI-CARM on both datasets is higher with linear in-
centives than with sublinear incentives. For instance, on FLIXSTER,
TI-CSRM achieved 45% more revenue than TI-CARM in the lin-
ear model, while this improvement drops to 20% in the sublinear
model. To understand how the seeds’ expensiveness levels affect
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Figure 3: Total seeding cost as a function of α, on FLIXSTER
(left) and EPINIONS (right), for linear (top), constant (middle),
and sublinear (bottom) cost models.
this improvement, we checked the values of singleton payments
and found that the maximum singleton payment (ρmax) is 1347
times more expensive than the minimum singleton payment (ρmin)
in the linear model, while it is 725 times more expensive in the
sublinear model that has lower improvement rate. This relation is
expected as higher variety in the expensiveness levels of the seeds
require to use the budget more cleverly, hence, with more cost-
effective strategies. Notice that this finding is also in line with our
discussion following the proof of Theorem 3.

Revenue & running time vs. window size. Hereafter all pre-
sented results will be w.r.t. linear seed incentives, unless otherwise
noted. As stated before in Section 4, TI-CSRM needs to compute
σi(v|St−1

i ), ∀v : (v, i) ∈ Et−1 while uti might even correspond
to the node that has the minimum marginal gain in influence spread
for iteration t. To have a closer look at how the revenue evolves
when the seed selection criterion changes from cost-agnostic to
cost-sensitive, we restrict TI-CSRM to find the best cost-sensitive
candidate nodes for each advertiser (line 7) among only thew nodes
that have the highest marginal gain in revenue at each iteration.
We refer to w as the “window size”. Notice that TI-CARM corre-
sponds to the case when w = 1, i.e., in this case, TI-CSRM in-
spects only the node with the maximum marginal gain in revenue.

We report the results of TI-CSRM with various window sizes
in Fig. 4, which depicts the revenue vs. running time tradeoff.
Each figure corresponds to one dataset and one particular α value.
The X-axis is in log-scale. As expected, the maximum revenue is
achieved when TI-CSRM implements the full windoww = n, i.e.,
when all the (feasible) nodes are inspected at each iteration for each
advertiser. The running time can go up quickly as the window size
increases to n. This is expected as the seed nodes selected do not
necessarily provide high marginal gain in revenue, thus, TI-CSRM
needs to use higher number of seed nodes, hence, much more RR-
sets to achieve accuracy, compared to TI-CARM.
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Figure 4: Revenue vs running time tradeoff on FLIXSTER and EPINIONS for two different value of α.

Table 3: Memory usage (GB).
DBLP h = 1 5 10 15 20

TI-CARM 1.6 7.5 14.9 22.4 29.8
TI-CSRM (5000) 1.6 7.6 15.1 22.7 30.2
LIVEJOURNAL h = 1 5 10 15 20

TI-CARM 2.5 12.1 25.3 39.4 54.4
TI-CSRM (5000) 3.4 15.9 31.2 49.1 67.5

Scalability. We tested the scalability of TI-CARM and TI-CSRM
on two larger graphs, DBLP and LIVEJOURNAL. In all scalabil-
ity experiments, we use a window size of w = 5000 nodes for
TI-CSRM due to its good revenue vs running time trade-off. For
simplicity, all CPEs were set to 1. The influence probability on
each edge (u, v) ∈ E was computed using the Weighted-Cascade
model [24], where piu,v = 1/|N in(v)| for all ads i. We set α = 0.2
and ε = 0.3. This setting is well-suited for testing scalability as it
simulates a fully competitive case: all advertisers compete for the
same set of influential users (due to all ads having the same distri-
bution over the topics), and hence it will “stress-test” the algorithms
by prolonging the seed selection process.

Figure 5(a) and 5(b) depict the running time of TI-CARM and
TI-CSRM as the number of advertisers goes up from 1 to 20, while
the budget is fixed (10K for DBLP and 100K for LIVEJOURNAL).
As can be seen, the running time increases mostly in a linear man-
ner, and TI-CSRM is only slightly slower than TI-CARM. Fig-
ure 5(c) and 5(d) depict the running time of TI-CARM and TI-
CSRM as the budget increases, while the number of advertisers is
fixed at h = 5 . We can also see that the increasing trend is mostly
linear for TI-CSRM, while TI-CARM’s time goes in a flatter fash-
ion. All in all, both algorithms exhibit decent scalability.

Table 3 shows the memory usage of TI-CARM and TI-CSRM
when h increases. TI-CSRM in general needs to use higher mem-
ory than TI-CARM due to its requirement to generate more RR
sets that ensures accuracy for using higher seed set size than TI-
CARM. On DBLP, TI-CARM and TI-CSRM respectively uses
a total of 4676 and 7276 seed nodes for h = 20. On LIVEJOURNAL
TI-CSRM used typically between 20% to 40% more memory than
TI-CARM: TI-CARM and TI-CSRM respectively uses a total of
4327 and 6123 seed nodes for h = 20.

6. RELATED WORK
Computational advertising. Considerable work has been done
in sponsored search and display ads [18–21, 28, 30]. In sponsored
search, revenue maximization is formalized as the well-known Ad-
words problem [29]. Given a set of keywords and bidders with their
daily budgets and bids for each keyword, words need to be assigned
to bidders upon arrival, to maximize the revenue for the day, while
respecting bidder budgets. This can be solved with a competitive
ratio of (1− 1/e) [29].
Social advertising. In comparison with computational advertis-
ing, social advertising is in its infancy. Recent efforts, including

Tucker [35] and Bakshy et al. [5], have shown, by means of field
studies on sponsored posts in Facebook’s News Feed, the impor-
tance of taking social influence into account when developing so-
cial advertising strategies. However, literature on exploiting social
influence for social advertising is rather limited. Bao and Chang
have proposed AdHeat [7], a social ad model considering social
influence in addition to relevance for matching ads to users. Their
experiments show that AdHeat significantly outperforms the rele-
vance model on click-through-rate (CTR). Wang et al. [36] propose
a new model for learning relevance and apply it for selecting rele-
vant ads for Facebook users. Neither of these works studies viral
ad propagation or revenue maximization.

Chalermsook et al. [12] study revenue maximization for the host,
when dealing with multiple advertisers. In their setting, each ad-
vertiser pays the host an amount for each product adoption, up to
a budget. In addition, each advertiser also specifies the maximum
size of its seed set. This additional constraint considerably simpli-
fies the problem compared to our setting, where the absence of a
prespecified seed set size is a significant challenge.

Aslay et al. [4] study regret minimization for a host supporting
campaigns from multiple advertisers. Here, regret is the difference
between the monetary budget of an advertiser and the value of ex-
pected number of engagements achieved by the campaign, based on
the CPE pricing model. They share with us the pricing model and
advertiser budget. However, they do not consider seed user costs.
Besides they attack a very different optimization problem and their
algorithms and results do not carry over to our setting.

Abbassi et al. [2] study a cost-per-mille (CPM) model in display
advertising. The host enters into a contract with each advertiser to
show their ad to a fixed number of users, for an agreed upon CPM
amount per thousand impressions. The problem is that of selecting
the sequence of users to show the ads to, in order to maximize the
expected number of clicks. This is a substantially different problem
which they show is APX-hard and propose heuristic solutions.

Alon et al. [3] study budget allocation among channels and influ-
ential customers, with the intuition that a channel assigned a higher
budget will make more attempts at influencing customers. They do
not take into account viral propagation. Their main result is that for
some influence models the budget allocation problem can be ap-
proximated, while for others it is inapproximable. Notably, none of
these previous works studies incentivized social advertising where
the seed users are paid monetary incentives.

Viral marketing. Kempe et al. [24] formalize the influence max-
imization problem which requires to select k seed nodes, where k
is a cardinality budget, such that the expected spread of influence
from the selected seeds is maximized. Of particular note are the re-
cent advances (already reviewed in Section 4) that have been made
in designing scalable approximation algorithms [10, 14, 32–34] for
this hard problem. Numerous variants of the influence maximiza-
tion problem have been studied over the years, including compe-
tition [9, 11], host perspective [4, 27], non-uniform cost model for
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Figure 5: Running time of TI-CARM and TI-CSRM on DBLP and LIVEJOURNAL

seed users [26, 31], and fractional seed selection [17]. However, to
our knowledge, there has been no previous work that addresses in-
centivized social advertising, while leveraging viral propagation of
social ads and handling advertiser budgets.

7. CONCLUSIONS
In this paper, we initiate the investigation of incentivized social

advertising, by formalizing the fundamental problem of revenue
maximization from the host perspective. In our formulation, incen-
tives paid to the seed users are determined by their demonstrated
past influence in the topic of the specific ad. We show that, keep-
ing all important factors – topical relevance of ads, their propensity
for social propagation, the topical influence of users, seed users’
incentives, and advertiser budgets – in consideration, the problem
of revenue maximization in incentivized social advertising is NP-
hard and it corresponds to the problem of monotone submodular
function maximization subject to a partition matroid constraint on
the ads-to-seeds allocation and multiple submodular knapsack con-
straints on the advertiser budgets. For this problem, we devise two
natural greedy algorithms that differ in their sensitivity to seed
user incentive costs, provide formal approximation guarantees, and
achieve scalability by adapting to our context recent advances made
in scalable estimation of expected influence spread.

Our work takes an important first step toward enriching the
framework of incentivized social advertising with powerful ideas
from viral marketing, while making the latter more applicable to
real-world online marketing. It opens up several interesting avenues
for further research: (i) it remains open whether our winning algo-
rithm TI-CSRM can be made more memory efficient hence more
scalable; (ii) it remains open whether the approximation bound for
CS-GREEDY provided in Theorem 3 is tight; (iii) it is interesting
to integrate hard competition constraints into the influence propa-
gation process; (iv) it is worth studying our problem in an online
adaptive setting where the partial results of the campaign can be
taken into account while deciding the next moves. All these direc-
tions offer a wealth of possibilities for future work.
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