
Stitching Web Tables for Improving Matching Quality

Oliver Lehmberg, Christian Bizer
Data and Web Science Group, Universität Mannheim

B6 26, 68159 Mannheim, Germany

{oli,chris}@informatik.uni-mannheim.de

ABSTRACT
HTML tables on web pages (“web tables”) cover a wide
variety of topics. Data from web tables can thus be useful
for tasks such as knowledge base completion or ad hoc table
extension. Before table data can be used for these tasks, the
tables must be matched to the respective knowledge base or
base table. The challenges of web table matching are the
high heterogeneity and the small size of the tables.

Though it is known that the majority of web tables are
very small, the gold standards that are used to compare
web table matching systems mostly consist of larger tables.
In this experimental paper, we evaluate T2K Match, a web
table to knowledge base matching system, and COMA, a
standard schema matching tool, using a sample of web ta-
bles that is more realistic than the gold standards that were
previously used. We find that both systems fail to produce
correct results for many of the very small tables in the sam-
ple. As a remedy, we propose to stitch (combine) the tables
from each web site into larger ones and match these enlarged
tables to the knowledge base or base table afterwards. For
this stitching process, we evaluate different schema matching
methods in combination with holistic correspondence refine-
ment. Limiting the stitching procedure to web tables from
the same web site decreases the heterogeneity and allows us
to stitch tables with very high precision. Our experiments
show that applying table stitching before running the actual
matching method improves the matching results by 0.38 in
F1-measure for T2K Match and by 0.14 for COMA. Also,
stitching the tables allows us to reduce the amount of tables
in our corpus from 5 million original web tables to as few as
100,000 stitched tables.

1. INTRODUCTION
Tables on web pages (“web tables”) are an intriguing

source of data for several reasons. They represent their
content in a structured fashion, i.e., rows and columns are
separated and may include column headers, but no explicit
schema information is provided. Further, they exist in large

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

quantities on the Web and cover many different topics [13].
This makes them an interesting data source for large-scale
data extraction and integration, as required for the con-
struction or completion of knowledge bases [11, 29] or the
ad-hoc extension of arbitrary base tables with additional
attributes [7, 20,34].

Before table data can be used for these tasks, the tables
must be matched to the respective knowledge base or base
table. This matching task is addressed by various existing
methods [21, 28, 31, 32, 35]. The main challenges of the task
are the high heterogeneity of the web tables and their small
size. For example, the 90 million relational tables in the Web
Data Commons web tables corpus 2015 [19]1 have a median
number of rows of 6. In contrast to this relatively small size
of HTML tables on the Web, the gold standards that are
used to evaluate web table matching systems, such as the
T2D gold standard [28] or the Limaye gold standard [21],
contain rather “ideal” web tables with respect to the size of
the tables, with a median of 100 and 21 rows, respectively.
The gold standards thus do not properly reflect the size
distribution of the HTML tables on the Web.

Figure 1 shows examples of small web tables describing
video games. We see how information about the games that
likely resides in a single table in the database behind the
website is published as a set of small tables on different
pages.

In order to investigate whether small tables are correctly
matched by current matching methods, we evaluate two ex-
isting matching tools, T2K Match [28] and COMA [1], using
a sample of web tables that is more realistic than the tables
in the T2D or Limaye gold standards. Our experiments
show that both tools fail to produce an acceptable result on
this sample.

To counter this problem, we propose to stitch web tables
from the same website before running any of the existing
matching methods. In this context, stitching means that
we combine web tables based on a schema mapping. This
is feasible, because many web tables are created systemat-
ically, for example by paging, where a long table is broken
up into multiple parts, or by master-detail views. We build
on the idea of Ling et al. [22], to combine small web tables
into larger ones in preprocessing, and apply it to the task of
web tables to knowledge base schema matching. We also ex-
tend the idea by an additional stitching step for web tables
with different schemata. For T2K Match and COMA, we see
improvements of 0.26 and 0.1, respectively, in F1-measure
when creating the union of all tables from the same web

1http://www.webdatacommons.org/webtables/

1502

Figure 1: Example how information about video games is
broken up into multiple small web tables on different pages.

site having the same schema. An additional improvement
of 0.12 and 0.04, respectively, in F1-measure is achieved by
further stitching union tables from the same web site having
overlapping schemata. For individual web sites, we can see
improvements of up to 0.76 in F1-measure.

The contributions of this paper are as follows:
1. We show that web table stitching strongly improves the

results of existing schema matching methods on a more
realistic sample of web tables than the currently used
gold standards.

2. Our experiments show that creating the union of all
web tables with the same schema from the same web
site already results in a large improvement and should
hence be done by all web table matching systems.

3. Through the experimental evaluation of standard and
holistic matching approaches, we find that we can stitch
union tables from the same web site with overlapping
schemata at high precision, which results in an addi-
tional improvement of the matching results compared to
only creating the union of tables with the same schema.

This paper is organised as follows: Section 2 introduces
the use case of web table to knowledge base matching. Sec-
tion 3 presents detailed schema statistics about the tables
in our corpus. The effect of creating union tables is shown
in Section 4. Sections 5 compares different matching meth-
ods for union tables. Section 6 evaluates the effect of using
these methods for an additional stitching step on the overall
matching performance. Section 7 investigates the impact of
table stitching on the amount of correctly extracted data
values and analyses how different properties of the web ta-
bles influence the achieved performance gain. We discuss
related work in Section 8 and conclude with Section 9.

All methods were implemented using the WInte.r data
integration framework. 2 The source code and all datasets
that were used for the experiments in this paper are publicly
available. 3

2https://github.com/olehmberg/winter
3https://github.com/olehmberg/WebTableStitching

2. WEB TABLES TO KB MATCHING
This section introduces the use case of web table to knowl-

edge base matching and establishes a performance baseline
by matching a random sample of web tables from the Web
Data Commons (WDC) web table corpus [19] against the
DBpedia knowledge base [17] using T2K Match and COMA.
In the following sections, we will repeat the same experiment
in order to demonstrate the impact of table stitching on the
matching performance.

Web table to knowledge base matching is a prerequisite
for knowledge base augmentation (KBA), which is the task
of filling missing values in a knowledge base or adding new
properties or entities to the knowledge base [11,21,28,29,31,
32,35]. The goal of web table to knowledge base matching is
to recognise entities and properties from the knowledge base
in a given web table. The focus in this paper is matching the
schemata of web tables to properties in a knowledge base.

Web Table Corpus. The experiments in this paper use
a subset of the WDC web tables corpus 2015. This sub-
set contains all 5 176 160 de-duplicated web tables from the
corpus in which at least one entity from the DBpedia knowl-
edge base could be recognised. Tables without any recog-
nisable entity from the knowledge base cannot contribute
to the knowledge base augmentation task and can hence be
excluded. The detection of entities was performed by com-
paring the table values to the entity labels in DBpedia with
Jaccard similarity and a threshold of 0.7. The tables in the
subset have a median of 6 rows and originate from a total
of 86 316 different hosts.

Random Sample. From this corpus of tables, we draw
a random sample of 1 000 web tables. The sample contains
web tables from 401 different hosts. In total, these hosts con-
tribute 3.5 million web tables to the 5 million tables subset
discussed above. The web tables in the 1 000 table sample
have between 2 and 432 rows and a median of 4 rows. By
manually matching the tables against the DBpedia knowl-
edge base, we obtain a reference schema mapping consisting
of 427 web table column to KB property correspondences.
Out of these correspondences, 204 refer to the “rdfs:label”
property (containing the names of the entities) and 223 to
other DBpedia properties.

Gold Standards. Up till now, two gold standards were
used to compare web table matching systems: The T2D
gold standard4 [28] contains 233 web tables that are mapped
to the DBpedia knowledge base [17] and are annotated on
class, property and entity level. The Limaye gold stan-
dard [21] contains 401 web tables that are mapped to the
YAGO knowledge base. However, the web tables in these
gold standards were selected using seed entities. This re-
sults in a selection of tables in which many entities from the
knowledge base are found and which are generally larger to
cover more entities. The tables in the T2D gold standard
have a median length of 100 rows and the tables in the Li-
maye gold standard, as re-built by Bhagavatula et al. [4]5,
have a median of 21 rows. However, the tables in the WDC
web tables corpus 2015 [19], for example, have a median of
only 6 rows.

T2K Match. We use T2K Match [28]6 as an example
of a specialised web table to knowledge base matching sys-

4http://webdatacommons.org/webtables/goldstandard.html
5http://websail-fe.cs.northwestern.edu/TabEL/
6https://github.com/olehmberg/T2KMatch

1503

tem in our experiments. T2K Match matches web tables
to classes, table rows to entities and columns to properties
in a target knowledge base. Before matching a web table,
one column is determined to be the entity label column,
i.e., the column that contains the names of the entities that
are described in the table. The detection of the entity la-
bel column is performed heuristically, by choosing the most
unique text column. Afterwards, candidate correspondences
to entities and properties from the knowledge base are used
to determine the majority class of the entities in the web
table. Next, entity and property correspondences are itera-
tively refined, until a final mapping is created.

COMA. In order to test the general applicability of the
stitching method, we repeat the experiment using COMA
3.0 [1, 10]. COMA is a general-purpose schema matching
tool which exploits both the attribute labels and data val-
ues. As COMA is not tailored for the web table to knowledge
base task, we change the experimental set-up in the follow-
ing way: We focus on the schema matching part and match
each web table to the schema of its corresponding class in
the knowledge base. Due to limitations of the COMA ap-
plication, we cannot use more than 1 000 data values per
attribute and hence sample 1 000 entities from the corre-
sponding DBpedia classes. We guarantee that the entities
corresponding to those in the web tables are included, then
add random entities until 1 000 entities are reached.

Experiment. We run T2K Match and COMA on the
random sample of 1 000 web tables and find that the perfor-
mance for the schema matching task is much worse than on
the T2D gold standard. On the gold standard, T2K Match
achieves an F1-measure of 0.7 for the schema matching task.
On the sampled tables, however, the achieved F1-measure is
only 0.24. The achieved precision is only 0.20 with a recall
of 0.32 and 95 of the 204 mappable web tables are correctly
identified. The reason for the low precision is that non-
mappable tables are mapped to the knowledge base, i.e., a
correspondence to “rdfs:label” is created. T2K Match in-
correctly maps 444 tables to the knowledge base. Of these
tables, 90% have only six rows or less. For the 109 web
tables that were not mapped although it would have been
correct, we also find indication that the size of the tables
could be a problem: 52% of these tables have only up to six
rows. The set of tables for which correct correspondences
were found contains less than 35% tables having six rows or
less. COMA achieves an F1-measure of 0.37 with a precision
of 0.54 and a recall of 0.28. Other than T2K Match, COMA
creates only 18 correct correspondences to the “rdfs:label”
property, but 110 correct correspondences to other prop-
erties. It is noticeable that the correct correspondences are
between columns and properties with similar or equal labels.
This indicates that COMA did not consider the similarity of
the data values to suffice in order to create correspondences
in many cases.

This baseline experiment shows that both systems do not
achieve satisfying results on matching the sampled tables.

3. WEB TABLE PROFILING
Most web sites use content management systems or other

programs to generate HTML pages. The web tables on these
pages are also automatically generated and the same schema
is thus used by web tables on many different pages. In or-
der to support this statement, we investigate the frequency

Figure 2: Number of schemata per host.

Figure 3: Number of web tables per schema.

distribution of all schemata in the 5 million tables corpus in-
troduced in Section 2. We consider the ordered set of column
headers and the host part of a web table’s URL, which we
use to identify web sites, as its schema (so no two schemata
from different hosts are counted as equal).

Figure 2 shows the cumulative distribution function (cdf)
of the number of schemata per host. The series “Hosts”
shows the cumulated percentage of hosts with the number
of schemata indicated on the horizontal axis. The series
“Web Tables” shows the cumulated percentage of web ta-
bles from these hosts. We learn two interesting facts from
this distribution: First, 75% of all hosts only use a single
schema, but these web sites only contain 20% of all web ta-
bles. Second, we see that the majority of the web tables are
found on hosts that use a rather small number of different
schemata. We find 55% of all web tables on hosts with up
to 10 schemata (97% of all hosts) and 84% of all web tables
on hosts with up to 100 schemata (99.7% of all hosts).

Figure 3 shows the cdf of the number of web tables per
schema. The series “schemata” shows the cumulated per-
centage of schemata which are re-used as many times as
indicated on the horizontal axis. The series “Web Tables”
shows the cumulated percentage of web tables that use these
schemata. We find that 63.7% of all schemata are only used
once, but they do not contribute much (ca. 2.5%) to the to-
tal amount of tables in the corpus. Considering all schemata
which are re-used up to 100 times (98.7% of all schemata)
only cumulates to 17% of all tables. The remaining 83% of
all tables have a schema that is used by at least 100 other
tables on the same web site.

These results support the hypothesis that most web tables
in our corpus are generated by content management or re-
lated systems. The majority of web tables is found on hosts

1504

that use a relatively small number of different schemata and
many schemata are re-used by a larger number of web tables.

As a counter example, the host “en.wikipedia.org”, which
clearly violates our assumption, has 13 799 schemata in our
dataset, which are on average used by 3 web tables. To
understand the reasons for such a large number of different
schemata on a single web site, we manually inspect the 20
hosts with the highest diversity of schemata. We find that
20% of the hosts actually provide vertical tables (although
detected as horizontal tables) and hence a data value was
interpreted as column header. 15% have no headers, but
the first data row was mistaken as schema by the header
detection method, and 25% use data values in the attribute
names (i.e., names of sports teams or the date). Only 40%
of the tables are manually created tables (the tables were
not systematically created from a database).

4. UNION TABLES TO KB MATCHING
Based on the findings from the previous section, we know

that a large number of web tables has a schema that is often
re-used on the same host. We can use this observation to
stitch all web tables that have the same schema into a single,
larger table. Each web table can be considered as a view
vi ∈ V on a larger table t that applies a selection operation
vi = σi(t) to that table. As proposed by Ling et al. [22], we
can stitch these web tables to a larger table, by creating the
union t′ =

⋃
vi∈V vi. We will call the resulting larger tables

“union tables” from now on.
The original work of Ling et al. describes how web tables

from the same web site can be stitched in order to create
larger tables that are useful for visualising and mining the
data. The authors define web tables to be stitchable if all
their column headers match and create the union of all such
tables from the same web site. However, the main focus of
their work is to extract additional attributes from the web
pages (i.e., from the URL, title, text, navigation) on which
the web tables were found. Our work has a different focus
and investigates the effect of this procedure on the web table
matching task.

The result of creating the union tables for all web sites
in our corpus is that the total number of tables is reduced
from 5 176 160 to 261 215. The average size of the tables
increases from 9 rows to 108 rows for the union tables. By
removing exact duplicates from the union tables, we remove
on average 8% of the rows. For the 401 hosts in our sample,
which contain a total of 3.5 million web tables, we create
16 367 union tables.

To measure the improvement for our initial task, we run
T2K Match and COMA on the union tables. We transfer
each correspondence created for a column in a union table
to all original columns in the web tables that were combined
into this union table. We then evaluate the correspondences
for the same sample of tables as in Section 2.

On the original web tables, T2K Match achieved an F1-
measure of 0.24. With the union tables, this is improved
to an F1-measure of 0.5. We see an increase in the number
of correct “rdfs:label” correspondences from 95 to 169. For
all correspondences, a precision of 0.4 and a recall of 0.66
are achieved. The reason for the still rather low precision
is that in total 727 tables were matched to the knowledge
base, although only 204 of the sampled tables can actually
be mapped.

Figure 4: Example of tables that are missed by the union
approach.

For COMA, we have to sample data from union tables
that exceed 1 000 values per attribute. We first sample all
rows that are in the original web tables that are evaluated
and then pick rows at random from the union table until
1 000 rows are reached. COMA achieved an F1-measure of
0.37 on the original web tables, which is increased to 0.47 for
the union tables. The number of correct correspondences to
“rdfs:label” is increased from 18 to 62 and overall a precision
of 0.57 and a recall of 0.4 are achieved.

This experiment shows that the creation of union tables
improves the result of the applied matching methods. In
addition to a larger number of matched tables, we also see
that more properties can be matched correctly using the
enlarged set of property values in the union tables. How-
ever, the achieved performance is still lower than the per-
formance achieved on the gold standards, which is why we
test if stitching the union tables into larger tables results in
further improvements.

5. STITCHING UNION TABLES
Creating union tables already strongly improved the match-

ing performance compared to the result on the original web
tables. Now, we are interested if stitching union tables with
overlapping schemata can result in a further improvement.
In this section, we first show an experimental evaluation of
different schema matching methods on the task of matching
union tables. Then, we explain how we combine these meth-
ods with ideas from holistic schema matching into a hybrid
matcher for our task. Using this matcher, we find mappings
between the union tables and use these mappings to stitch
the union tables into larger tables.

Examples of tables that cannot be stitched using the union
approach are tables which either have the same schema but
different column headers (for example, different languages
or additional values in the column headers) or which have
different, but overlapping schemata (for example a different
set of attributes for the same entity). Figure 4 shows an
example of two tables with stitchable schemata, which differ
in the used language and used the set of attributes.

5.1 Standard Matchers
The schema matching problem for union tables is differ-

ent from the general web table matching problem, because
we can assume that all data was generated from the same
underlying table or database. This reduces heterogeneity
and we can use exact value comparisons instead of similar-
ity measures for comparing attribute values. To determine
the performance of standard matching methods for this task,

1505

Table 1: Datasets for schema matching of union tables.

Dataset Tables Rows Columns Union Topic Characteristics
data.bls.gov 10 825 54 196 59 093 10 statistics various numeric attributes non-mappable
itunes.apple.com 42 729 494 302 258 275 36 music different languages, similar attributes
websitelooker.com 11 351 99 865 39 535 4 statistics similar, but non-mappable attributes
www.nndb.com 23 522 231 738 116 716 9 multiple attributes with similar domains
seatgeek.com 157 581 2 644 035 630 063 64 multiple mixture of venues, music and sports
vgchartz.com 23 258 58 637 116 285 6 video games only one entity per table
Σ 269 266 3 582 773 1 219 967 129

we experiment with three matching approaches: label-based,
value-based and duplicate-based schema matching.

Label-based Matcher. We applied label-based match-
ing implicitly when creating the union tables: all columns
with the same header are matched to each other. We can
expect that this also works for different union tables. How-
ever, if different synonyms or languages are used or if col-
umn headers are missing, this approach will miss correspon-
dences.

Value-based Matcher. In cases where column headers
are missing or uninformative, it is reasonable to look at the
values of the attributes. If two columns contain the same
values, they might represent the same attribute. We do not
have to consider value similarity, so we only need to mea-
sure the value overlap between two columns. However, the
weakness of this approach is that if two tables have differ-
ent, but very similar attributes, for example “birth date”
and “founded date”, it can be difficult to distinguish correct
from coincidental matches.

Duplicate-based Matcher. If value-based similarities
are misleading, duplicate-based schema matching is more
promising. Given a set of duplicate records, this approach
only compares the values of these duplicates in order to
find schema correspondences [5]. For each pair of duplicate
records, all values are compared, resulting in an attribute
similarity matrix for each duplicate. These matrices are
then aggregated by averaging, leading to a final attribute
similarity matrix. With this approach, attributes with simi-
lar domains can be differentiated more precisely, as only at-
tribute values from records describing the same real-world
entity are compared.

In order to come up with a suitable set of duplicates, we
experiment with three different strategies: we either use
candidate keys, determinants, or entity labels to estimate
whether two records refer to the same real-world entity.
Candidate keys uniquely identify a record and should hence
result in an optimal set of duplicates. However, our exper-
iments show that relying on candidate keys does not result
in many duplicates. Determinants are smaller sets of at-
tributes than candidate keys and the combination of their
values can appear for multiple records in the same table,
which results in more duplicates. We use HyFD [25] to de-
termine functional dependencies and candidate keys. Entity
label columns are commonly used in web table to knowledge
base matching [21,24,28,31,35]. These columns contain the
names of the entities that are described in a table and act as
pseudo keys, resulting in the largest number of duplicates.

5.2 Datasets
To evaluate the proposed matching methods, we select

several web sites with different characteristics and create
union tables from the tables on these web sites. Table 1
gives an overview of the datasets that we use to compare
the matching methods. Each dataset contains all web ta-
bles from a certain web site (identified by the host part of its
URL) that are included in the 5 million table corpus intro-
duced in Section 2. The first three columns in Table 1 show
how many web tables, rows and columns each dataset con-
tains. The column “Union” shows the number of schemata,
which is also the number of union tables that were created
for the respective web site.

5.3 Evaluation
The goal of our evaluation is to measure how correct and

complete the result of a matching algorithm is. For this
purpose, we manually generate reference mappings for all
datasets. These reference mappings are complete, i.e., they
contain all correct correspondences between the union ta-
bles of the respective datasets. Given the reference mapping
Mref and the matcher output Mmatch, we define precision

as P =
|Mmatch∩Mref |
|Mmatch|

and recall as R =
|Mmatch∩Mref |

|Mref |
.

5.4 Standard Matcher Experiments
We now present the results of the schema matching experi-

ments for all matchers described in Section 5.1. An overview
of all results is shown in Table 2.

Label-based Matcher. The label-based method is very
strong in our use case and is overall the best standard matcher
with an average F1-measure of 0.69. It is important to note
that it achieves a precision of 100% for all datasets.

Value-based Matcher. The value-based method results
in the second highest average F1-measure with 0.53. How-
ever, its precision is the lowest with an average of only 0.45.
The problem is that seemingly similar columns are mapped
to each other, which actually represent different attributes.
For example, this results in mappings between “artist” and
“album” for itunes, “text” and “primary country” for web-
sitelooker, “employment per thousand jobs” and “percent
of state employment” for bls and between “founded” and
“birth date” for nndb.

Duplicate-based Matcher. The three approaches for
duplicate-based matching achieve the lowest average F1-
measure values with 0.26 for entity-labels, 0.35 for deter-
minants and 0.11 for candidate keys. However, these meth-
ods can only create correspondences if two tables contain
records that are duplicates, so all correspondences between
tables with distinct records are missed. This is also reflected
in the results, as the precision of the duplicate-based meth-

1506

Table 2: Comparison of all schema matchers (F1-measure, best configuration for each dataset is shown in boldface).

Standard Matchers Hybrid Matchers
Value Entity Label Determinant Key Label Value Entity Label Determinant Key Label

bls 0.67 0.38 0.14 0.03 0.75 0.89 0.85 0.84 0.84 0.75
itunes 0.61 0.45 0.51 0.15 0.18 0.81 0.71 0.79 0.53 0.18
websitelooker 0.43 0.20 0.25 0.00 0.73 0.80 0.71 0.73 0.73 0.73
nndb 0.38 0.10 0.38 0.11 1.00 0.52 0.87 1.00 1.00 1.00
seatgeek 0.20 0.27 0.46 0.17 0.83 0.78 0.73 0.87 0.84 0.83
vgchartz 0.88 0.19 0.35 0.19 0.63 0.96 0.70 0.70 0.63 0.63
Average 0.53 0.26 0.35 0.11 0.69 0.79 0.76 0.82 0.76 0.69

ods is much higher with averages of 0.65 for entity labels,
0.89 for determinants and 0.78 for candidate keys. Using
entity labels to find duplicates, the problem is that ambigu-
ous names cause incorrect duplicates, which in turn reduces
the schema matching performance. This problem is reduced
when using determinants or candidate keys. However, we
then find fewer duplicates which means that some union ta-
bles cannot be matched or are matched incorrectly due to
too few duplicates.

The results of this experiment (Table 2, Section Standard
Matchers) show that the standard matchers cannot satisfac-
tory solve the task of matching union tables individually.

5.5 Hybrid Matcher
The experiments in the previous section have shown that

the standard matchers cannot satisfactory match the union
tables individually. But, as the value- and duplicate-based
matchers use different signals for their matching decisions
than the label-based matcher, we can combine them into
a hybrid matcher. For this hybrid matcher, we also include
ideas from holistic schema matching that make use of the at-
tribute labels, which are the strongest signal in our use case.
Holistic schema matching refers to methods that make de-
cisions based on observations from all schemata in a certain
corpus [14,15,30,34].

Overall Process. Traditional matching methods only
consider two tables at a time. But, if many tables have
to be matched, pair-wise matching can produce inconsisten-
cies. For example, two columns from the same table could
be matched to each other via a path of correspondences
to other tables. Such inconsistencies can only be detected
when considering the mapping of more than two tables at
the same time. Our hybrid matcher first uses one of the
standard matchers from the previous section to perform a
pair-wise matching between all union tables. The runtime
of the pair-wise matching is quadratic in the number of ta-
bles, but as we match the already created union tables and
not to the original web tables, this number is rather low in
most cases (see Table 1, Column Union). After the pair-
wise matching, two holistic refinement steps are applied to
remove inconsistent correspondences and add missing corre-
spondences to the mapping.

Pair-wise Refinement. The first refinement operates
on pairs of tables and the schema correspondences that were
created by the standard matcher. First, correspondences
which are inconsistent w.r.t. all schemata on the same web
site are removed as follows: We assume that attributes are
not duplicated in a single schema and use co-occurrence of
attribute names in the same schema as negative evidence.
This has been shown to be applicable for web tables [16]

Figure 5: Graph refinement: If “artist” and “name” ap-
peared in the same table, the path between these nodes
(solid edges) can be detected as inconsistent. To solve this
inconsistency, we remove the red edge, which has the highest
betweenness centrality of all edges on this path.

as well as the schemata of query forms on web pages [14].
All column headers that appear in the same schema cannot
be mapped to one another and such correspondences are
removed. 7 To exclude violations of this assumption, we fil-
ter out all “horizontally stacked” tables as described in [18].
Such tables are constructs where one schema is repeated
multiple times in a single table to stretch it horizontally
(for purely visual reasons). Second, correspondences for all
columns with equal headers are added if they do not exist
already, which equals to running the label-based matcher.

Graph-based Refinement. The second refinement op-
erates on the graph of all schema correspondences as edges
and columns as nodes. Again, the first step is to detect
and remove inconsistencies. We apply the same rule as dur-
ing the pair-wise refinement, though this time to the full
graph. The correspondences in the graph are inconsistent if
two columns with headers that co-occurred in a schema are
connected by a path of schema correspondences. In such a
case, we remove the edge with the highest betweenness cen-
trality from the inconsistent path. As an example, assume
a perfect mapping between columns that represent two at-
tributes. The resulting graph contains two components of
connected columns, one for each attribute. Now we add
an incorrect correspondence to this graph, which connects
the two components, as shown as the red edge in Figure 5.
This new edge is part of all shortest paths that connect any
two columns from the different components. So, in an in-
consistent matching graph, we want to remove the edge(s)
that connect different components, which can be measured
using betweenness centrality. The betweenness centrality

7But if an attribute name occurs multiple times in a single
schema, this does not lead to the removal of any correspon-
dences.

1507

measures which fraction of all shortest paths between any
two nodes in the graph include a certain edge. In our exam-
ple, the inserted edge has the highest betweenness centrality
value because it is the only connection between the two com-
ponents. This procedure is similar to the one proposed by
Wang et al. [33]. As final step of the graph-based refinement,
we add all edges that can be inferred by transitivity to the
graph and thus reduce the incompleteness of the graph.

5.6 Hybrid Matcher Experiments
In our next experiment, we run the hybrid matcher on the

datasets introduced in Section 5.2 in configurations with all
standard matchers discussed in Section 5.1.

Table 2 shows the F1-measure for all standard and hy-
brid matcher configurations (the best configuration for each
dataset is shown in boldface). The best result over all data-
sets is achieved by the determinant matcher, with an average
F1-measure of 0.82. For all methods, a large improvement
can be attributed to the correspondences from the label-
based matcher, because it can find the matches between
tables with disjoint values. In combination with the transi-
tivity applied by the Graph-based Refinement, the value- or
duplicate-based and the label-based correspondences com-
plement each other. For example for the itunes dataset with
the determinant-based matcher, this results in a recall of
0.69, which exceeds the combined recall of label-based (0.1)
and determinant-based (0.39) alone. Finally, the removal
of inconsistent correspondences leads to an improvement in
precision for all configurations and datasets and does not
cause a decrease in recall.

These results show that the combination of the different
standard matchers into a holistic hybrid matcher improves
the schema matching performance. Depending on which
standard matcher is used, we can observe a trade-off between
precision and recall. While the value-based matcher still
achieves the highest recall at comparably low precision, the
duplicate-based methods achieve a higher precision.

5.7 Matching Runtime
As some of our matchers rely on the comparisons of du-

plicates and as the number of duplicates varies strongly be-
tween the different strategies, we now discuss the runtime
of the different matcher configurations.

Figure 6 shows the runtime of the hybrid matcher in mil-
liseconds. All experiments were executed on a machine with
two Intel Xeon CPU E5-2640 (2.60GHz, Octa-Core), 386GB
main memory running Debian release 3.16. The runtime for
the label-based method remains below one second for all
datasets, as only a very small number of attribute names is
compared. The value-based method runs between one and
ten seconds for all datasets. As we do not need similar-
ity measures, the value-based matching can be performed
by checking the overlap of the domains of the different at-
tributes. However, the higher runtimes are caused by cases
where too many correspondences are generated. This leads
to a high number of nodes n and edges e which all have
to be considered in the graph-based refinement step (the
calculation of the betweenness centrality has a runtime in
O(n2 logn + ne)). For the duplicate-based methods, we
first generate duplicates from all rows in the tables and
then check the attribute values of these duplicates. Hence
the runtime is mainly determined by the number of dupli-
cates that is found. Entity label matching, which finds the

Figure 6: Hybrid matcher runtime.

largest number of duplicates, also has the highest runtime
for all datasets (more than 13 minutes for the websitelooker
dataset). Determinant matching has the next-highest run-
times, but even the longest running dataset (itunes with 40
seconds) is much faster than the entity label approach. The
reason is the much smaller number of duplicates that need
to be checked. The runtime of the candidate key matching
is close to the value-based method, which is because only
very few duplicates are found.

6. STITCHED UNION TABLES TO KB
MATCHING

In the previous section, we have evaluated different meth-
ods for matching the union tables, that were created from
the initial web tables, to each other. Now, we stitch the
union tables using the obtained mapping and evaluate how
this changes the schema matching performance for the knowl-
edge base augmentation task. The union tables ui ∈ U can
be considered as different projections πi of the same un-
derlying table ui = πi(t). Using the mapping M obtained
by the schema matching, they can be stitched together as
t′′ =

⋃
ui∈U π

−1(ui,M), where π−1(ui,M) is the transfor-
mation of ui into the consolidated schema for M .

In general, we want to combine as many union tables as
possible, but at the same time avoid too much de-normali-
sation, as the algorithm using the stitched union tables might
not be able to deal with highly de-normalised tables. Hence,
we decide to merge all union tables that have matching can-
didate keys, which contain at least one string column. 8

All correspondences between tables that do not fulfil this
requirement are ignored during stitching. Using the remain-
ing correspondences, we merge all columns which are con-
nected via schema correspondences into the same column
in the stitched union table. The consolidated schema of a
stitched union table consists of all merged columns and all
columns without correspondences. After transforming every
union table into its respective consolidated schema, we cre-
ate their union to obtain the final, stitched union tables. To
avoid extremely sparse columns in these tables, all columns
with more than 95% empty values are removed.

6.1 Matching Individual Web Sites
To test the influence of the matching method for stitch-

ing union tables on the performance of T2K Match, we run
experiments with the different configurations of our hybrid

8T2K Match relies on entity label columns for the match-
ing, so all tables without a string column that exceeds the
uniqueness threshold are ignored.

1508

Table 3: Datasets for stitched union table to knowledge
base matching. T = Tables, C = Columns, Det. = Deter-
minant, CK = Candidate Key.

Union Value Entity Det. CK
Dataset T C T C T C T C T C
itunes 36 226 1 10 1 12 1 10 1 16
nndb 10 28 7 20 7 23 9 27 9 27
seatgeek 64 233 2 7 2 7 4 15 5 18
vgchartz 6 29 2 17 2 18 3 19 3 19

matcher on the datasets introduced in Section 5.2. A pre-
condition for the schema matching for knowledge base aug-
mentation is that the tables contain both entities and at-
tributes which already exist in the knowledge base. As the
websitelooker and bls datasets do not contain any attributes
that also exist in the knowledge base, we remove them from
this experiment. We apply the hybrid matcher in its dif-
ferent configurations to all datasets shown in Table 3. The
different columns show how many tables (T) and columns
(C) resulted from the stitching with the different matchers.

Table 4 shows the F1-measure resulting from running T2K
Match on the original, union and the stitched union tables
for all configurations of the hybrid matcher. The reference
mapping for all datasets was created by manually labelling
the union tables with their corresponding properties in DB-
pedia and transferring the correspondences to all original
web table columns. We evaluate all correspondences that
are created for the original web tables.

For the original tables, T2K Match manages to create
rather precise results with low recall for the itunes and nndb
datasets but fails for the seatgeek and vgchartz datasets.
The average F1-measure is 0.32. The tables in the vgchartz
dataset can be extremely small and the result completely
depends on whether the one entity in the table can be cor-
rectly recognised. For the seatgeek dataset, the described
venues are not recognised as main entity, so no schema cor-
respondences can be created.

With the union and stitched union tables, the average F1-
measure increases to a range from 0.8 to 0.88. Most of the
attributes which exist in the knowledge base have been cor-
rectly matched by all stitching approaches, with the result
that the performance of T2K Match does not differ much
on these datasets. However, we see improvements for the
itunes dataset, where the smaller union tables resulted in
missed and incorrect correspondences. For these tables, the
stitched union tables obtained with the determinant-based
matcher resulted in the best performance of T2K Match.
For the vgchartz dataset, the results of the value-based and
entity-label based stitching approaches cause a worse per-
formance of T2K Match compared to the union tables and
the other stitching approaches. This is because union tables
which only have a single attribute in common are matched,
leading to an incorrect decision of T2K Match. With the
other approaches, more attributes are required and hence
this error is avoided.

Overall, we can achieve improvements of 0.48 to 0.76 points
in F1-measure with the union and stitched union tables in
comparison to the original web tables. In all cases, creating
the union tables causes a huge increase in F1-measure. De-
pending on the dataset, the additional stitching step after
creating the union tables can further improve the results.

Table 4: Evaluation of T2K Match for web tables, union
and stitched union tables.

itunes nndb seatg. vgchartz avg.
Web Tables 0.500 0.515 0.038 0.244 0.324
Union 0.799 0.999 0.799 0.800 0.849
Value-Based 0.913 0.997 0.800 0.500 0.802
Entity Label 0.982 0.998 0.799 0.500 0.820
Determinant 0.944 0.999 0.800 0.800 0.886
Cand. Key 0.897 0.999 0.800 0.800 0.874
Label 0.930 0.999 0.800 0.800 0.882

However, as not all attributes can be mapped to the knowl-
edge base, the differences between the stitching approaches
are only slight in this experiment.

6.2 Matching the Random Sample
We now come back to our initial experiment and run the

stitching on all web sites in our random sample of 1 000
tables from Section 2 and afterwards apply T2K Match
and COMA. Again, each correspondence for a column in
a stitched union table is transferred to all original web ta-
ble columns that were merged into this column. We then
evaluate all correspondences for the web tables in the ini-
tial sample. As in Section 4, we first stitch all 3.5 million
web tables (16 379 union tables) from the hosts in our sam-
ple and then apply T2K Match and COMA. This results
in 1 160 stitched union tables for the value-based matcher,
1 562 for the entity-label matcher, 1 981 for the determinant
matcher and 2 388 stitched union tables for the candidate-
key matcher.

Table 5 gives an overview of the results for the differ-
ent stitching steps and matcher configurations. For T2K
Match, the initial result of 0.24 F1-measure is improved to
0.50 when creating the union tables. With the stitched union
tables, the best performance is achieved in the configuration
with the determinant matcher, with an F1-measure of 0.62.
The additional improvements are due to an improved preci-
sion for correspondences to “rdfs:label” and improvements
in both precision and recall for other properties.

For COMA, we also see a further improvement in both
precision and recall. We use only the determinant-based
matcher to create stitched union tables in this experiment.
The F1-measure increased from 0.37 for the original web
tables and 0.47 for the union tables to 0.51 for the stitched
union tables. Although the performance is worse than with
T2K Match, which is specialised for this task, we can see an
improvement when using union tables (10%) and stitched
union tables (14%) instead of the original web tables.

Our experiments show that the step from original web ta-
bles to union tables results a strong increase in performance
on our sample of 1 000 web tables. We thus recommend any
web table matching system to at least implement creating
union tables as a preprocessing step, which does not require
any schema matching. If the matching results should be fur-
ther improved, systems can decide to combine union tables
into stitched union tables using schema matching.

Choosing a Matcher. The experiments on the selected
websites showed that the differences in the performance of
our matching approaches are not necessarily reflected when
running T2K Match. The reason is that not all of the at-
tributes in these tables have a counterpart in the knowl-

1509

Table 5: Results of running T2K Match and COMA with
web tables, union tables and stitched union tables.

T2K Match Precision Recall F1-measure
Web Tables 0.20 0.32 0.24
Union Tables 0.40 0.66 0.50
Value-based 0.58 0.59 0.58
Entity-label 0.56 0.56 0.56
Determinant 0.63 0.61 0.62
Candidate Key 0.62 0.60 0.61
COMA
Web Tables 0.54 0.28 0.37
Union Tables 0.57 0.40 0.47
Stitched Union 0.62 0.43 0.51

edge base, and are hence not considered in this evaluation.
On the random sample, however, the determinant-based
matcher achieves the best result, which confirms the find-
ing from Section 5.6. In general, the results show that rea-
sonable choices for a standard matcher are the value-based,
the determinant-based and the candidate-key matcher. The
entity-label matcher tends to create too many duplicates
which heavily impacts the runtime but does not lead to a
better result. In the experiments from Section 5.6, the value-
based matcher achieves the highest recall and the candidate-
key matcher reaches the highest precision. As the determi-
nant-based matcher achieves the highest F1-measure, it is
preferred unless a use case requires a focus on either preci-
sion or recall. In the experiments on the random sample,
it also achieves the highest precision and recall among all
matcher configurations for the web tables to knowledge base
matching use case.

7. RESULT ANALYSIS
In the previous sections, we have shown that stitching web

tables can improve the results for the web table to knowledge
base matching task. In this section, we analyse the impact of
the stitching procedure on the amount of correctly extracted
values and the amount of tables in the corpus. Afterwards,
we investigate which characteristics of the set of tables per
host lead to the highest performance gains.

7.1 Amount of Extracted Values
With respect to applications that use the data from the

tables, such as filling missing values in a knowledge base,
it is not only important to correctly match the schema,
but rather how many values are extracted correctly. Cor-
rectly extracting a value requires not only the schema to
be matched correctly, but also the correct identification of
the entity that is described in a specific table row. We esti-
mate the precision of the entities identified by T2K Match
using a sample of 200 entities for each configuration from
our 1 000 tables experiment. Based on the original evalu-
ation of T2K Match, we expect a precision of 0.9 for the
row-to-instance matching task [28]. We find that the pre-
cision on the original web tables is 98%, and on the union
and stitched union tables both 87%. This difference has
mainly two reasons. First, most errors are made for entities
with ambiguous names. Avoiding these errors requires to
exploit multiple attributes per row and to put less weight
on the entity label than done by T2K Match. Second, the
tables containing these entities are often not mapped using

Figure 7: Evaluation of extracted values.

Figure 8: Tables per web site at different stitching steps.

the original web tables, which is why these errors are not
made in this case.

Based on the schema and entity mapping, we calculate
the amount of values that can be correctly extracted. Note
that correctly extracted in this context means that entity
and attribute correspondence is correct, not that the actual
attribute value is true. Figure 7 shows that by using union
tables and stitched union tables, we can extract more values
at a higher precision than for the original web tables. In a
knowledge base augmentation scenario, the next step would
be to apply a data fusion method to the extracted values
from all tables in order to determine potentially true val-
ues. However, this exceeds the scope of this paper, but was
demonstrated earlier for a similar web table corpus [29].

7.2 Table Stitching Statistics
The result of the stitching procedure is the combination

of large numbers of small web tables into larger tables. This
reduces the overall amount of tables in the corpus as well as
the amount of tables for individual web sites. Besides the
benefit for the knowledge base augmentation task, a reduced
amount of tables can also be beneficial for other applications.
For example, table search [7,20,34] or interactive exploration
of a table corpus [12] are simplified by a reduced amount
of tables. In order to see the impact of table stitching on
such applications, we measure the number of tables per host
at each stitching step for the web tables corpus introduced
in Section 2, shown as cdf in Figure 8. The horizontal axis
shows the number of tables per web site and the vertical axis
indicates the cumulated percentage of web tables, union and
stitched union tables that are found on these web sites. For
generating these statistics, we use the hybrid matcher in its
configuration with determinant matching.

In the original corpus, we find many web sites with large

1510

(a) Average number of rows per web table. (b) Average number of columns per web table.

(c) Number of schemata per host. (d) Number of original web tables per host.

Figure 9: Influence of table characteristics on matching performance.

amounts of tables and a total of 5 176 160 web tables. After
creating the union tables, the total number of tables is dras-
tically reduced to 261 215. We now find the data of 50% of
all original tables on web sites with no more than 7 union
tables and reach the 75% mark at 42 union tables per web-
site. Applying the union table stitching to all hosts with up
to 1 000 union tables further reduces the amount of tables to
104 221. 9 More than 50% of the original tables now belong
to web sites with a maximum of only 3 stitched union tables
and we find 75% of the original tables on websites with less
than 7 stitched union tables.

7.3 Table Characteristics
Another important aspect is how effective the stitching

methods are for hosts that publish web tables with different
characteristics. Hence, we analyse for which table charac-
teristics the stitching methods result in the largest benefits.
Figure 9 shows the web table to knowledge base schema
matching performance w.r.t. four characteristics (average
number of rows & columns, total number of schemas & ta-
bles) on host level. These characteristics can be determined
from the original web tables for each host, so this profile
can be used to determine whether a stitching procedure
should be applied or not. The bars in Figure 9 show the
F1-measure for the random 1 000 table sample, the line in-
dicates the share of all correspondences that falls into each
bin. Figure 9a shows that stitching is effective for web ta-
bles with few rows (up to 20 rows per web table), which is
our main argument for applying a stitching procedure. For
higher numbers of rows, the results of using stitched union
tables are worse than the results of just using union tables.
These are web tables which are already large enough for
matching them directly, so every error that is introduced by
the union table stitching procedure has a negative impact

9We set a threshold of 1 000 union tables per host to exclude
web sites that cannot be handled by our method, such as
Wikipedia.

on the result. Figure 9b shows that a similar trend can be
observed for the number of table columns. With up to 6
columns, the stitching approach is effective, but for tables
with more columns the performance drops. Figure 9c shows
that stitching improves the results regardless of the number
schemata per host. However, the advantage over only using
the union tables is highest for up to 20 schemas. Figure
9d shows that stitching is an improvement regardless of the
number of original web tables provided by a host. We can
further see a trend that the improvement increases with the
amount of web tables.

8. RELATED WORK
Since the first large-scale effort to extract tables from

web pages by Cafarella et al. [8] in 2008, many systems
were developed that facilitate web table data. The tasks
that these systems address range from data search and ta-
ble extension [7, 20, 21, 23, 34], over knowledge base comple-
tion [11, 28, 31, 32, 35], to displaying web table data as rich
snippets in search engine results [2]. The topics that are
covered by large web table corpora were analysed by [13]
and [29].

Web Table to Knowledge Base Matching. The task
of matching the schemata of web tables to a knowledge
base is addressed by Limaye et al. [21], Mulwad et al. [24],
Venetis et al. [31] and Zhang [35]. The approaches of Li-
maye, Mulwad and Venetis only consider columns which
contain named entities. Zhang also creates correspondences
for literal columns. The method of Zhang complements our
work, as the focus of the method is the efficiency of the
matching process on large tables, which involves sampling
the rows in order to reduce the runtime.

Mulwad and Zhang evaluate on the table corpus used by
Limaye, but create their own versions of the gold standard.
Hence, the achieved performances of 64% accuracy by Li-
maye, 86% F1-measure by Mulwad and 66% F1-measure by
Zhang cannot be directly compared. Venetis et al. evaluate

1511

on a random sample, from which web tables are removed for
which their algorithm did not produce any annotations or
where the entity label column was not correctly identified.
This sample is hence not comparable to our sample, which
contains many tables that cannot be mapped to the knowl-
edge base. They note that it was hard to find relations
which are supported by enough rows in the tables, which
could indicate that their method can also be improved by
first stitching the web tables.

Union Tables. All of the mentioned matching approaches
consider the extracted web tables as individual data sources.
Ling et al. [22] proposed to create the union of web tables
with matching headers. But different from our work, their
focus is the extraction of context attributes from the text
surrounding the tables and to find proper attribute names
for these context attributes. To the best of our knowledge,
we are the first to apply the idea of table stitching to a
large number of web tables in order to improve matching
performance. Other research that considers the extraction
of context information in order to improve the matching
performance includes the work by Zhang [35] and Braun-
schweig [6] as well as the Octopus [7] and Infogather [34]
systems.

Web Table to Web Table Matching. Matching web
tables to each other and not to a knowledge base is mainly
considered in the context of table extension, where the user
provides a query table that is enriched with the data from
matching web tables from a large corpus [7, 9, 20,34].

Das Sarma et al. [9] propose a method with a very similar
idea to our method, but a different use case. They propose
two operations that find similar tables in a corpus to add
additional rows and attributes to a given query table. How-
ever, their methods are designed to find such tables for a
single query table, while we apply these ideas to combine
the web tables in a corpus.

The Octopus [7] system provides similar operations. Given
a query table, potentially matching web tables are discov-
ered from a large corpus. Further, it provides operations to
extract context attributes from the web pages, create the
union of multiple search results and add additional columns
from other web tables. In the discussion of their web table
matching method, the authors recognise the problem that
two related web tables, which could have been created from
the same underlying table, might not have any data in com-
mon, which prevents a match. They solve this problem by
introducing the column width as additional feature. Ac-
cording to their description, we assume that this problem
would be solved when stitching the web tables before their
matching operation.

The Infogather system by Yakout et al. [34] also provides
for extending a base table with additional attributes. This
system first matches all web tables in a corpus in a pair-
wise way and then holistically refines the matches in the
graph created by the schema correspondences using varia-
tions of PageRank. The main idea is to find tables which
have no direct matches with the query table via this match-
ing graph. If such an indirect match is created via the con-
nections among different tables from the same web site, the
result is comparable to using direct matching with one of
our stitched tables.

Schema Matching Techniques. In our experiments,
we have compared different schema matching methods for
the task of matching union tables. According to the clas-

sification of Rahm and Bernstein [26], these matchers be-
long to the two major categories of schema-only matchers
and instance-based matchers. With our hybrid matcher, we
also incorporate holistic correspondence refinement, which
belongs to the category of collective matching approaches
according to Bernstein et al. [3].

The holistic matching methods in our hybrid matcher have
been proposed before by He et al. [16] and He and Chang
[14]: Both consider co-occurrence of attribute names in a
schema as negative evidence. He and Chang [14] propose a
method for matching web query interfaces. They consider
attributes that occur in the same schema as non-matches
and all other attribute combinations as potential matches.

He et al. [16] focus on synonym discovery and use web ta-
bles in combination with search query logs. Different users,
which search for the same attribute, likely enter different
synonyms as query terms, but click on the same results re-
turned from a search engine. This signal is used as pos-
itive evidence for attribute synonymity. Attributes which
co-occur in the same web table, however, are likely not syn-
onyms, which is why co-occurrence is considered as negative
evidence.

The removal of inconsistent correspondences in our graph-
based refinement step is similar to the cross validation of
mappings proposed by Wang et al. [33]. They create a graph
of schema elements with correspondences between them. In
addition to correspondences between schema elements, they
use a predefined global schema to define clusters in this
graph. To remove incorrect correspondences, they move
schema elements between the clusters until the edge-cut, i.e.,
the sum of weights of the edges between different clusters,
is minimised. Due to the lack of a global schema to deter-
mine such clusters, we remove the edges with the highest
betweenness centrality in our approach.

9. CONCLUSION
The research area of web table to knowledge base match-

ing is becoming increasingly sophisticated and matching sys-
tems are going long ways for small performance improve-
ments on the common benchmarks (see Ritze and Bizer [27]
for a recent overview). This paper has shown that table
stitching has a strong impact on the matching quality, but
up till now, none of the existing web table to knowledge base
matching systems uses table stitching as a pre-processing
step. Thus, the conclusion of this paper is that web ta-
ble matching systems should combine web tables into union
tables and for further performance improvements combine
union tables into stitched union tables in order to be able to
properly exploit the large number of very small tables that
exist on the Web.

An interesting direction for future work is the matching of
stitched tables across different web sites. As table stitching
results in larger tables and reduces the overall number of
tables in a corpus, it appears more feasible to deal with the
increased heterogeneity and the higher runtime requirements
of the cross-site table matching scenario. The resulting data
sets would not be limited to existing entities or properties in
a knowledge base and could thus be used for the construction
of more comprehensive knowledge bases that cover long-tail
entities and properties.

1512

10. REFERENCES
[1] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm.

Schema and ontology matching with coma++. In
Proc. of the 2005 SIGMOD, pages 906–908, 2005.

[2] S. Balakrishnan, A. Y. Halevy, B. Harb, and et al.
Applying webtables in practice. In Conference on
Innovative Data Systems Research CIDR, 2015.

[3] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic
schema matching, ten years later. PVLDB,
4(11):pages 695–701, 2011.

[4] C. S. Bhagavatula, T. Noraset, and D. Downey. Tabel:
entity linking in web tables. In International Semantic
Web Conference, pages 425–441. Springer, 2015.

[5] A. Bilke and F. Naumann. Schema matching using
duplicates. In 21st ICDE, pages 69–80. IEEE, 2005.

[6] K. Braunschweig, M. Thiele, J. Eberius, and
W. Lehner. Column-specific Context Extraction for
Web Tables. In Proc. of the 30th ACM Symposium on
Applied Computing, SAC ’15, pages 1072–1077, 2015.

[7] M. J. Cafarella, A. Halevy, and N. Khoussainova.
Data Integration for the Relational Web. PVLDB,
2(1):1090–1101, 2009.

[8] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. WebTables: Exploring the Power of Tables
on the Web. PVLDB, 1(1):538–549, 2008.

[9] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee,
F. Wu, R. Xin, and C. Yu. Finding Related Tables. In
Proc. of the 2012 SIGMOD, pages 817–828, 2012.

[10] H.-H. Do and E. Rahm. Coma: a system for flexible
combination of schema matching approaches. In Proc.
of the 28th VLDB, pages 610–621, 2002.

[11] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
K. Murphy, T. Strohmann, S. Sun, and W. Zhang.
Knowledge Vault: A Web-scale Approach to
Probabilistic Knowledge Fusion. In Proc. of the 20th
SIGKDD, pages 601–610, 2014.

[12] J. Ellis, A. Fokoue, O. Hassanzadeh,
A. Kementsietsidis, K. Srinivas, and M. J. Ward.
Exploring Big Data with Helix: Finding Needles in a
Big Haystack. SIGMOD Rec., 43(4):43–54, Feb. 2015.

[13] O. Hassanzadeh, M. J. Ward, M. Rodriguez-Muro,
and K. Srinivas. Understanding a large corpus of web
tables through matching with knowledge bases: an
empirical study. In Proc. of the 10th Int. Workshop on
Ontology Matching, pages 25–34, 2015.

[14] B. He and K. C.-C. Chang. Statistical schema
matching across web query interfaces. In Proceedings
of the 2003 SIGMOD, pages 217–228, 2003.

[15] B. He, K. C.-C. Chang, and J. Han. Discovering
complex matchings across web query interfaces: a
correlation mining approach. In Proceedings of the
tenth ACM SIGKDD, pages 148–157, 2004.

[16] Y. He, K. Chakrabarti, T. Cheng, and T. Tylenda.
Automatic discovery of attribute synonyms using
query logs and table corpora. In Proceedings of the
25th WWW, pages 1429–1439, 2016.

[17] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch,
D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer.
DBpedia - A Large-scale, Multilingual Knowledge
Base Extracted from Wikipedia. Semantic Web
Journal, 6(2):pages 167–195, 2015.

[18] O. Lehmberg and C. Bizer. Web table column
categorisation and profiling. In Proceedings of the 19th
WebDB, page 4. ACM, 2016.

[19] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer. A
large public corpus of web tables containing time and
context metadata. In Proceedings of the 25th WWW,
pages 75–76, 2016.

[20] O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel,
H. Paulheim, and C. Bizer. The Mannheim Search
Join Engine. Web Semantics: Science, Services and
Agents on the World Wide Web, 35:159–166, 2015.

[21] G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and Searching Web Tables Using Entities,
Types and Relationships. PVLDB, 3(1-2):1338–1347,
2010.

[22] X. Ling, A. Y. Halevy, F. Wu, and C. Yu. Synthesizing
union tables from the web. In IJCAI, page 2677, 2013.

[23] J. Morcos, Z. Abedjan, I. F. Ilyas, M. Ouzzani,
P. Papotti, and M. Stonebraker. Dataxformer: An
interactive data transformation tool. In Proceedings of
the 2015 SIGMOD, pages 883–888. ACM, 2015.

[24] V. Mulwad, T. Finin, and A. Joshi. Semantic message
passing for generating linked data from tables. In
ISWC, pages 363–378. Springer, 2013.

[25] T. Papenbrock and F. Naumann. A hybrid approach
to functional dependency discovery. Proceedings of the
2016 SIGMOD, pages 821–833, 2016.

[26] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. the VLDB Journal,
10(4):pages 334–350, 2001.

[27] D. Ritze and C. Bizer. Matching Web Tables To
DBpedia - A Feature Utility Study. In Proceedings of
the 20th EDBT, pages 210–221, 2017.

[28] D. Ritze, O. Lehmberg, and C. Bizer. Matching
HTML Tables to DBpedia. In Proc. of the 5th WIMS,
page 10, 2015.

[29] D. Ritze, O. Lehmberg, Y. Oulabi, and C. Bizer.
Profiling the potential of web tables for augmenting
cross-domain knowledge bases. In Proceedings of the
25th WWW, pages 251–261, 2016.

[30] W. Su, J. Wang, and F. Lochovsky. Holistic Schema
Matching for Web Query Interfaces. In EDBT 2006,
volume 3896, pages 77–94. Springer, 2006.

[31] P. Venetis, A. Halevy, J. Madhavan, M. Paşca,
W. Shen, F. Wu, G. Miao, and C. Wu. Recovering
Semantics of Tables on the Web. PVLDB,
4(9):528–538, 2011.

[32] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu.
Understanding Tables on the Web. In Proc. of the 31st
ER, pages 141–155, 2012.

[33] J. Wang, J.-R. Wen, F. Lochovsky, and W.-Y. Ma.
Instance-based schema matching for web databases by
domain-specific query probing. In PVLDB, volume 30,
pages 408–419, 2004.

[34] M. Yakout, K. Ganjam, K. Chakrabarti, and
S. Chaudhuri. InfoGather: Entity Augmentation and
Attribute Discovery by Holistic Matching with Web
Tables. In Proc. of the 2012 SIGMOD, pages 97–108,
2012.

[35] Z. Zhang. Effective and efficient semantic table
interpretation using tableminer+. Semantic Web,
8(6):1–39, 2017.

1513

