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ABSTRACT
Missing values are common in data analysis and present a
usability challenge. Users are forced to pick between removing
tuples withmissing values or creating a cleaned version of their
data by applying a relatively expensive imputation strategy.
Our system, ImputeDB, incorporates imputation into a cost-
based query optimizer, performing necessary imputations on-
the-fly for eachquery. This allows users to immediately explore
their data, while the system picks the optimal placement of
imputation operations. We evaluate this approach on three
real-world survey-based datasets. Our experiments show that
our query plans execute between 10 and 140 times faster than
first imputing the base tables. Furthermore, we show that
the query results from on-the-fly imputation differ from the
traditional base-table imputation approach by 0–8%. Finally,
we show that while dropping tuples with missing values that
fail query constraints discards 6–78% of the data, on-the-fly
imputation loses only 0–21%.

1. INTRODUCTION
Many databases have large numbers of missing or NULL

values; these can arise for a variety of reasons, including miss-
ing source data, missing columns during data integration, de-
normalized databases, or outlier detection and cleaning [15].
Such NULL values can lead to incorrect or ill-defined query re-
sults [23], and as such removing these values from data before
processing is often desirable.

One common approach is to manually replace missing values
using a statistical or predictive model based on other values
in the table and record. This process is called imputation. In
this paper, we introduce new methods and theory to selec-
tively apply imputation to a subset of records, dynamically,
during query execution. We instantiate these ideas in a new
system, ImputeDB1. The key insight behind ImputeDB is that
imputation only needs to be performed on the data relevant
to a particular query and that this subset is generally much
⇤Author contributed equally to this paper.
1https://github.com/mitdbg/imputedb
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smaller than the entire database. While traditional imputation
methods work over the entire data set and replace all missing
values, running a sophisticated imputation algorithm over a
large data set can be very expensive: our experiments show
that even a relatively simple decision tree algorithm takes just
under 6 hours to train and run on a 600K row database.

A simpler approach might drop all rows with any missing
values, which can not only introduce bias into the results, but
also result in discarding much of the data. In contrast to exist-
ing systems [2, 4], ImputeDB avoids imputing over the entire
data set. Specifically, ImputeDB carefully plans the placement
of imputation or row-drop operations inside the query plan,
resulting in a significant speedup in query execution while
reducing the number of dropped rows. Unlike previous work,
the focus of our work is not on the imputation algorithms
themselves (we can employ almost any such algorithm), but
rather on placing imputation operations optimally in query
plans. Specifically, our optimization algorithms generate the
Pareto-optimal trade-offs between imputation cost for result
quality, and allow the analyst to specify their desired plan
from this frontier.

Our approach enables an exploratory analysis workflow in
which the analyst can issue standard SQL queries over a data
set, even if that data has missing values. Using dynamic impu-
tation, these queries execute between 10 and 140 times faster
than the traditional approach of first imputing all missing
values and then running queries. Empirical results obtained
using dynamic imputation on real-world datasets show errors
within 0 to 8 percent of the traditional approach (see Section 5
for more details). Alternately, configuring dynamic imputa-
tion to prioritize query runtime yields further speedups of 450
to 1400 times, with errors of 0 to 20 percent.

1.1 Contributions
ImputeDB is designed to enable early data exploration,

by allowing analysts to run their queries without an explicit
base-table imputation step. To do so, it leverages a number of
contributions to minimize imputation time while producing
comparable results to traditional approaches.

These contributions include:

• Relational algebra extended with imputation: We
extend the standard relational algebra with two new op-
erators to represent imputation operations: Impute (µ)
and Drop (�). The Impute operation fills in missing data
values using any statistical imputation technique, such as
chained-equation decision trees [4]. The Drop operation
simply drops tuples which contain NULL values.
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SELECT income , AVG(white_blood_cell_ct)
FROM demo , exams , labs
WHERE gender = 2 AND

weight >= 120 AND
demo.id = exams.id AND
exams.id = labs.id

GROUP BY demo.income

Figure 1: A typical public health query on CDC’s NHANES
data.

• Model of imputation quality and cost: We extend
the traditional cost model for query plans to incorporate
a measure of the quality of the imputations performed.
We use the cost model to abstract over the imputation
algorithm used. To add an imputation technique, it is
sufficient to characterize it with two functions: one to
describe its running time and one to describe the quality
of its results.

• Query planning with imputation: We present the
first query planning algorithm to jointly optimize for run-
ning time and the quality of the imputed results. It does
so by maintaining multiple sets of Pareto-optimal plans
according to the cost model. By deferring selection of the
final plan, we make it possible for the user to trade off
running time and result quality.

2. MOTIVATING EXAMPLE
An epidemiologist at the CDC is tasked with an exploratory

analysis of data collected from individuals across a battery of
exams. In particular, she is interested in exploring the rela-
tionship between income and the immune system, controlling
for factors such as weight and gender.

The epidemiologist is excited to get a quick and accurate
view into the data. However, the data has been collected
through CDC surveys (see Section 5.1), and there is a sig-
nificant amount of missing data across all relevant attributes.

Before she can perform her queries, the epidemiologist must
develop a strategy for handling missing values. She currently
has two options: (1) she could drop records that have missing
values in relevant fields, (2) she could use a traditional imputa-
tion package on her entire dataset. Both of these approaches
have significant drawbacks. For the query pictured in Figure 1,
(1) drops 1492 potentially relevant tuples, while from her ex-
perience, (2) has proven to take too long. The epidemiologist
needs a more complete picture of the data, so (1) is insufficient,
and for this quick exploratory analysis, (2) is infeasible.

She can run her queries immediately and finish her report if
she uses ImputeDB, which takes standard SQL and automati-
cally performs the imputations necessary to fill in the missing
data. An example query is shown in Figure 1.

2.1 Planning with ImputeDB
The search space contains plans with varying performance

and imputation quality characteristics, as a product of the
multiple possible locations for imputation. The user can influ-
ence the final plan selected by ImputeDB through a trade-off
parameter ↵2 [0,1], where low ↵ prioritizes the quality of the
query results and high ↵ prioritizes performance.

For the query in Figure 1, ImputeDB generates several plans
on an optimal frontier. Figure 2a shows a quality-optimized
plan that uses the Impute operator µ, which employs a refer-
ence imputation strategy to fill in missing values rather than

⇡
income, AVG(white_blood_cell_ct)

g
income, AVG(white_blood_cell_ct)

µ
demo.income

./
exams.id=demo.id

µ
labs.white_blood_cell_ct

./
exams.id=labs.id

�
exams.weight�120

µ
exams.weight

exams

labs

�
demo.gender=2

demo

(a) A quality-optimized plan for the query in Figure 1.

⇡
income, AVG(white_blood_cell_ct)

g
income, AVG(white_blood_cell_ct)

�
demo.income, labs.white_blood_cell_ct

./
exams.id=labs.id

./
demo.id=exams.id

�
demo.gender=2

demo

�
exams.weight�120

�
exams.weight

exams

labs

(b) A performance-optimized plan for the query in Figure 1.

Figure 2: The operators �, ⇡, ./, and g are the standard
relational selection, projection, join, and group-by/aggregate,
µ and � are specialized imputation operators (Section 3.1),
and can be mixed throughout a plan. The imputation
operators are highlighted.

dropping tuples. It waits to impute demo.income until after
the final join has taken place, though other imputations take
place earlier on in the plan, some before filtering and join
operations. Imputations are placed to maximize ImputeDB’s
estimate of the quality of the overall results. On the otherhand,
Figure 2b shows a performance-optimized plan that uses the
Drop operation � instead of filling in missing values. However,
it is a significant improvement over dropping all tuples with
missing data in any field, as it only drops tuples with missing
values in attributes which are referenced by the rest of the
plan. In both cases, only performing imputation on the neces-
sary data yields a query that is much faster than performing
imputation on the whole dataset and then executing the query.

2.2 ImputeDB Workflow
Now that the epidemiologist has ImputeDB, she can explore

the dataset using SQL. She begins by choosing a value for ↵
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Table 1: Notation used in Section 3.
Operator Description

Attr(·) Attributes used in a predicate.
Time(·) Estimated time to run a plan.
Penalty(·) Impute quality penalty of a plan.
Card(·) Estimated cardinality of a plan.
dV ar(·) Estimated variance of a column.
Dirty(·)/Clean(·) Dirty/clean attributes in a plan.
Q[·] Plan cache access operator.
·/· Plan cache insertion operator.

and can adjust it up or down until she is satisfied with her
query runtime. This iterative approach gives her immediate
feedback.

As an alternative strategy, the analyst can start by execut-
ing her query with ↵=1 and incrementally reducing ↵, as long
as execution of the query completes acceptably quickly. Im-
puteDB’s planning algorithm can also produce a set of plans
with optimal time-quality trade-offs, which allows the user to
adjust her choice of ↵ to select from these plans.

Tens of queries later, our epidemiologist has a holistic view
of the data and she has the information that she needs to con-
struct a tailored imputation model for her queries of interest.

3. ALGORITHM
In order to correctly plan around missing values, we first ex-

tend the set of relational algebra operators (selection �, projec-
tion ⇡, join ./, and group-by/aggregate g) with two new opera-
tors (Section 3.1). We then define the search space (Section 3.2)
of plans to encompass non-trivial operations, such as joins and
aggregations. Soundness of query execution is provided by our
main design invariant, which guarantees traditional relational
algebra operators must never observe a missing value in any
attribute that they operate on directly (Section 3.3). The deci-
sion to place imputation operators is driven by our cost model
(Section 3.4), which characterizes a plan based on estimates of
the quality of the imputations performed and the runtime per-
formance. Our planning algorithm is agnostic to the type of
imputation used (Section 3.5). Finally, we show that while our
algorithm is exponential in the number of joins (Section 3.7),
planning times are not a concern in practice.

3.1 Imputation Operators
We introduce two new relational operators to perform im-

putation: Impute (µ) and Drop (�). Each operator takes argu-
ments (C,R) where C is a set of attributes and R is a relation.
Impute uses a machine learning algorithm to replace all NULL
values with non-NULL values for attributes C in the relation
R (discussed in detail in Section 3.5). Drop simply removes
from R all tuples which have a NULL value for some attribute
in C. Both operators guarantee that the resulting relation will
contain no NULL values for attributes in C.

3.2 Search Space
To keep the query plan search space tractable, only plans

that fit the following template are considered.

• All selections are pushed to the leaves of the query tree, im-
mediately after scanning a table. We use a pre-processing
step which conjoins together filters which operate on the
same table, so we can assume that each table has at most
one relevant filter.

⇡

g

./

./

�

t1

�

t2

�

t3

Figure 3: Query plan
schematic for the type of
traditional plans explored
(absent imputation operators).

• Joins are performed after filtering, and only left-deep
plans are considered. This significantly reduces the plan
space while still allowing plans with interesting join pat-
terns.

• A grouping and aggregation operator is optional and if
present will be performed after the final join.

• Projections are placed at the root of the query tree.

The space of query plans is similar to that considered in a
canonical cost-based optimizer [3], with the addition of im-
putation operators. Figure 3 shows a plan schematic for a
query involving three tables, absent any imputation opera-
tors. Plans produced by ImputeDB can mix both Impute and
Drop operators.

3.3 Imputation Placement
We place imputation operators into the query plan so that

no relational operator encounters a tuple containing NULL
in an attribute that the operator examines, regardless of the
state of the data in the base tables.

Imputation operators can be placed at any point, but there
are cases where an imputation operator is required to meet
the guarantee that no non-imputation operator sees a NULL
value. To track these cases, we associate each query plan q
with a set of dirty attributes Dirty(q). An attribute c is dirty
in some relation if the values for c contain NULL. We compute
a dirty set for each table using the table histograms, which
track the number of NULL values in each column. The dirty
set for a query plan can be computed recursively as follows:

Dirty(q)=

8
>>>>><

>>>>>:

Dirty(q0)\C q=�
C

(q0) or q=µ
C

(q0)

Dirty(q0)\C q=⇡
C

(q0)

Dirty(q
l

)[Dirty(q
r

) q=q
l

./
 

q
r

Dirty(q0) q=�
�

(q0)

Dirty(t) q=some table t

Note that Dirty over-approximates the set of attributes
that contain NULL. For example, a filter might remove all
tuples which contain NULL, but the dirty set would be un-
changed. We choose to over-approximate to ensure that all
NULL values are explicitly imputed or dropped.

3.4 Cost Model
The cost of a plan q is a tuple hPenalty(q),Time(q)i.

Penalty(q)2(0,1] is a heuristic that quantifies the amount of
information lost by the imputation procedure used. Time(q)2
(0,1) is an estimate of the runtime of a query q derived from
table statistics, selectivity estimation of the query predicates,
and the complexity of the impute operation.
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3.4.1 Pareto-optimal plans
Given a query, ImputeDB produces a final set of query plans

Q by only keeping plans that are not dominated by others in
the search space. So for a search space S,

Q={q | 6 9q02S. q 6=q0^q0�q}.
Definition 1. We say that a plan q with cost hl,ti domi-

nates a plan q0 with cost hl0,t0i if Dirty(q)=Dirty(q0)^((l
l0^t<t0)_(l<l0^t t0)). We denote this as q�q0.

This setQwill be thePareto frontier [19] ofS,and it contains
the best option for all feasible trade-offs ofTime andPenalty
for the current query. This set of plans is significantly smaller
than the set of all plans, which our algorithm prunes away.

In order to pick a final plan from the frontier, our model in-
troduces a trade-off parameter ↵, which is an upper bound on
the Penalty value that the user is willing to tolerate relative
to the minimum possible among the frontier plans.

Definition 2. Let Q be a set of plans. For q2Q, we say
q is ↵-bound if

Penalty(q)�min

q

02Q

Penalty(q0)↵.

We denote this as q↵. Let the set of ↵-bound plans in Q be Q↵.
We say a plan q↵ is ↵-bound optimal if

Time(q↵)= min

q

02Q

↵
Time(q0).

Given↵ andQ, ImputeDB returns an↵-bound optimal plan
in Q. In essence, ↵ is a tunable parameter that determines
whether the optimizer focuses on quality or on performance,
as plans that lose a lot of information through dropping are
also the fastest. If ↵ = 0.0, then the optimal query should
lose as little information as possible (at the expense of perfor-
mance). If ↵= 1.0, then the optimal query should have the
lowest runtime (at the expense of quality).

3.4.2 Cardinality estimation
The computation of Penalty(q) and Time(q) relies on ac-

curate cardinality estimates for the plan q and its sub-plans.
These estimates are impacted not just by filtering or joining,
as in the traditional relational algebra, but also by the impu-
tation operators.

To compute cardinality, we maintain histograms for each
column in the database. These histograms track the distribu-
tion of values in the column as well as the number of missing
values. During query planning, each of the logical nodes in a
query plan points to a set of histograms which describe the
distribution of values in the output of the node. When the
optimizer creates a new query plan, it copies the histograms of
the sub-plans and modifies them as described in Algorithm 1
to account for the new operation in the plan.

Drop operators (Lines 3 to 6) reduce the cardinality of their
input relation by removing tuples which contain missing val-
ues. For a Drop �

C

, for each column c2C we set its missing
value count to zero, because all of these tuples will be dropped.
This can result in a set of histograms which have different
cardinalities if some columns have more missing values than
others. To account for the discrepancy, we rescale all the his-
tograms without changing the shape of their distributions to
match the lowest cardinality column.

Impute operators (Lines 7 to 11) maintain the cardinality of
their inputs, but they also fill in missing values. For an Impute

µ
C

, we set the missing value count to zero, and rescale each
histogram so that its new cardinality, with no missing values,
is the same as its old cardinality. We assume that the imputed
values will not change the shape of the distribution of values
in each column.

Cardinality estimation for standard relational operators
(Lines 12 to 16) is the same as in a typical database.

Algorithm 1 An algorithm for in-plan histogram updates
Input:

• H: A map from attribute names to histograms.
• op: A relational operator.

1: function UpdateHistograms(H, op)
2: Let Cols be the set of attribute names in H.
3: if op = �

C

then
4: Set null count to zero for H[c] for c2C.
5: m min

d2Cols

Card(H[d])
6: Scale H[d] s.t. Card(H[d])=m for d2Cols.
7: else if op = µ

C

then
8: for c2C do
9: k Card(H[c])

10: Set null count of H[c] to zero.
11: Scale H[c] s.t. Card(H[c])=k.
12: else if op = �

�

then
13: Scale H[d] by Selectivity(�,H) for d2Cols.
14: else if op = ./

�

then
15: Let k

join

be the estimated cardinality of the join.
16: Scale H[d] s.t. Card(H[d])=k

join

for d2Cols.
17: return H

3.4.3 Imputation quality
Each imputation method has an associated cost function

P , which is a measure of the quality of its output. ImputeDB
estimates the aggregate quality of the imputations in a plan q
using the heuristic measure Penalty

P

(q). Underlying this is
a helper function, L

P (q), which is a recursive accumulator of
penalties along imputation nodes instantiated with an impute-
specific penalty operator. This accumulator is computed as
follows.

L
P

(q)=

8
>>>>><

>>>>>:

1+L(q0) q=�
C

(q0)

P (q0)+L(q0) q=µ
C

(q0)

L(q0
l

)+L(q0
r

) q=q0
l

./
 

q0
r

L(q0) q=�
�

(q0), q=⇡
C

(q0)

0 q=some table t

Penalty
P

(q)=
L

P

(q)
L

P� (q)

Penalty
P

(q) aggregates penalties from individual imputa-
tions to produce a measure of the quality of imputation for the
entire plan. For imputation on a subplan q0, a penalty P (q0) in
(0,1] is assigned to µ(q0) and a penalty of 1 is assigned to �(q0).
The function L

P

(q0) is then defined recursively to aggregate
these penalties for the entire plan. The result is normalized by
L

P� (q
0
), which is the total penalty for always dropping tuples

with NULL values and is equal to the number of imputation
operators in the plan.

Constructing P : The form of P is chosen to reflect the
properties of the imputationmethodbeing used. Awell-chosen
P should provide a reasonable estimate of the quality of im-
putation from the set of plan histograms. From these, P can
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obtain the number of clean and dirty attributes in its input,
their cardinalities, and approximations of distribution statis-
tics such as mean and variance. Intuitively, imputation quality
increases when more complete attributes and complete tuples
are available; correspondingly, P (q0) decreases as the number
of values increases. The penalty should also reflect the intu-
ition that the number of training observations has diminishing
returns by decreasing more slowly as the number of values in-
creases. Finally, the penalty may increase as the amount of
noise or spread in the data increases, as this makes it more
difficult to obtain precise imputations.

Imputation quality P (q0) = 0 is unattainable, as this sug-
gests the values of missing elements are known exactly. On
the other hand, P (q0)=1 occurs when all tuples with missing
values are dropped, as this represents the worst case in terms
of recovering information from these tuples. In Section 3.5, we
discuss choices for P for several common imputation methods.

3.4.4 Query runtime
To compute Time

T

(q), an additive measure of runtime cost,
we retain a simple set of heuristics used by a standarddatabase.

Scan costs are estimatedbased on the numberof tuples,page
size, and a unit-less I/O cost per page. We assume that I/O
costs dominate CPU costs for relational operators. A database
implementation for which this assumption is not true, e.g. an
in-memory database, will need a different cost model. Join
costs are estimated as a function of the two relations joined,
any blocking operations, and repeated fetching of tuples (if
required). Filtering, projecting, and aggregating never require
repeated tuple fetches and have low computational overhead
so we assume that they take negligible time.

We extend these heuristics to account for the new operators:
Drop and Impute. Drop is a special case of a filter, so its time
complexity is correspondingly negligible.

Constructing T : As withPenalty, the time computation
for Impute depends on the properties of the underlying algo-
rithm via a function T . If we assume that the Impute routine
is CPU-bound, then we adjust T by some constant factor f ,
thereby scaling the result to be comparable with I/O-bound
routines.

The form of T depends on the specific imputation method,
but there are several considerations in choosing T . In partic-
ular, T should increase as the number of tuples and complete
and dirty attributes passed to the imputation function in-
creases, and it should take into account the complexity of
the imputation algorithm. Analysis of the time complexity of
different imputation algorithms, especially with in-database
execution, is beyond the scope of this paper. As with P , it
is the ordering between queries imposed by T that is more
important than the precision of the estimates.

Note that for every imputation operator inserted into the
query plan, a new statistical model is instantiated and trained.
Though it is tempting to try to pre-train imputation mod-
els, the working data, set of complete attributes, and set of
attributes to impute are unknown until runtime, making this
strategy infeasible. Thus, if applicable, T should take into ac-
count both training and application of the imputation model.

3.5 Imputation Strategies and their API
ImputeDB is designed so that any imputation strategy can

be plugged in with minimal effort and without changes to the
optimizer, by supplying penalty (P ) and time (T ) functions
(Section 3.4) pertinent to the algorithm. These cost functions

are then used by the optimizer during planning. The flexibility
of this approach is in the spirit of query optimization, which
aims to reconcile performance with a declarative interface to
data manipulation. To motivate this API, we describe how a
developer might specify these functions for a general-purpose
imputation algorithm, as well as for two simpler imputation
methods.

3.5.1 Decision trees
As a reference implementation, ImputeDB uses a general-

purpose imputation strategy based on chained-equation deci-
sion trees. Chained-equation imputation methods [5] (some-
times called iterative regression [12]) impute multiple missing
attributes by iteratively fitting a predictive model of one miss-
ing attribute, conditional on all complete attributes and all
othermissing attributes. Chained-equation decision trees algo-
rithms are effective [2] and are widely used in epidemiological
domains [4].

The chained-equation algorithm proceeds by iteratively fit-
ting decision trees for the target attributes. In each iteration,
the missing values of a single attribute are replaced with newly
imputed values. Attributes that contain missing values but
that are not being imputed are ignored by the imputation. Val-
ues in a single column can be updated over multiple iterations
of the algorithm. Withmore iterations, the quality of the impu-
tation improves as values progressively reflect more accurate
relationships between attributes. The algorithm terminates
after a fixed number of iterations, or earlier if convergence is
achieved, indicated by unchanged values in a column in subse-
quent iterations. For our experiments, we use Weka’s REPTree
decision tree implementation [25], a variant of the canonical
C4.5 algorithm [22]. Roughly, the time complexity of building
one decision tree is O(nm log(n)), where n is the number of
tuples and m is the number of dependent attributes [25].

Recall that C is the set of dirty attributes to be imputed,
where C ✓Dirty(q). With k cycles of the algorithm, where
in each cycle there are |C| iterations of fitting models for each
dirty attribute, we have

T (q)=k⇥|C|⇥Card(q)⇥
(|Clean(q)|+|C|�1)⇥log Card(q).

Separately, we specify a heuristic penalty that takes into
account the improvement in imputation quality from more
tuples and attributes, as well as the diminishing returns from
more data.

P (q)=
|C|p|Attr(q)|⇥Card(q)

3.5.2 Non-Blocking Approximate Mean
At the other end of the complexity spectrum, mean value

imputation is a common choice for exploratory data analysis.
Mean value imputation replaces missing values in a column
with the mean of the available values in that column.

We can take advantage of the histograms maintained by Im-
puteDB to estimate the mean and construct a non-blocking
impute operator. Applying the heuristics from Section 3.4.3
and Section 3.4.4, we have

P (q)=
X

c2C

1+

dV ar(c)
Card(q)

T (q)⇡0.
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JQ[T ]K=
(
P (T, P )2Q
? otherwise

JQ[T ]�pK=Q[{(T, P )} where
P =

�
q2S | Dirty(q) 6=Dirty(p)_ 69q02S : q0�q

 

S=JQ[T ]K[{p}
Figure 4: Semantics of the plan cache access and insertion
syntax. We use J K to mean evaluation. Q is a plan cache, T
is a set of tables, and p is a query plan. The cache guarantees
that plans for the same set of tables either have distinct dirty
sets or are Pareto optimal.

Note that P increases with the variance of the columns and
decreases with their cardinality, reflecting the intuition that
the quality of the mean is lower with high variance and higher
with more data.

3.5.3 Hot deck
Random hot deck imputation is a non-parametricmethod in

which missing values in a column are replaced with randomly
selected complete values from the same column, preserving
the distribution of the complete values. We use the same P as
for mean value imputation, but we modify T to account for
the fact that hot-deck is blocking in our implementation.

P (q)=
X

c2C

1+

dV ar(c)
Card(q)

T (q)=Card(q)

3.6 Query Planning
The query planner must select a join ordering in addition

to placing imputation operators as described in Section 3.3.

3.6.1 Plan cache
Before describing the operation of the query planner, we

describe the semantics of a specialized data structure for hold-
ing sub-plans, called a plan cache. At a high level, a plan cache
is a mapping from a set of tables to a set of dirty set-specific
dominating plans over these tables. We store multiple plans
rather than a single plan per dirty set, because maintaining
a Pareto frontier as a plan progresses through the optimizer’s
pipeline allows us to obtain the final set of plans that best
trade-off computation cost and imputation quality. The plan-
cache semantics are shown in Figure 4.

The plan cache uses the partial order of plans defined by
hDirty,Penalty,Timei to collect soundandcompletePareto
frontiers. Plans with different Dirty sets cannot be compared.
The final Pareto frontier produced by the optimizer is the set of
plans with the best imputation quality and runtime trade-off.

3.6.2 Planning algorithm
The planner (Algorithm 2) operates as follows. First, it col-

lects the set of attributes which are used by the operators in
the plan or which are visible in the output of the plan (Line 7–
Line 8). This set will be used to determine which attributes
are imputed. Next, it constructs a plan cache. For each ta-
ble used in the query, any selections are pushed to the leaves,
and a search over imputation operations produces various
possible plans, which are added to the cache (Line 12). If no
selections are available, a simple scan is added to the plan

cache (Line 13). Join order is jointly optimized with imputa-
tion placements and a set of plans encompassing all necessary
tables is produced (Line 14). This set is then extended for any
necessary grouping and aggregation operations (Line 22) and
for projections (Line 24). The planner now contains the plan
frontier (i.e. the best possible set from which to pick our final
plan). The final step in the planner is to find all plans that are
↵-bound and return the one that has the lowest runtime: the
↵-bound optimal plan.

The join order and imputation optimization is based on the
algorithm used in System R [3], but rather than select the best
plan at every point, we use our plan cache, which keeps track
of the tables joined and the Pareto frontiers.

Algorithm 2 A query planner with imputations.
Input:

• q: A query plan.
• C

l

: A set of attributes that must be imputed in the
output of this query plan.

• C
g

: The set of attributes which are used in the final plan.
1: function Impute(q, C

l

, C
g

)
2: D

must

 Dirty(q)\C
l

3: D
may

 D
must

[(Dirty(q)\C
g

)

4: Q ({q} if D
must

=? else {µ
Dmust(q), �Dmust(q)})

5: return (Q ifD
may

=? elseQ[{µ
Dmay (q),�Dmay (q)})

Input:
• T : A set of tables.
• F : A T⇥� relation between tables and filter predicates.
• J : A T ⇥  ⇥ T relation between tables and join

predicates.
• P : A set of projection attributes.
• G: A set of grouping attributes.
• A: An aggregation function.
• ↵: A parameter in [0,1] that expresses the trade-off

between performance and imputation quality.
6: function Plan(T, F, J, P, G, A, ↵)
7: C

g

 S
 2J

Attr( ) ICollect relevant attributes.
8: C

g

 C
g

[ S
�2F

Attr(�) [ P[ G [ Attr(A)

9: Let Q be an empty plan cache.
10: for t2T do IAdd selections to the plan cache.
11: if 9� : (t,�)2F then
12: Q[{t}]�{�

�

(q) | q2Impute(t,Attr(�),C
g

)}
13: else Q[{t}]�{t}

14: for size22...|T | do IOptimize joins.
15: for S2{all length size subsets of T} do
16: for t2S do
17: for (t,  , t0)2J where t02S\t do
18: L {Impute(q, Attr( ), C

g

) | q2Q[S\t]}
19: R {Impute(q, Attr( ), C

g

) | q2Q[{t}]}
20: Q[S]�{l./

 

r | l2L, r2R}

21: B Q[T ] IGet the best plans for all tables.
22: if G 6=? then IAdd optional group & aggregate.
23: C

l

 G[Attr(A)

24: B S
q2B

{g(q0,G,A) | q02Impute(q,C
l

, C
g

)}
25: B S

q2B

{⇡
P

(q0) | q02Impute(q, P, P )}
26: return p2B s.t. p is ↵-bound optimal.
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3.7 Complexity
Our optimization algorithm builds off the approach taken

by a canonical cost-based optimizer [3]. If imputation oper-
ators are ignored, we search the same plan space. Therefore,
our algorithm has a complexity of at least O(2

J

), where J is
the number of joins.

The addition of imputation operators increases the number
of plans exponentially, as an imputation may be placed before
any of the relational operators. We restrict imputations to two
classes: those that impute only attributes used in the opera-
tor and those that impute all the attributes that are needed
downstream in the query. By doing so we limit the number
of imputations at any point to four: Drop or Impute over the
attributes used in the operator or over all the downstream
attributes. This modification increases the complexity of our
planning algorithm to O(2

4J
).

To motivate the restriction of imputation types, we con-
sider the implications of allowing arbitrary imputations. If we
allow any arbitrary subset of attributes to be imputed, then
we would need to consider O(2

|D|+1
) different imputation op-

erators before each relational operator where D is the set of
dirty attributes in all tables. This would increase the overall
complexity of the algorithm dramatically.

Finally, we note that for the queries we have examined, the
exponential blowup does not affect the practical performance
of our optimizer. Recall that the planner maintains different
plans for different dirty sets, keeping only those plans that
are not dominated by others. So in many cases we can drop
some of the intermediate plans generated at each operator.
The worst case complexity only occurs if the dirty sets tracked
are distinct through the entire planning phase.

In order to support a large number of joins, with lower plan-
ning times, ImputeDB can maintain approximations of the
Pareto sets. A non-dominated plan can be approximated by
an existing plan in the set, if the distance between them is
smaller than some predefined bound. Approximated plans are
not added to the frontier, pruning the search space further.
Planning times across both exact and approximate Pareto
frontiers are discussed further in Section 5.3.

4. IMPLEMENTATION
Adding imputation and our optimization algorithm to a

standard SQL database requires modifications to several key
database components. In this section we discuss the changes
required to implement dynamic imputation. We based this
directly on our experience implementing ImputeDB on top of
SimpleDB [1], a teaching database used at MIT, University
of Washington, and Northwestern University, among others.

• Extended histograms: Ranking query plans that in-
clude imputation requires estimates of the distribution
of missing values in the base tables and in the outputs of
sub-plans. We extend standard histograms to include the
count of missing values for each attribute. On the base
tables, this provides an exact count of the missing values.
In sub-plans we use simple heuristics—as discussed in
Section 3.4.2—to estimate the number of missing values
after applying both standard and imputation operators.
These cardinality estimates are critical to the optimizer’s
ability to compare the performance and imputation qual-
ity of different plans.

• Dirty sets: The planner needs to know which attributes
in the output of a plan might contain missing values so it

can insert the correct imputation operators. To provide
the planner with this information, we over-approximate
the set of attributes in a plan that may have missing val-
ues. Each plan has an associated dirty set, described in
Section 3.3, which tracks these attributes.

• Imputation operators: We extend the set of logical
operations available to the planner with the Impute and
Drop operators. The database must have implementa-
tions for both operators and be able to correctly place
them while planning. In addition to the normal heuris-
tics for estimating query runtime, these operators have a
cost function Penalty (Section 3.4.3) which estimates
the quality of their output. The planner must be able to
optimize both cost functions and select an appropriate
plan from the set of Pareto-optimal plans.

• Integrated optimizer: We believe that it would be rel-
atively simple to extend an existing query optimizer to
insert imputations immediately after scanning the base
tables. However, integrating the imputation placement
rules into the optimizer allows us to explore a large space
of query plans which contain imputations. In particular,
this tight integration allows us to jointly choose the most
effective join order and imputation placement.

5. EXPERIMENTS
For our experiments we plan and execute queries for three

separate survey-based data sets. We show that ImputeDB per-
forms an order ofmagnitude better than traditional base-table
imputation and produces results of comparable quality, show-
ing that our system is well suited for early dataset exploration.

5.1 Data Sets
We collect three data sets for our experiments. For all data

sets, we select a subset of the original attributes. We also
transform all data values to an integer representation by enu-
merating strings and transforming floating-point values into
an appropriate range.

5.1.1 CDC NHANES
For our first set of experiments, we use survey data col-

lected by the U.S. Centers for Disease Control and Prevention
(CDC). We experiment on a set of tables collected as part of
the 2013–2014 National Health and Nutrition Examination
Survey (NHANES), a series of studies conducted by the CDC
on a national sample of several thousand individuals [6]. The
data consists of survey responses, physical examinations, and
laboratory results, among others.

There are 6 tables in the NHANES data set. We use three
tables for our experiments: demographic information of sub-
jects (demo), physical exam results (exams), and laboratory
exam results (labs).

The original tables have a large number of attributes, in
some cases providing more granular test results or alternative
metrics. We focus on a subset of the attributes for each table
to simplify the presentation and exploration of queries. Ta-
ble 2 shows the attributes selected, along with the percentage
of NULL values for each attribute. For readability, we have
replaced the NHANES attribute names with self-explanatory
attribute names.

5.1.2 freeCodeCamp 2016 New Coder Survey
For our second set of experiments, we use data collected

by freeCodeCamp, an open-source community for learning
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Table 2: Percentage of values missing in the CDC NHANES 2013–2014 data.
(a) Demographics (demo). 10175 rows.

Attribute Missing

age_months 93.39%
age_yrs 0.00%
gender 0.00%
id 0.00%
income 1.31%
is_citizen 0.04%
marital_status 43.30%
num_people_household 0.00%
time_in_us 81.25%
years_edu_children 72.45%

(b) Laboratory Results (labs). 9813 rows.

Attribute Missing

albumin 17.95%
blood_lead 46.86%
blood_selenium 46.86%
cholesterol 22.31%
creatine 72.59%
hematocrit 12.93%
id 0.00%
triglyceride 67.94%
vitamin_b12 45.83%
white_blood_cell_ct 12.93%

(c) Physical Results (exams). 9813 rows.

Attribute Missing

arm_circumference 5.22%
blood_pressure_secs 3.11%
blood_pressure_systolic 26.91%
body_mass_index 7.72%
cuff_size 23.14%
head_circumference 97.67%
height 7.60%
id 0.00%
waist_circumference 11.74%
weight 0.92%

Table 3: Percentage of values missing in the freeCodeCamp
Survey data (fcc).

Attribute Missing

age 12.85%
attendedbootcamp 1.54%
bootcampfinish 94.03%
bootcampfulljobafter 95.93%
bootcamploanyesno 94.02%
bootcamppostsalary 97.89%
childrennumber 83.65%
citypopulation 12.74%
commutetime 46.61%
countrycitizen 12.59%
gender 12.00%
hourslearning 4.34%
income 53.08%
moneyforlearning 6.02%
monthsprogramming 3.88%
schooldegree 12.43%
studentdebtowe 77.50%

to code, as part of a survey of new software developers [11].
The 2016 New Coder Survey consists of responses by over
15,000 people to 48 different demographic and programming-
related questions. The survey targeted users who were related
to coding organizations.

We use a version of the data that has been pre-processed,
but where missing values remain. For example, 46.6% of com-
mutetime responses are missing. However, it is worth noting
that some of the missing values are also expected, given the
way the data has been de-normalized. For example, bootcam-
ploanyesno, a binary attribute encoding whether a respondent
had a loan for a bootcamp, is expected to be NULL for par-
ticipants who did not attend a bootcamp.

We choose a subset of 17 attributes, which are shown in Ta-
ble 3 along with the percentage of missing values.

5.1.3 American Community Survey
For our final experiment, we run a simple aggregate query

over data from the American Community Survey (ACS), a
comprehensive survey conducted by the U.S. Census Bureau.
We use a cleaned version of the 2012 Public Use Microdata
Sample (PUMS) data, which we then artificially dirty by re-
placing 40% of the values uniformly at random with NULL

values. The final dataset consists of 671,153 rows and 37 inte-
ger columns.

5.2 Queries
We collect a set of queries (Table 4) that we think are in-

teresting to plan. We believe that they could reasonably be
written by a user in the course of data analysis.

The queries consist not only of projections and selections,
but also interesting joins and aggregates. Our aim was to craft
meaningful queries that would provide performance figures
relevant to practitioners using similar datasets. Our bench-
mark queries performed well for both cases of AVG and COUNT
aggregates, so we expect ImputeDB to perform similarly for
SUM, with errors proportional to the fraction of relevant tuples
retrieved and the AVG value estimated. Aggregates such as MAX
and MIN are unlikely to perform well with dynamic imputa-
tion, a difficulty carried over from traditional imputation and
compounded by the dynamic nature of our approach.

5.3 Results
We evaluate ImputeDB optimizing for quality (↵=0), op-

timizing for performance (↵=1), and targeting a balance of
each (↵=0.5). As a baseline, we fully impute the tables used
by each query and then run the query on the imputed tables,
simulating the process that an analyst would follow to apply
existing imputation techniques.

Runtime vs. Base-table Imputation Figure 5 sum-
marizes the performance results. The quality-optimized
queries, with runtimes ranging from 75 ms to 1 second, are
an order-of-magnitude faster than the baseline, with runtimes
ranging from 6.5 seconds to 27 seconds. We get another order-
of-magnitude speedup when optimizing for performance,
achieving runtimes as low as 12 ms to 19 ms. These speedups,
ranging from 10x to 1400x depending on ↵ and query, consti-
tute significant workflow improvements for the analyst.

Accuracy vs. Base-table Imputation (AVG) Ta-
ble 5 shows the Symmetric-Mean-Absolute-Percentage-Error
(SMAPE) [17] for ImputeDB’s query results compared to
the baseline, using the chained-equation decision trees model.
This measures the error introduced by on-the-fly imputation
as compared to full imputation on the base tables. This
comparison is the relevant one in practice — an analyst would
only be considering the trade-offs in imputation quality and
time for dirty input data when the ground truth is unavailable.

To calculate SMAPE for each ↵, we compute tuple-wise
absolute percentage deviations within each iteration of each
query,and average this value over all iterations. Relative errors
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Table 4: Queries used in our experiments.
# Queries on CDC data

1 SELECT income , AVG(cuff_size) FROM demo , exams
WHERE demo.id = exams.id AND height >= 150 GROUP BY income;

2
SELECT income , AVG(creatine) FROM demo , exams , labs
WHERE demo.id = exams.id AND exams.id = labs.id

AND income >= 13AND income <= 15 AND weight >= 63 GROUP BY income;

3 SELECT AVG(blood_lead) FROM demo , exams , labs
WHERE demo.id = labs.id AND labs.id = exams.id AND age_yrs <= 6;

4 SELECT gender , AVG(blood_pressure_systolic) FROM demo , labs , exams
WHERE demo.id = labs.id AND labs.id = exams.id AND body_mass_index >= 30 GROUP BY gender;

5 SELECT AVG(waist_circumference) FROM demo , exams
WHERE demo.id = exams.id AND height >= 150 AND weight >= 100;

# Queries on freeCodeCamp data

6 SELECT attendedbootcamp , AVG(income) FROM fcc WHERE income >= 50000 GROUP BY attendedbootcamp;

7 SELECT AVG(commutetime) FROM fcc WHERE gender = "female" AND countrycitizen = "United�States";

8 SELECT schooldegree , AVG(studentdebtowe) FROM fcc
WHERE studentdebtowe > 0 and schooldegree >= 0 GROUP BY schooldegree;

9 SELECT attendedbootcamp , AVG(gdp_per_capita) FROM fcc , gdp
WHERE fcc.countrycitizen = gdp.country AND age >= 18 GROUP BY attendedbootcamp;

Figure 5: Runtimes for the queries in Table 4 using reference
chained-equation decision trees algorithm, for various settings
of ↵. Each query and each value of ↵ was run 200 times.

of query results, when optimizing for quality (↵=0), are low
— between 0 and 8% — indicating that on-the-fly imputation
produces results similar to the baseline. When optimizing for
performance (↵=1), relative errors can be modestly higher
— up to 20% in the worst case, as this approach most closely
corresponds to dropping all NULLs. Thus, it is important to
recognize the trade-offs between quality and performance for
a specific use case.

Accuracy vs.Base-table Imputation (COUNT) We
calculate the number of tuples used to produce each aggregate
output. The count fraction columns in Table 5 show the num-
ber of tuples in the aggregate for ↵=0 and ↵=1 as a fraction
of the number of tuples used when running the query on the im-
puted base table. This shows that when optimizing for perfor-
mance,not quality,many tuples are droppeddue to insertion of
� operators. Even in cases where the SMAPE reduction from

↵=1 and ↵=0 is small (Query 2 and Query 6) the tuple count
is significantly different. In these cases, the aggregate value is
not significantly impacted by the missing data. In particular, if
values are missing completely at random, the aggregate should
not be affected. However, if the missing data is biased then the
aggregate will have a significant error. This highlights a chal-
lenge for a userhandling data imputation traditionally: it is un-
clear if the missing data will have a large or small negative im-
pact on their analysis until they have paid the cost of running
it. By using ImputeDB this cost can be lowered significantly.

We can also trivially extend ImputeDB to warn users when
the query chosen for execution has a high Penalty estimate,
along with the number of tuples that have been dropped (after
execution), so that situations with high potential for skewed
results can be identified by the user.

Alternate Imputation Methods We experiment with
mean-value imputation and hot deck imputation (Section 3.5).
In our implementation of mean-value imputation, to facilitate
non-blocking operation within the iterator model,we estimate
the column mean from base table histograms. Therefore, im-
puted values are identical no matter where the operator is
placed in the query plan (relative errors are 0). Runtimes are
in the range of 12 ms to 25 ms for queries using ImputeDB,
as compared to 24 ms to 44 ms when imputing on the base
table. Here, the time cost of the imputation is low no matter
how many tuples need to be imputed.

In hot deck imputation, runtimes are also similar across
↵, ranging from 12 ms to 29 ms using dynamic imputation,
as compared to 21 ms to 92 ms when imputing on the base
table. In this case, the cost of buffering tuples and sampling at
random is negligible compared to the rest of query execution.
Relative errors using hot deck are close to zero, ranging from
0–3%. (The exception is Query 8 with ↵=1, which has error
of 24% and exhibits significant skew.) Since the baseline, in
these cases, is hot deck imputation on the base table, it is
skew in the distributions arising from filters and joins that
often leads to larger errors. Indeed, ImputeDB yields larger
benefits when using relatively sophisticated, higher quality
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Table 5: Symmetric-Mean-Absolute-Percentage-Error for
queries run under different ↵ parameterizations, as compared
to the baseline. Queries optimized for quality (↵=0) generally
achieve lowererror than queries optimized for efficiency (↵=1).
With (↵=0.5),an intermediate plan maybe chosen if available.
The count fraction column shows the number of tuples used in
calculating each aggregate as a fraction of the number of tuples
used when running the same query after imputing on the base
table. A lower count fraction reflects more potential for errors.

SMAPE Count Fraction
Query ↵=0 ↵=0.5 ↵=1 ↵=0 ↵=0.5 ↵=1

1 0.39 1.19 1.24 1.00 0.89 0.88
2 1.49 1.65 2.41 1.00 0.99 0.33
3 1.05 1.05 2.14 1.00 1.00 0.57
4 0.22 0.30 0.30 0.96 0.89 0.80
5 0.02 0.19 0.20 1.01 0.94 0.94
6 1.04 0.88 4.43 0.79 0.80 0.64
7 0.03 0.43 0.40 1.00 0.66 0.65
8 7.97 7.97 19.99 1.00 1.00 0.22
9 2.03 2.17 2.49 1.00 0.85 0.84

Figure 6: ImputeDB’s final planner Pareto frontier for
Query 1 and Query 6. For clarity, we have not shown plans
that provide nearly indistinguishable trade-offs in either
dimension.

imputation algorithms as opposed to simpler strategies that
would be quick to implement even on the base tables.

Pareto Frontiers Figure 6 shows the final Pareto fron-
tiers produced by the planner for Query 1 and Query 6. These
are the resulting set of plans after pruning dominated plans
throughout our algorithm and encapsulate the possible trade-
offs that the user can make in choosing a final plan for execu-
tion. The frontier is available at the end of the planning stage
and can be exposed to the user to guide their workflow.

Planning Times Planning times for our benchmark
queries are reasonable, with mean planning times across
the benchmark queries ranging from 0.7 ms to 2.8 ms, and
ranging from 0 to 14% of total runtime. In 99% of individual
cases, the optimizer returned a query plan within 4 ms. The
choice of ↵ has no impact on planning times, because query
selection is performed after collecting the Pareto frontier.

Approximate Pareto Sets However, ImputeDB’s plan-
ning algorithm is still exponential in the number of joins in the
plan, and the use of Pareto sets exacerbates this exponential
growth. We explored the limits of our planning algorithm by
constructing a series of queries with increasing number of joins
over the CDC tables. Planning times for queries involving 1–5
joins—a practical value for real world exploratory queries—
are less than 1 second. We extended ImputeDB to support

an approximation of Pareto sets to improve planning times
for queries with 6 or more joins. Approximate Pareto sets
displayed a reduction in planning time linear with respect to
the reduction in size of the final frontier. For queries with 6–8
joins, approximate sets achieved a reduction in planning time
between 14% and 23%, on average. For 6 joins, this is a de-
crease from a mean planning time of 3.3 seconds to 2.5 seconds.
For 7 joins, the decrease was from 14.2 to 12.2 seconds, while
for 8 joins, it was from 60 to 49 seconds. Users can increase
the level of approximation to reduce planning times further.

Imputation on Large Data In many real-world cases,
applying imputation to an entire dataset is prohibitively ex-
pensive. For example, if we run chained-equation decision
trees imputation on the full ACS dataset, it completes in 355
minutes.

In contrast,ImputeDBexecutes the querySELECT AVG(c0)
FROM acs over the ACS dataset (also using chained-equation
decision trees imputation) in 4 seconds when optimizing for
quality and 1 second when optimizing for runtime. Given the
runtime difference, we can run approximately 5,000 queries
before taking more time than full imputation. The perfor-
mance difference comes from the fact that ImputeDB only
needs to perform imputation on the single column required
by the query. Adding selection predicates would further re-
duce the query runtime by reducing the amount of required
imputation. An analyst could do the same, but tracking the
required imputations would get increasingly complicated as
the queries became more complex. This highlights the benefit
of using our system for early data exploration.

6. RELATED WORK
There is related work in three primary areas: statistics,

database research, and forecasting.

6.1 Missing Values and Statistics
Imputation of missing values is widely studied in the statis-

tics and machine learning communities. Missing data can ap-
pear for a variety of reasons [12]. It can be missing completely
at random or conditioned on existing values (observed and
missing). Methods in the statistical community focus on cor-
rectly modeling relationships between attributes to account
for different forms of missingness. For example, Burgette and
Reiter [4] use iterative decision trees for imputing missing data.

The computational difficulties of imputing on large base
tables are well-known and can limit approaches. For example,
Akande, Li, et al. [2] find that one approach (MI-GLM) is pro-
hibitively expensive when attempting to impute on the Amer-
ican Community Survey dataset. In this case, the complexity
comes from the large domains of the variables in the ACS data
(up to ten categories in their case). In contrast, ImputeDB
allows users to specify a trade-off between imputation quality
and runtime performance, allowing users to perform queries
directly on datasets which are too large to fully impute quickly.
Furthermore, the query planner’s imputation is guided by the
requirements of each specific query’s operators, rather than
requiring broad assumptions about query workloads.

6.2 Missing Values and Databases
There is a long history in the database community surround-

ing the treatment of NULL. Multiple papers have described
various (and at times conflicting) treatments of NULLs [7, 13].
ImputeDB’s design invariants eliminate the need to handle
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NULL value semantics, while guaranteeing query evaluation
soundness.

Database system developers and others have worked on
techniques to automatically detect dirty values, whether miss-
ing or otherwise, and rectify the errors if possible. Hellerstein
[14] surveys the methods and systems related to missing value
detection and correction.

Wolf, Khatri, et al. [26] directly treat queries over databases
with missing values using a statistical approach, taking ad-
vantage of correlations between attributes. The tuples that
match the original query as well as a ranking of tuples with
incomplete data that may match are returned. Our work dif-
fers in that we allow any well-formed statistical technique to
be used for imputation and focus on returning results to the
analyst as if the database had been complete.

Designers of data stream processing systems frequently con-
front missing values and consider them carefully in query
processing. Often, if a physical process like sensor error is
the cause of missing values, values can be imputed with high
confidence. Fernández-Moctezuma, Tufte, et al. [9] use feed-
back punctuation to dynamically reconfigure the query plan
for state-dependent optimizations as data continues to arrive.
One of the applications of this framework is to avoid expensive
imputations as real-time conditions change.

Other work has looked at integrating statistical models into
databases. For example, BayesDB [18] provides users with a
simple interface to leverage statistical inference techniques
in a database. Non-experts can use a simple declarative lan-
guage (an extension of SQL), to specify models which allow
missing value imputation, among other broader functionality.
Experts can further customize strategies and incorporate do-
main knowledge to improve performance and accuracy. While
BayesDB can be used for value imputation, this step is not
framed within the context of query planning, but rather as an
explicit statistical inference step within the query language,
using the INFER operation. BayesDB provides a great alterna-
tive for bridging the gap between traditional databases and
sophisticated modeling software. ImputeDB, in contrast, aims
to remain squarely in the database realm, while allowing users
to directly express queries on a potentially larger subset of
their data.

Yang, Meneghetti, et al. [27] develop an incremental ap-
proach to ETL data cleaning, through the use of probabilistic
compositional repair operators, called Lenses, which balance
quality of cleaning and cost of those operations. These oper-
ators can be used to repair missing values by imposing data
constraints such as NOT NULL. However, the model used to im-
pute missing values must be pre-trained and all repairs are
done on a per-tuple basis rather than at the plan-level.

ImputeDB’s cost-based query planner is partially based on
the seminal work developed for System R’s query planning [3].
However, in contrast to System R, ImputeDB performs ad-
ditional optimizations for imputing missing data and uses
histogram transformations to account for the way relational
and imputation operators affect the underlying tuple distri-
butions.

The planning algorithm that we present has similarities to
work on multi-objective query optimization [24]. Both algo-
rithms handle plans which have multiple cost functions by
maintaining sets of Pareto optimal plans and pruning plans
which become dominated. In ImputeDB, costs are expected
to grow monotonically as the size of the plan increases, which
simplifies the optimization problem significantly. Trummer

and Koch [24] handle the more complex case of cost functions
which are piecewise linear, but not necessarily monotonic.

6.3 Forecasting and Databases
Parisi, Sliva, et al. [21] introduce the idea of incorporating

time-series forecast operators into databases, along with the
necessary relational algebra extensions. Their work explores
the theoretical properties of forecast operators and generalizes
them into a family of operators, distinguished by the type of
predictions returned. They highlight the use of forecasting for
replacing missing values. In subsequent work [20], they iden-
tify various equivalence and containment relationships when
using forecast operators,which could be used to perform query
plan transformations that guarantee the same result. They
explore forecast-first and forecast-last plans, which perform
forecasting operations before and after executing all tradi-
tional relational operators, respectively.

Fischer, Dannecker, et al. [10] describe the architecture of a
DBMS with integrated forecasting operations for time-series,
detailing the abstractions necessary to do so. In contrast to
this work, ImputeDB is targeted at generic value imputation,
and is not tailored to time-series. The optimizer is not based
on equivalence transformations, nor are there guarantees of
equal results under different conditions. Instead, the optimizer
allows users to pick their trade-off between runtime cost and
imputation quality. The search space considered by our opti-
mizer is broader, not just forecast-first/forecast-last plans, but
rather imputation operators can be placed anywhere in the
query plan (with some restrictions). The novelty of our contri-
bution lies in the successful incorporation of imputation opera-
tions in non-trivial query plans with cost-based optimization.

Duan and Babu [8] describe the Fa system and its declara-
tive language for time-series forecasting. Their system auto-
matically searches the space of attribute combinations/trans-
formations and statisticalmodels to produce forecastswithin a
given accuracy threshold. Accuracy estimates are determined
using standard techniques, such as cross-validation. As with
Fa, ImputeDB provides a declarative language, as a subset of
standard SQL. ImputeDB, however, is not searching the space
of possible imputation models, but rather the space of query
plans that incorporate imputation operators, and considers
the trade-offs between accuracy and computation time.

7. CONCLUSION
Our implementation of ImputeDB and experiments show

that imputation of missing values can be successfully inte-
grated into the relational algebra and existing cost-based plan
optimization frameworks. We implement imputation actions,
such as dropping or imputing values with a machine learn-
ing technique, as operators in the algebra and use a simple,
yet effective, cost model to consider trade-offs in imputation
quality and runtime. We show that different values for the
trade-off parameter can yield substantially different plans, al-
lowing the user to express their preferences for performance on
a per-query basis. Our experiments with the CDC NHANES,
freeCodeCamp and ACS datasets show that ImputeDB can be
used successfully with real-world data, running standard SQL
queries over tuples with missing values. We craft a series of
realistic queries,meant to resemble the kind of questions an an-
alyst might ask during the data exploration phase. The plans
selected for each query execute an order-of-magnitude faster
than the standard approach of imputing on the entire base ta-
bles and then formulating queries. Furthermore, the difference
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in query results between the two approaches is shown to be
small in all queries considered (0-20% error, Section 5.3). Data
analysts need not commit to a specific imputation strategy
and can instead vary this across queries.

We discuss the long history of dealing with missing data
both in the statistics anddatabase communities. In contrast to
existing work in statistics, our emphasis is not on the specific
algorithm used to impute but rather on the placement of impu-
tation steps in the execution of a query. In contrast to existing
database work, we incorporate imputation into a cost-based
optimizer and hide any details regarding missing values inside
the system, allowing users to use traditional SQL as if the
database were complete. While prior work has incorporated
operations such as prediction into their databases, this has
been domain-specific in some cases, and in others, operations
have not been integrated into the planner. The novelty of our
contribution lies in the formalization of missing value imputa-
tion for query planning, resulting in performance gains over
traditional approaches. This approach acknowledges that dif-
ferent users performing different queries on the same dataset
will likely have varying imputation needs and that execution
plans should appropriately reflect that variation.

7.1 Future Work
ImputeDB opens up multiple avenues for further work.

• Imputation confidence: Obtaining confidence mea-
sures for query results produced when missing values are
imputed is a possible improvement to the system. These
measures could be obtained in general using resampling
methods like cross-validation and bootstrapping [16]. In
contrast to standard confidence calculations, imputation
takes place at various points in the plan, so the composi-
tion of results through standardquery operations needs to
be taken into account when computing confidence mea-
sures. In addition, multiple imputation could be used
within query execution and confidence measures like vari-
ances could similarly propagate through the query plan.

• Imputation operators: We explored a subset of possi-
ble imputation operators. In particular, we explored two
variants of the Drop and Impute operations. The system
could be extended to consider a broader family of opera-
tors. As the search space grows, there will likely be addi-
tional steps needed in order to avoid sub-optimal plans.

• Adaptive query planning: Currently, the imputation
is local to a given query,meaning no information is shared
across queries. An intriguing direction would be to take
advantage of imputation and execution data generated
by repeated queries. This goes beyond simply caching
imputations, and instead could entail operations such as
extending intermediate results with prior imputation val-
ues to improve accuracy,orpruning out query plans which
have been shown to produce low-confidence imputations.
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