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1. ABSTRACT
Cliques refer to subgraphs in an undirected graph such that ver-

tices in each subgraph are pairwise adjacent. The maximum clique
problem, to find the clique with most vertices in a given graph, has
been extensively studied. Besides its theoretical value as an NP-
hard problem, the maximum clique problem is known to have di-
rect applications in various fields, such as community search in so-
cial networks and social media, team formation in expert networks,
gene expression and motif discovery in bioinformatics and anoma-
ly detection in complex networks, revealing the structure and func-
tion of networks. However, algorithms designed for the maximum
clique problem are expensive to deal with real-world networks.

In this paper, we devise a randomized algorithm for the maxi-
mum clique problem. Different from previous algorithms that search
from each vertex one after another, our approach RMC, for the
randomized maximum clique problem, employs a binary search
while maintaining a lower bound ωc and an upper bound ωc of
ω(G). In each iteration, RMC attempts to find a ωt-clique where
ωt = b(ωc + ωc)/2c. As finding ωt in each iteration is NP-
complete, we extract a seed set S such that the problem of find-
ing a ωt-clique in G is equivalent to finding a ωt-clique in S with
probability guarantees (≥1−n−c). We propose a novel iterative al-
gorithm to determine the maximum clique by searching a k-clique
in S starting from k = ωc + 1 until S becomes ∅, when more it-
erations benefit marginally. As confirmed by the experiments, our
approach is much more efficient and robust than previous solutions
and can always find the exact maximum clique.

2. INTRODUCTION
Various networks ranging from social networks, collaboration

networks to biological networks, have grown steadily. Cliques refer
to subgraphs in an undirected graph where any two vertices in the
subgraph are adjacent to each other. Since clique was introduced to
model groups of individuals who know each other [31], cliques are
widely used to represent dense communities in complex network-
s and the maximum clique problem has been extensively studied.
The maximum clique problem is known to have direct applications
in various fields and cliques are of vital importance in develop-
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Figure 1: The maximum clique vs its relaxations

ing graph-based algorithms to analyze the structure and function
of networks arising in diverse areas. We list some applications
closely related to the maximum clique problem. (a) Community
search in social networks and social media [36]: In social network-
s and social media, individuals who are familiar with each other
are connected with edges, and large cliques can serve as candidates
for communities, where community detection is acknowledged to
be an efficient tool for analyzing the organization and function of
complex networks by studying mesoscopic structures. (b) Team
formation in expert networks [28]: In a social network or a col-
laboration network that captures the compatibility among experts
as well as the individual capabilities of each expert, the problem
of team formation requires to find a k-clique whose members can
perfectly cover a given capability set, where k is the number of the
experts. (c) Gene expression and motif discovery in bioinformatics
[49, 52]: In gene co-expression networks, Co-Expression Groups
(CEGs) are modeled as cliques. Motif discovery in bioinformat-
ics and molecular biology requires to find large CEGs in gene co-
expression networks. (d) Anomaly detection in complex networks
[30, 6]: In such applications, cliques are used as signals of rare or
anomaly events, like terrorist recruitment or web spam.

In the literature, various algorithms have been developed for the
maximum clique problem, either exact or heuristic [8, 43, 44, 22,
39, 26, 21, 16, 19, 17]. However, due to the NP-hardness of the
problem, all these algorithms fail when facing large and massive
sparse graphs, which emerge nowadays due to the upsurge of web
technologies and the Internet. In order to balance the effectiveness
and efficiency, diverse relaxations of clique, for instance, quasi-
clique [51], k-core [5], k-truss [46], k-edge-connectivity [2], dense
subgraph [18] and many others [45, 32] have been proposed to
provide good approximations of the maximum clique, which are
believed explicitly or implicitly, to contain the maximum clique.
However, this is not always the case.

We discuss why the relaxations cannot be effectively used to find
the maximum clique always. Fig. 1 illustrates a graphG consists of
two subgraphs,G1 andG2, along with two edges connecting them.
The maximum clique of G is G1, which is a 5-clique whereas G2

only contains 4-cliques. Consider finding G1 in G using some re-
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laxations such as k-core, k-truss, k-edge-connected graph, and the
densest subgraph. 1) G1 is a 4-core, whereas G2 is a 6-core. 2) G1

is a 5-truss, whereas G2 is a 6-truss. 3) G1 is 4-edge-connected,
whereas G2 is 6-edge-connected. 4) G2 is the densest subgraph
of G. All these approximations will return G2, missing the maxi-
mum clique G1. As witnessed from Fig. 1, in applications where
we need the maximum clique or large cliques, most of the relax-
ations may not serve the purpose. In the datasets tested (Table 1),
in LiveJournal, Orkut, Foursquare, and Lastfm, the maximum truss
does not contain any maximum clique entirely. Note that a graph
may contain several maximum cliques.

In the literature, all the algorithms designed for discovering the
maximum clique in practical networks much more rely on the im-
plementations, such as parallel, than algorithm design [37, 40]. It
is worth noticing that a shortcoming of almost all the previous al-
gorithms for the maximum clique problem, both exact and heuris-
tic, for both small dense artificial networks and real-life networks,
is that the efficiency of the algorithms largely relies on the initial
vertex ordering. In cases where the initial vertex ordering fails to
extract a near-optimal maximum clique efficiently, much time will
be spent on searching branches with marginal improvements.

Main contributions: We summarize the main contributions of our
work as follows. First, due to the NP-hardness of the maximum
clique problem, diverse relaxations of clique, for instance, k-core,
k-truss, dense subgraph and many others, are proposed to provide
good approximations of the maximum clique. It is interesting to
find that there are some exceptions that the maximum truss does
not contain any maximum clique entirely. Second, unlike previ-
ous exact algorithms that employ the branch-and-bound schema,
i.e., branch from each vertex to enumerate all maximal cliques and
prune fruitless branches, we propose a new binary search schema.
Specifically, our approach maintains a lower bound ωc and an upper
bound ωc of ω(G) and attempt to find a ωt-clique in each iteration,
where ωt = b(ωc + ωc)/2c, delaying the brute-force search to the
moment any more iterations barely work. Third, since each itera-
tion in the binary search is actually a k-clique problem, which is
NP-complete, we utilize uniform sampling to extracts a seed set S
s.t., finding a ωt-clique in G is equivalent to finding a ωt-clique
in S with probability guarantees (≥1 − n−c). For each seed in
S, we introduce algorithms scSeed and tciSeed to iteratively shrink
its subgraphs. Fourth, we propose a new iterative brute-force al-
gorithm divSeed to determine the maximum clique after the binary
search. The algorithm divSeed attempts to find a k-clique in each
seed in S iteratively, starting from k = ωc + 1. Such constrain-
s provide great power for pruning. Fifth, we conduct extensive
experimental studies to show the robustness and efficiency of our
approach.

Organization: The preliminaries and the problem statement are
given in Section 3. We discuss related works in Section 4, and re-
view the previous algorithms in Section 5. We give an overview of
our approach in Section 6, and discuss the algorithms in Section 7.
We have conducted comprehensive experimental studies and report
our findings in Section 8. We conclude this paper in Section 9.

3. PROBLEM DEFINITION
In this paper, a social network is modeled as an undirected graph

G = (V,E) without self-loops or multiple edges, where V and E
denote the sets of vertices and edges of G, respectively. We use
n and m to denote the numbers of vertices and edges of G, re-
spectively, i.e., n = |V | and m = |E|. In the paper, we assume
without loss of generality that G is connected, otherwise the al-
gorithm can be applied to each connected component in a graph.

For a vertex u ∈ V , the neighbors of u are denoted as Γ(u) such
that Γ(u) = {v | (u, v) ∈ E}, and the degree of u is denot-
ed as δ(u) = |Γ(u)|. Similarly, for a set of vertices S ⊆ V ,
Γ(S) = {u ∈ V \ S | ∃v ∈ S, (u, v) ∈ E}. We also de-
fine Λ(S) to be the set of common neighbors of vertices in S, i.e.,
Λ(S) = {u ∈ V \ S | ∀v ∈ S, (u, v) ∈ E}.

A graph G is a clique if there are edges between any two ver-
tices inG. We also call a vertex set C ⊆ V a clique if the subgraph
induced by C is a clique. C is a maximal clique if there exists
no proper superset of C that is also a clique and C is a maximum
clique if there exists no clique C′ such that |C′| > |C|. The num-
ber of vertices in a maximum clique in graph G = (V,E) is denot-
ed as ω(G) or ω(V ). For simplicity, in the following discussion,
we use ω(G) or ω(V ) to denote the upper bound of the maximum
clique ofG = (V,E) and use ω(G) or ω(V ) to represent the lower
bound of the maximum clique of G, respectively.

Upper bound: Vertex coloring is widely used to obtain an upper
bound of ω(G). A vertex coloring is to assign a color to every
vertex in graph G, and a coloring is a proper coloring if any two
adjacent vertices are assigned with different colors. A minimum
coloring is a proper coloring that uses the least number of colors.
Let the size of the minimum coloring of G = (V,E) be χ(G)
or χ(V ). We have χ(G) ≥ ω(G) since a proper coloring of the
maximum clique K needs ω(G) colors and χ(V ) ≥ χ(S) for S ⊂
V . For simplicity, in the following discussion, a vertex coloring
always refers to a proper coloring. It is known that k-core and k-
truss are also widely used as upper bounds of ω(G). Specifically, if
the maximum core ofG is a k-core, then ω(G) ≤ k+ 1. Similarly,
if the maximum truss of G is a k-truss, then ω(G) ≤ k.

Lower bound: An independent set of graphG = (V,E) is a subset
W ⊂ V such that (u, v) /∈ E for any two vertices u, v ∈ W .
A maximum independent set is an independent set of the largest
possible size denoted as o(G). A lower bound of ω(G) can be
given as ω(G) = o(G), where G = (V,E′) is the complementary
graph of G, i.e., for any non self-loop edge (u, v), (u, v) ∈ E′, if
(u, v) 6∈ E.

Randomized Maximum Clique Problem. In this paper, we study
Randomized Maximum Clique Problem, i.e., given a graph G, find
a clique S of size ω(G) with high probability ≥ 1− nc where c is
a constant.

Problem Hardness. The clique decision problem, i.e., to return a
Boolean value indicating whether graph G contains a k-clique, is
one of the Karp’s 21 NP-complete problems [23], and the maxi-
mum clique problem is both fixed-parameter intractable and hard
to approximate [20], which implies that unless P=NP, there cannot
be any polynomial time algorithm that approximates the maximum
clique within a factor better than O(n1−ε), for any ε > 0.

4. RELATED WORKS
The “clique” was first studied to model groups of individuals

who know each other [31], and the maximum clique problem has
been extensively studied by researchers. Cook [11] and Karp [23]
utilize the theory of NP-completeness and related intractability re-
sults to provide a mathematical explanation for the difficulty of the
maximum clique problem. Tarjan and Trojanowski [42] investi-
gate the problem from the viewpoint of worst-case analysis. In the
1990s, Feige et al. [15] prove that it is impossible to approximate
the problem accurately and efficiently. Later, Feige [14] proposes a
polynomial-time algorithm that finds a clique of sizeO(( logn

loglogn
)2)

whenever the graph has a clique of size O( n
lognb ) for any constan-

t b. Analogously, Håstad shows that, unless P=NP, there cannot
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be any polynomial time algorithm that approximates the maximum
clique within a factor better than Ø(n1−ε), for any ε > 0.

Most of the exact maximum clique searching algorithms are based
on branch and bound search. One of the first and most classi-
cal algorithms, proposed by Carraghan and Pardalos [8], prunes
branches whose further expansion fails to find a larger clique than
the current optimal one. Another effective algorithm named MCR,
proposed by Tomita and Kameda [43], uses graph coloring to ob-
tain an upper bound on the size of the maximum clique for each
branch. In the MCS algorithm [44], a novel routine that tries to
recolor vertices with the biggest color into a smaller one is intro-
duced to improve the pruning performance. An introduction and
computational study can be found in [38].

While the majority of the algorithms for the maximum clique
problem, including the above mentioned ones, concentrate on small
dense graphs, only a few works, e.g. [37, 40], study it for large and
massive sparse graphs. Both [37] and [40] utilize an adjacency list
representation of graphs and unroll the first level of the search tree
to enforce the early pruning. The main difference between these
two works is that [37] uses bounds based on degrees while [40]
employs tighter bounds with the concept of k-core [41]. To further
improve the performance, both [37] and [40] employ a bit-parallel
algorithm that uses bitstrings to encode sparse adjacency list.

Since the maximum clique problem is NP-hard, much effort has
recently been devoted to developing efficient heuristics, that are
meaningful in practice but lack performance guarantees. Sequen-
tial greedy heuristics either try to generate a clique by iteratively
adding a vertex to a current clique or to find a clique by repeatedly
removing a vertex from the current vertex set which is not a clique
[26, 22]. Since sequential greedy heuristics can find only one maxi-
mal clique, local search heuristics are proposed to improve approx-
imation solutions by, for instance, a (j, k)-swap, which replaces j
vertices from the current maximal clique by other k vertices. Pullan
and Hoos [39] introduce dynamic local search which combines fast
neighborhood search and usage of penalties to promote diversifi-
cation. Other heuristics include simulated annealing [21], GEASP
[16], tabu search [19] and the neural networks [17].

Another similar topic related to maximum clique problem is max-
imal clique enumeration. The maximum clique can be obtained
through scanning all maximal cliques for the largest one. The first
algorithms for the maximal clique enumeration problem are the
backtracking method [3, 7]. To further reduce the search space,
[24] employs effective pruning strategy by selecting good pivots.
As the massive size of various graphs has outpaced the advance in
the memory available on commodity hardware, Cheng et al. pro-
pose efficient algorithms [9, 10] to reduce both the I/O cost and
CPU cost of maximal clique enumeration in massive networks. To
deal with the excessive size and overlapping parts in classic max-
imal clique enumeration, Wang et al. introduce the notion of τ -
visible MCE [47] to reduce the redundancy while capturing the ma-
jor information in the result, and Yuan et al. study the diversified
top-k clique search problem [50] which is to find top-k cliques that
can cover most number of nodes in the graph.

5. THE PREVIOUS ALGORITHMS
The main idea underlying all previous algorithms is given as fol-

lows. Let the maximum clique found, denoted as Cm, as a lower
bound of ω(G). Let C denote the current clique, and P = Λ(C)
denote the candidate set from which a vertex will be selected for C
to grow next. Suppose there is a function U(C,P ) which returns
an upper bound of ω(C ∪ P ), i.e., the size of the maximum clique
that can be found by selecting any additional vertex in P to grow
from C. If U(C,P ) > |Cm|, it continues to grow C by selecting

Algorithm 1 MaxClique (G)
1: Cm ← ∅, sort V in some specific ordering o;
2: for i = 1 to n according to o do
3: C ← {vi}, P ← {vi+1, . . . , vn} ∩ Γ(vi);
4: sort P in some ordering o′;
5: for vj ∈ P according to the sorting order o′ do Clique(G,C, P, vj);
6: end for
7: return Cm;

8: Procedure Clique(G,C, P, vj )
9: C ← C ∪ {vj}, P ← P ∩ Γ(vj);
10: if P = ∅ then
11: if |C| > |Cm| then Cm ← C;
12: else if U(C,P ) > |Cm| then
13: sort P in some ordering o′′;
14: for vk ∈ P according to the sorting order o′′ do Clique(G,C, P, vk);
15: end if

one vertex from P . Otherwise, it stops searching from the current
C. In other words, it prunes branches that cannot generate cliques
larger than Cm. The two main issues lying on the development of
the previous algorithms are: finding a near-maximum clique as fast
as possible and designing a high quality function U(C,P ).

Algorithm 1 illustrates the schema of previous algorithms. First,
it initializes Cm as ∅ and sorts vertices in V in some specific order-
ing (Line 1). With such ordering, booktracking search from vi con-
siders only vertex set {vi, vi+1, . . . , vn}, i.e., initialize C ← {vi}
and P ← {vi+1, . . . , vn} ∩ Γ(vi) (Line 3). Similarly, vertices in
P are also sorted in some ordering (Line 4). Then, branching from
vi iteratively adds a candidate vertex vj from P to C by invoking
the procedure Clique(G,C, P, vj), updating Cm or pruning fruit-
less branches (Line 5). After processing all vertices, the resulting
Cm by processing all vertices in V is the maximum clique of G
(Line 7). Here, the procedure Clique(G,C, P, vj) enumerates all
maximal cliques branching from vj , and attempts to either improve
Cm or prune fruitless branches. We explain the procedure Clique
below. First, it updates C and P by adding vj to C and condensing
P through setting P ← P ∩ Γ(vj) (Line 9). Second, if P = ∅, a
maximal clique is found, and Cm will be updated if |C| > |Cm|
(Line 10-11). Third, it compares the lower bound |Cm|with the up-
per bound U(C,P ). If U(C,P ) > |Cm|, it branches from vertices
in P recursively (Line12-14). Otherwise, it implies that it cannot
find a clique larger than Cm by growing a vertex in P from C.

There are two issues in the schema as shown in Algorithm 1:
the function U(C,P ) and the vertex sorting (Line 1, Line 4, and
Line 13). We discuss them below. First, as an upper bound of the
branch, U(C,P ) answers whether the combination ofC and P has
a chance to unseat the maximum clique Cm found so far. A tight
bound U(C,P ) benefits pruning fruitless branches as fast as pos-
sible. The simplest upper bound |C| + |P | is used by [8, 13] such
that the branch can be abandoned if |C|+ |P | ≤ |Cm|. Later, [43]
proposes graph coloring on P . Let the color of any vertex v ∈ P
be c(v) and the total colors used in P be c(P ). Such a method has
two significant advances. On one hand, the largest possible clique
in C ∪ P is a (|C| + c(P ))-clique. On the other hand, it expands
from {v} in a branch by including only vertices colored < c(v),
so that the upper bound of the cliques expanding from C ∪ {v}
is bounded by |C| + c(v). [44] introduces a recolor mechanis-
m. It attempts to reduce the colors used by exchanging different
color classes between vertices, when coloring vertices. Recently,
degrees and cores are utilized to get tighter bounds [37, 40]. Sec-
ond, vertices ordering plays a significant role in generating a near-
maximum clique at the very beginning. In [8], vertices are sorted
in a non-decreasing degree order. By reversing the order in which
search is done by [8], [35] improves the performance on random
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and DIMACS benchmark graphs. In order to deal with ties, [43]
suggests a non-decreasing degree with tie-breaking on the sum of
the degrees of adjacent vertices. In addition, [43] further suggests
to process vertices in candidate set P in decreasing color order.

The previous algorithms perform well on many networks. How-
ever, they are encountering greater and greater challenges when
dealing with rapidly growing networks in real life. Deep inside the
existing solutions and real-world massive graphs, we observe three
main reasons that harm the efficiency and robustness of the exist-
ing algorithms tremendously. First, the candidate set P is large
and sparse in massive graphs. U(C,P ) returns a bound which is
far from tight. Second, in practical massive networks, high degree
vertices always have a large number of edges connecting with low
degree vertices. It undermines the effectiveness and robustness of
sorting strategies based on degrees significantly. Third, no upper
bound of ω(G) is used in the existing algorithms. It wastes time
to search remaining branches, even when the maximum clique is
found at the very beginning.

6. AN OVERVIEW OF OUR APPROACH
In order to solve the shortcomings of the previous algorithms,

in this paper, from a totally different viewpoint, we devise a novel
randomized algorithm based on binary search, to improve the ro-
bustness and efficiency of the algorithm significantly. Similar to
the conventional binary search, our algorithm maintains a lower
bound ωc and an upper bound ωc of ω(G), and attempts to find a
ωt-clique in each iteration, where ωt = b(ωc + ωc)/2c. Howev-
er, there are some vital differences between our binary search and
the conventional binary search. In the conventional binary search,
in an iteration, it finds a value in the middle between the min and
the max where data is sorted, and decides how to find the nex-
t in a half-interval. In our problem setting, in an iteration, it is to
find a ωt-clique and then locates the searching interval of ω(G) in
[ωt + 1, ωc] or [ωc, ωt− 1] for the next iteration. However, finding
a ωt-clique is a k-clique problem, which is NP-complete itself. In
our binary search, instead of finding a ωt-clique in an iteration di-
rectly, we find a set of subgraphs where ωt-cliques can exist. The
set is denoted as follows.

S = {(s1,Λ(s1)), (s2,Λ(s2)), . . . , (si,Λ(si)), . . .}

where (si,Λ(si)) is a subgraph consisting of a clique si and a can-
didate set Λ(si) from which the clique can grow. For simplicity, we
use the term “seed” to represent both the clique si and the subgraph
(si,Λ(si)). In addition, each (si,Λ(si)) is associated with a low-
er bound ωi and an upper bound ωi of ω(si ∪ Λ(si)), and all such
bounds can be combined to updateωc andωc, s.t., ωc = maxi{ωi}
and ωc = maxi{ωi}, which in return prunes fruitless seeds.

We determine the lower and upper bounds for the next iteration.
Let ωc and ωc be the current bounds, and let ωp and ωp be the
previous bounds. There are 4 cases as illustrated in Fig. 2 based
on S, ωc and ωc. 1) The optimal case: if S = ∅ and ωc ≥ ωt,
which is equivalent to ωc = ωc, the maximum clique has been
found, the algorithm terminates. 2) If S = ∅ and ωc < ωt, then
G contains no ωt-cliques, decrease ωc as ωt − 1. 3) If S 6= ∅,
ωc 6= ωp or ωc 6= ωp, more iterations may improve the bounds.
4) If S 6= ∅, ωc = ωp and ωc = ωp, further iterations introduce
marginal improvements, it terminates the binary search and applies
a brute-force search algorithm.

We discuss how to find a ωt-clique in G using a seed set S =
{(s1,Λ(s1)), (s2,Λ(s2)), . . . , (si,Λ(si)), . . .}. Recall that si is a
clique, Λ(si) is a set of candidate from which a vertex is selected
to grow the clique represented by si, and (si,Λ(si)) is a subgraph
containing the clique si and Λ(si).

ωtωp ωp

ωc = ωc
ωc ωc = ωt − 1

ωc ωc

Case 1

Case 2

Case 3

Case 4
ωc ωc

Figure 2: The interval of ω(G) in next iteration

(s1,Λ(s1))

(s2,Λ(s2)) (si,Λ(si))

G

(si,Λ(si))

Λ(si)

si

Γ(si)

Figure 3: Find a ωt-clique from a seed set S instead of G

First, we conduct uniform sampling on the edges inGwith prob-
ability p. Let Es be a set of edges sampled from E. A seed si is
an open triangle such that si = (u, v, w) where (u, v) and (u,w)
are in Es, and (v, w) is in E. As proved by Theorem 7.1, with
some specific sampling probability p, each ωt-clique contains at
least one seed with high probability. Fig. 3 illustrates the idea of
finding a ωt-clique in seed set S with probability guarantees, in-
stead of finding a ωt-clique in G directly. On the left, there is a
set of seeds, S, sampled in G. On the right, it shows a subgraph
of a seed (si,Λ(si)) in S. Here, si represents three vertices in a
triangle, and Λ(si) is a set of vertices in which every vertex is con-
nected to each of the three vertices in si. Note Λ(si) ⊆ Γ(si). It
is worth noting that seeds in S can overlap. We explain why uni-
form sampling works well. a) In cases where ωt � ω(G) or G
is loosely connected, uniform sampling extracts only a few open
triangles. As a consequence, we can determine S = ∅ quickly,
implying ω(G) < ωt. b) Links in real-world networks exhibit in-
homogeneities and community structure. With such characteristic-
s, uniform sampling can accurately partition the whole graph into
several dense clusters. As bounds ωi and ωi provide accurate in-
formation for each seed (si,Λ(si)), sorting based on such bounds
is more accurate and robust than sorting based on degrees.

Second, for each seed (s,Λ(s)) ∈ S, we iteratively filter vertices
in Λ(s) that cannot appear in a potential ωt-clique with s, and move
some vertices from Λ(s) to s to construct a potential maximum
clique in (s ∪ Λ(s)). In other words, for each seed (s,Λ(s)) ∈ S,
we enlarge s and shrink Λ(s) until Λ(s) = ∅ to find a potential
maximum clique in three main approaches, repeatedly.

The reduction by k-core: It is based on k-core to enlarge s and
shrink Λ(s) as follows.

(s,Λ(si))→ (s ∪ F,Λ(s) \ (Xk ∪ F )) (1)

HereXk is a subset of Λ(s) that cannot exist in a (k−|s|−1)-core
in Λ(s) for a given k, and F is a set of vertices that have a potential
to exist in a maximum clique of Λ(s) where F ⊆ Λ(s) \ Xk.
There are two conditions for F to be selected. The first condition
is that every vertex in F is connected to every vertex in si, which
is ensured by the definition of Λ(si). The second condition is that
every vertex in F is connected to every other vertex in Λ(s) \Xk.
In other words, F is a clique to be considered. We illustrate it
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(s,Λ(s))

. . .

F

Xk

(s ∪ F,Λ(s) \ (Xk ∪ F ))

(a) The 1st by k-core
(s,Λ(s))

Xt Xc

P

g g

(s ∪ P, (Λ(s) \ (Xt ∪Xc)) ∩ Λ(P ))

(b) The 2nd by k-truss, coloring, and independent
set

V1

V2

u
v

w

(s,Λ(s))

(s ∪ {u}, (Λ(s) \ V2) ∩ Γ(u))

(s,∪{v}, (Λ(s) \ V2) ∩ Γ(v))

(s ∪ {w}, (Λ(s) \ V2) ∩ Γ(w))

(c) The 3rd by dividing seeds

Figure 4: The Three Reductions

in Fig. 4(a). The first approach is done in the scSeed algorithm
(Algorithm 4) together with the sampling.

The reduction by k-truss, coloring, and independent set: It is
based on k-truss, coloring, and independent set to enlarge s and
shrink Λ(s) as follows, given (s,Λ(s)) has been enlarged/shrunk
by the first approach.

(s,Λ(s))→ (s ∪ P, (Λ(s) \ (Xt ∪Xc)) ∩ Λ(P )) (2)

By the k-truss, we identify Xt which is a subset of Λ(s) that can-
not exist in a (ωt − |s|)-truss in Λ(s). By coloring, we identify
Xc ⊆ Λ(s) \ Xt that contains vertices whose neighbors can be
colored with less than ωt − |s| − 1 colors. Hence, the clique to be
found does not contain vertices inXt∪Xc. Fig. 4(b) illustrates the
main idea. Let the largest circle on the left represent (s,Λ(s)). The
second largest circle on the left represents a subgraph g of (s,Λ(s))
by excluding the vertices in (Xt ∪Xc). We further reduce g using
independent set. Let g be the complementary graph of g (the largest
circle on the right). With the help of independent set found among
Λ(s)\(Xt∪Xc) in g, we can extract a subsetP ⊆ Λ(s)\(Xt∪Xc)
in g. As proved by Theorem 7.3, P belongs to one of the maximum
independent sets of g. Therefore, P belongs to one of the maxi-
mum cliques of g, i.e., Λ(s) \ (Xt ∪ Xc). As a result, we further
enlarge s by P , and shrink Λ(s) accordingly. The second approach
is done in the tciSeed algorithm (Algorithm 5). It is worth noting
that the reduction by k-truss is more powerful than the reduction
by k-core, since k-trusses are contained in (k − 1)-cores, where-
as truss decomposition costs O(m1.5), more expensive than core
decomposition, which costs O(m).

The reduction by dividing: Let (s,Λ(s)) be a subgraph where
s cannot be enlarged by the first and the second approaches. We
propose a new optimized brute-force search algorithm. We iter-
atively find k-cliques in each seed (s,Λ(s)) ∈ S starting from
k = ωc + 1, and we find the maximum clique when S becomes
∅. To process a seed (s,Λ(s)), with the help of k, we extract two
subsets V1, V2 ⊆ Λ(s) by graph coloring. Here, V2 represents the
vertices whose neighbors can be colored with < k−|s|−1 colors.
V1 is a subset of Λ(s)\V2 representing the vertices that are colored
≥ k−|s|. As a result, the vertices in V1 can possibly be in the max-
imum clique, but the vertices in V2 cannot. Instead of finding the
maximum clique in a seed (s,Λ(s)), we find the maximum clique
using a series of smaller/denser seeds (s∪{u}, (Λ(s)\V2)∩Γ(u))
for every u ∈ V1. Fig. 4(c) illustrates the idea. In Fig. 4(c), the ver-
tices V2 will be excluded. Suppose there are 3 vertices, u, v, and
w, in V1. We further compute the maximum clique in the 3 cor-
responding small/denser seeds. The third approach is done in the
divSeed algorithm (Algorithm 7).

(∅, G)

(u,Γ(u)) (v,Γ(v)). . .

(C1, P1)

(C2, P2)

(a) The DFS search tree Td

(C1, P1)

(C2, P2)

(s1,Λ(s1))

(s′1,Λ(s
′
1))

X

(b) Td vs Tb
(∅, G)

(s1,Λ(s1))
. . .

ωc

∅
maxcore+1

(s = {u, v, w},Λ(s))
. . . . . .

ωc

∅

ωt

(s2,Λ(s2)) or ∅

(c) Tb

Figure 5: The BFS search tree Tb

Search Trees: We discuss the main differences between the exist-
ing branch-and-bound approaches and our new approach in terms
of search trees, in finding the maximum cliques in massive graph-
s. Let Td and Tb denote the search tree by the existing branch-
and-bound approaches and ours, respectively. We use node instead
of vertex when we discuss trees. In Td, a node represents a pair
(C,P ), where C is a growing clique and P is its candidate set. In
Tb, a node represents a seed (s,Λ(s)), where the root of both trees
is (∅, G). A node in both trees represents the same information,
because s is a clique and Λ(s) is its candidate set. Let a child n-
ode of (C,P ) be (C′, P ′) in Td, and let a child node of (s,Λ(s))
be (s′,Λ(s′)) in Tb. In Td, C′ = C ∪ {u} where u is selected
from P , and P ′ = Λ(C) ∩ Γ(u). The existing branch-and-bound
approaches conduct DFS over Td (Fig. 5(a)). In Tb, s′ = s ∪ s0
and Λ(s′) = Λ(s) ∩ Λ(s0), where s0 ⊂ Λ(s). We conduct BFS
over Tb. We show the differences between Td and Tb in Fig. 5(b).
It is worth noting that in Tb it attempts to select more vertices from
Λ(s) to enlarge a growing clique s in a node when it branches to
its child node, whereas in Td it does it by selecting a single vertex
v from P . In other words, an edge in Tb represents a path in Td.
In addition, as shown in Fig. 5(b), the vertices in X in Td can be
pruned by our approach in Tb in an early stage. All is because un-
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Algorithm 2 RMC (G)
1: (r, ωc, ωc, Cm)← Init(G);
2: if r = 1 then return Cm;
3: while ωc − ωc ≥ θ do
4: ωt ← b(ωc + ωc)/2c, ωp ← ωc, ωp ← ωc;

5: (ωc, ωc, Cm, S)← scSeed(G,ωt);
6: switch (states of S, ωc, ωt)
7: case S = ∅ and ωc ≥ ωt: return Cm;
8: case S = ∅ and ωc < ωt: ωc ← ωt − 1; break;
9: case S 6= ∅:
10: (ωc, ωc, Cm, S)← tciSeed(G,S, ωt);
11: switch (states of S, ωc, ωt, ωp, ωp)

12: case S = ∅ and ωc ≥ ωt: return Cm;
13: case S = ∅ and ωc < ωt: ωc ← ωt − 1; break;
14: case ωc = ωp and ωc = ωp: terminate the while loop;

15: end switch
16: end switch
17: end while
18: ωt ← ωc + 1;
19: (ωc, ωc, Cm, S)← scSeed(G,ωt);
20: if S = ∅ then return Cm;
21: (ωc, ωc, Cm, S)← tciSeed(G,S, ωc + 1);
22: while S 6= ∅ do (ωc, ωc, Cm, S)← divSeed(G,S, ωc + 1);
23: return Cm;

promising candidates in Λ(s) will be pruned as soon as possible.
Next, we discuss the binary search by Tb. As shown in Fig. 5(c),
initially, the s of any (s,Λ(s)) in the initial seed set S is an open
triangle based on which the lower bound ωc is given, and the upper
bound ωc is maxcore + 1, and ωt = b(ωc + ωc)/2c. In every
iteration in the binary search, it updates ωc and ωc by exploring the
current seed set S. First, ωc moves downwards where at least one
ωc-clique exists, which implies ω(G) ≥ ωc. Second, ωc moves
upwards where no (ωc + 1)-cliques, which implies ω(G) ≤ ωc.
Third, ωt indicates that it is possible to find ωt-cliques between ωc
and ωc. By finding a ωt-clique, we can move ωc to ωt, and by find-
ing all empty seeds in ωt, we can move ωc to ωt − 1. Note that
there is no need to construct the whole Tb tree.

7. THE NEW APPROACH RMC
We give our RMC ((Randomized Maximum Clique) algorithm in

Algorithm 2. In Algorithm 2, the algorithm Init (Algorithm 3) ini-
tializes ωc, ωc, and Cm, and returns a variable r indicates whether
the maximum clique is already found in the graph G (Line 1). If
r = 1, then Cm is the maximum clique, the algorithm terminates
by returning Cm (Line 2). Otherwise, it applies a binary search to
reduce the gap between the lower bound ωc and upper bound ωc in
a while loop (Line 3-17). The loop will continue if the difference
between ωc and ωc is greater than or equal to a threshold θ. In oth-
er words, the binary search will stop, if further iterations will not
reduce the search space significantly. In each iteration, we attempt
to find a ωt-clique, where b(ωc + ωc)/2c (Line 4). First, we use a
randomized algorithm scSeed (Algorithm 4) to update ωc and ωc,
and obtain a seed set S where ωt-cliques possibly exist (Line 5).
Here, scSeed applies uniform sampling on the edges of G to ex-
tract seeds si = (u, v, w) s.t. (u, v) and (u,w) are sampled and
(v, w) is an edge in G. It is worth noting that a seed is an open
triangle. As proved by Theorem 7.1, with some specific sampling
probability p, each ωt-clique contains at least one seed with high
probability. For each seed si, scSeed applies the core decomposi-
tion [5] on Λ(si), prunes vertices that exist in no ωt-cliques, and
moves vertices that connected to all others to si. This results in
an upper bound ωi and a lower bound ωi of ω(si ∪ Λ(si)). We
use such bounds obtained for seeds together to update ωc and ωc,

Algorithm 3 Init (G)
1: compute core(u) for every u inG;
2: let the max core number be cm, ωc ← cm+ 1;
3: if the max core ofG is a clique then
4: Cm ← max core ofG, ωc ← |Cm|;
5: return (1, ωc, ωc, Cm);
6: end if;
7: for each vertex v with core(v) ≥ ωc in non-ascending order of core numbers

do
8: greedily generate a maximal clique C starting from v;
9: Cm ← C, ωc ← |Cm| if |C| > ωc;
10: end for
11: if ωc = ωc then return (1, ωc, ωc, Cm);
12: compute graph coloring, and the color number as cn;
13: if ωc > cn then ωc ← cn;
14: if ωc = ωc then return (1, ωc, ωc, Cm);
15: else return (0, ωc, ωc, Cm);

which in return prunes fruitless seeds and makes S minimal. As
illustrated as Case-1 and Case-2 in Fig. 2, it determines ωc and ωc
for the next iteration if S = ∅. We deal with the case when S 6= ∅
in Line 9-15. When S 6= ∅, we invoke an exact algorithm tciSeed
(Algorithm 5) to further condense seed set S (Line 10), which ob-
tains new bounds of ω(si ∪ Λ(si)) for each seed (si,Λ(si)) ∈ S.
In tciSeed, we use truss decomposition [46] and graph coloring to
find an upper bound ωi, and use an independent set of Λ(si) to
acquire a lower bound ωi. As proved in Theorem 7.3, for a given
graph g, our novel independent set algorithm compIS (Algorithm 6)
extracts a vertex subset of g that is included in one of the maximum
independent sets of g, such a subset significantly reduces fruitless
search space. Note that tciSeed updates ωc, ωc as well as returns
a minimal seed set S. When the improvement of the binary search
is marginal (either ωc − ωc < θ or the bounds ωc and ωc cannot
be improved), we invoke the algorithm divSeed (Algorithm 7) to
find the maximum clique (Line 22) after further updating ωc, ωc,
Cm, and a minimal seed set S using scSeed and tciSeed (Line 18-
21). In brief, different from the previous algorithms that search
the maximum clique directly, divSeed attempts to find a (ωc + 1)-
clique by generating several smaller/denser seeds from every seed
(si,Λ(si)) in S iteratively. All these new smaller/denser seeds are
further condensed, and a large percent of vertices/edges are pruned
if they do not appear in the maximum clique. divSeed finds the fi-
nal result when S = ∅. It is important to note that it offers us more
power for pruning by finding a (ωc + 1)-clique rather than finding
the maximum clique directly.

7.1 Initialization
Algorithm Init (Algorithm 3) takes a graph G as input, and re-

turns a 4-tuple (r, ωc, ωc,Cm). Here,Cm is a clique, ωc and ωc are
the lower and upper bounds, and r is an indicator whether Cm is
the maximum clique. First, we compute the core number for every
vertex u in G, denoted as core(u), using the core decomposition
algorithm [5] (Line 1). Let the max core number be cm, and ini-
tialize ωc as cm + 1. If the max core is found as a clique, then
the maximum clique is found, returning the result (Line 3-6). We
discuss when the max core of G is not a clique (Line 7-15). We
find the clique Cm among all the maximal cliques greedily found
for every vertex v if its core number (core(v)) ≥ the current up-
per bound ωc (Line 7-10). If the current lower and upper bounds
are the same, we return the result since Cm found is the maximum
clique (Line 11). Next, we further update the current upper bound
using graph coloring. Let the core number for G be cn (Line 12).
ωc is reduced to cn if ωc > cn. Finally we return the result. Note
that at this stage, Cm found is the maximum clique if ωc = ωc.
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7.2 The Sampling and the Core Reduction
We discuss the algorithm scSeed (Algorithm 4), which takes 2

inputs, a graph G and a specific k-clique value k, and returns a 4-
tuple (ωc, ωc, Cm, S), where ωc and ωc are a lower bound and an
upper bound, and Cm is the current maximum clique, and S is a
seed set. There are two main phases. The first phase is to generate
an initial seed set S randomly (Line 1-6). The second phase is to
update S using the reduction by k-core (Eq. (1)). We enlarge s and
shrink Λ(s) for each seed (s,Λ(s)) in S, and we will remove the
entire (s,Λ(s)) from S if it cannot help to find a k-clique where k
is given as an input of the algorithm (Line 7-33).

In the first phase, we sample a set edges from the edge set E of
G, denoted as Es, using uniform sampling. Then we construct the
initial seed set S. For every seed, (s,Λ(s)), in S, s is an open triple
s = (u, v, w) if both (u, v) and (u,w) are in the sampled edge
set Es and (v, w) is in E. For each seed (s,Λ(s)), we determine
its upper bound ωs as min{core(u), core(v), core(w)} +1. We
discuss the sampling probability p.

Theorem 7.1: Let Es be a subset of E of G by uniform sampling
of edges from G with an edge sampling probability p. Let ST be
a set of open triangles, s = (u, v, w), such that both (u, v) and
(u,w) are in Es and (v, w) is in E. Each k-clique in G con-
tains at least one triangle in ST with probability ≥ 1 − n−c, for
p =

√
2 · c · lnn/(k · (k − 1) · (k − 2)), where n is the number

of vertices in G.

Proof Sketch: Let E1 denote the event that one such specific open
triangle is sampled from G. Then let E denote the event that at
least one open triangle is sampled for a k-clique, and let E denote
the event E does not occur. We have

Pr(E1) = p2 = 2 · c · lnn/(k · (k − 1) · (k − 2))

Pr(E) = (1− Pr(E1))k·(
k−1
2 ) ≤ n−c

Therefore, we can conclude Pr(E) ≥ 1− n−c. 2

In the second phase, we update every seed (s,Λ(s)) in S and
update S following the non-ascending order in the lower bounds
(ωs). It is important to note that the initial k in the loop (Line 7-
33) is the input k of the algorithm for a k-clique and k may in-
crease in order to prune more seeds from S. First, if ωs of a seed
(s,Λ(s)) is less than k, the seed will be removed from S, since it
cannot lead to a k-clique (Line 8). Second, we check if a k-clique
can be found in (s,Λ(s)) by the condition of |Λ(s)| + |s| < k.
If this condition does not hold, the seed will be removed from S
(Line 9-11). Third, we further update a seed if the condition does
not hold (Line 12-31). We discuss the third case below. Suppose
we find Λ(s) forms a clique, we update the the current maximum
clique Cm by (s,Λ(s)), and update the current lower bound to
be ωc = |Cm|. It is worth noting that in every iteration k either
remains unchanged or increases. Therefore, the Cm updated can-
not be smaller than the one found before. We remove (s,Λ(s))
from S, since it is the current maximum clique. We follow Eq. (1),
compute Xk, remove Xk from Λ(s), and compute F (Line 16-
18). Here, Xk is a subset of vertices in Λ(s) where every vertex
u has a core number which is less than k − |s| − 1. F is a sub-
set of vertices in Λ(s) \ Xk where every vertex connects to every
other vertices in Λ(s) \ Xk. In other words, s ∪ F can possibly
form a maximum clique. There are several cases. Case-i) When
Λ(s) \ F = ∅: If (s,Λ(s)) cannot lead to a k-clique because F
is empty, the seed (s,Λ(s)) will be removed from S (Line 19-21).
Otherwise, if F is non-empty, the current maximum clique Cm can
be updated by s ∪ F , and the seed can be removed from S, since
the seed is treated as the current maximum clique (Line 21-23).

Algorithm 4 scSeed (G, k)
1: S ← ∅;
2: let Es be a subset of E where every e ∈ Es is sampled with probability p from
E;

3: for each u with (u, v) ∈ Es, (u,w) ∈ Es and (v, w) ∈ E do
4: s← (u, v, w);
5: ωs ← min{core(u), core(v), core(w)}+ 1, S ← S ∪ {s};
6: end for
7: for each s ∈ S in non-ascending order of ωs do
8: if ωs < k then S ← S \ {(s,Λ(s))}; continue;
9: if |Λ(s)|+ |s| < k then
10: S ← S \ {(s,Λ(s))};
11: else
12: if Λ(s) is a clique then
13: Cm ← s ∪ Λ(s), ωc ← |Cm|;
14: S ← S \ {(s,Λ(s))};
15: else
16: Xk ← {u | u ∈ Λ(s) ∧ core(u) < k − |s| − 1};
17: compute F from Λ(s) \Xk;
18: Λ(s)← Λ(s) \Xk;
19: if Λ(s) \ F = ∅ and F = ∅ then
20: S ← S \ {(s,Λ(s))};
21: else if Λ(s) \ F = ∅ and |F |+ |s| ≥ k then
22: Cm ← s ∪ F , ωc ← |Cm|;
23: S ← S \ {(s,Λ(s))};
24: else if Λ(s) \ F 6= ∅ and |F |+ |s|+ 1 ≥ k then
25: Cm ← s ∪ F ∪ {v} where v ∈ Λ(s) \ F , ωc ← |Cm|;
26: (s,Λ(s))← (s ∪ F,Λ(s) \ F );
27: else
28: (s,Λ(s))← (s ∪ F,Λ(s) \ F );
29: end if
30: end if
31: if ωc ≥ k then k ← ωc + 1;
32: end if
33: end for
34: let ωc be the core number of the max core found for non-empty seeds;
35: return (ωc, ωc, Cm, S);
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Figure 6: Sampling edges for finding a ωt-clique

Case-ii) when Λ(s) \ F 6= ∅: it will enlarge s by s ∪ F and shrink
Λ(s) by Λ(s) \ F . In addition, if |s ∪ F | + 1 ≥ k, it implies a
k-clique has been found (Line 24), and we will update the current
maximum clique by a subgraph with s ∪ F ∪ {v} where v is taken
from Λ(s) \ F (Line 25). Note that the lower bound ωc is updated
when the current maximum clique is updated. After consideration
of the cases, we update k to be ωc+ 1 if ωc ≥ k (Line 31). Finally,
we return (ωc, ωc, Cm, S) where ωc is the core number of the max
core found for non-empty seeds.

Example 7.1: Reconsider the graph G in Fig. 1. Fig. 6(a) and
Fig. 6(b) illustrate the sampled edges, which are in solid lines, when
scSeed attempts to find a 4-clique and 5-clique, respectively. Here,
c = 2 s.t. each ωt-clique will be missing with probability < n−2.
In Fig. 6(a), each edge is sampled with probability p = 0.462.
scSeed extracts all seeds which can be a seed for a 4-clique. For
instance, (s1,Λ(s1)) is such a seed, where s1 = {0, 1, 2} and
Λ(s1) = {3, 7}. For this seed, the lower bound is a 4-clique s-
ince s1 has common neighbors in Λ(s1), and the upper bound is
a 4-clique, because Λ(s1) is a 0-core from which it cannot get
a large clique. The maximum clique containing s1 is a 4-clique.
The open triangle s2 = {0, 1, 4} cannot be a valid seed since
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Figure 7: Reduction by TCI

(0, 4) /∈ E. The seed (s3,Λ(s3)) is a seed where s3 = {8, 9, 10}
and Λ(s3) = {11, 12}. Since Λ(s3) itself is a clique, the maximum
clique containing s3 is a 5-clique. In Fig. 6(b), each edge is sam-
pled with probability p = 0.414. Consider the seed (s4,Λ(s4))
where s4 = {0, 1, 3} and Λ(s4) = {2, 6}. s4 cannot be included
in a 5-clique, since Λ(s4) is a 0-core which cannot be a 2-cliques.

7.3 The Reduction by TCI
We discuss the reduction by k-truss, coloring, and independent

set following Eq. (2). The algorithm tciSeed is shown in Algorith-
m 5, which takes 3 inputs, a graph G, a seed set S, and a specific
k-clique value k, and returns a 4-tuple (ωc, ωc, Cm, S), where ωc
and ωc are a lower bound and an upper bound, and Cm is the cur-
rent maximum clique, and S is a seed set reduced.

As given in Eq. (2), in tciSeed, for each seed (s,Λ(s)) ∈ S, we
shrink Λ(s) to be Λ(s) \ (Xt ∪ Xc), where both Xt and Xc are
two subsets in Λ(s) such that any vertex in Xt ∪Xc cannot appear
in a k-clique. Here Xt contains the vertices that cannot be in a
(ωt−|s|)-truss in Λ(s), andXc contains vertices whose neighbors
are colored with less than ωt − |s| − 1 colors. The correctness of
Xt is obvious. We prove the correctness of Xc below.

Theorem 7.2: Given a graph G with a graph coloring, if ω(G) ≥
k, then any vertex v with neighbors colored with less than k − 1
colors cannot be included in any k-clique of G.

Proof Sketch: Assume the opposite, i.e., there is a vertex v whose
neighbors can be colored with less than k − 1 colors while v itself
is included in a k-clique. Then, the subgraph induced by {v} ∪
Γ(v) contains a k-clique and can be colored with less than k colors,
which leads to a contradiction. 2

Next, we discuss how to enlarge s in the seed of (s,Λ(s)) by a
subset P ⊆ Λ(s), where all vertices in P belong to a maximum
clique in Λ(s). We find P as the vertices in a maximum indepen-
dent set in the complementary graph Λ(s) in an algorithm compIS,
based on Theorem 7.3.

Theorem 7.3: In a graph G, if there is a vertex v with degree
δ(v) = 1, there is at least one maximum independent set of G
containing v in G.

Proof Sketch: Assume the opposite, i.e., none of the maximum
independent sets contains v in G. Suppose I is such a maximum
independent set in G. Let the unique neighbor of v be u. There are
only two cases regarding the existence of u in I . First, if u ∈ I , we
can have a maximum independent set I ′ by replacing u with v such
that I ′ ← I ∪ {v} \ {u}. Second, if u /∈ I , we can have a larger
independent set I ′ by enlarging I to I∪{v} such that I ′ ← I∪{v}.
This leads to the conclusion that at least one maximum independent
set contains v. 2

The algorithm compIS is given in Algorithm 6 to compute an in-
dependent set I for an input graph G and a set of vertices P ⊆ I
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(a) By the existing DFS tree Td

(∅, G2)

({0, 1, 2, 3}, ∅)

(b) By our new BFS
tree, Tb

Figure 8: DFS Td vs BFS Tb

in G, where every vertex in P must appear in a maximum inde-
pendent set of G. We find an independent set I in G by selecting
vertices in the non-descending order of their degrees in G. When
a vertex, v is added into I , we remove its edges to its neighbors u
in G as well as the edges of its neighbors, and reduce the degree
of w by one if there is an edge (u,w) in G. The graph after such
edges removal is the graph to be processed next, which we call a
remaining graph. We find P based on Theorem 7.3 by adding a
vertex whose degree is 1 into P repeatedly until all vertices in the
remaining graph have degrees greater than 1.

We explain tciSeed (Algorithm 5). For every seed (s,Λ(s)) in
non-ascending order of ωc and ωc, we reduce Λ(s) by k-truss and
coloring, and enlarge s by the independent set. First, we compute
((k-|s|))-truss and Xt where Xt is a subset of Λ(s) excluded from
the (k-|s|)-truss of Λ(s). We reduce Λ(s) by Λ(s) \ Xt (Line 4-
5). If the (k-|s|)-truss is a clique, we treat s ∪ Λ(s) as the current
maximum clique, and remove the seed of (s,Λ(s)) from S (Line 6-
8). Second, we compute graph coloring for Λ(s) andXc whereXc
is a subset of Λ(s) whose neighbors can be colored with< k−|s|−
1 colors. We reduce Λ(s) by Λ(s) \Xc (Line 9-11). In addition, if
the remaining Λ(s) is empty, the seed of (s,Λ(s)) can be removed
from S (Line 12). Third, we enlarge s by s ∪ P , where P is a
subset of vertices in Λ(s) by the algorithm compIS as discussed
(Line 13-14). Note that compIS also returns an independent set, I ,
for Λ(s). If |I| + |s| ≥ k, we treat s ∪ I as the current maximum
clique (Line 15).

Example 7.2: Suppose the graphG in Fig. 1 is Λ(s) for some seed
s. We show how to find a k-clique in G. Fig. 7(a) illustrates the
idea by truss and coloring, where the number on a vertex is the col-
or number of the vertex. Let k = 6,G1 is pruned since edges inG1

are with truss value 5. Let k = 5, G2 can be pruned safely, since
their neighbors can be colored with less than 4 colors. We demon-
strate the idea of independent set by compIS in Fig. 7(b). Consider
G2. Here, each vertex in the complementary graph G2 is with de-
gree 1, then compIS finds an independent set I = {0, 1, 2, 3}. Be-
cause P = I , P is the maximum independent set of G2. In other
words, the maximum clique of G2 is a 4-clique. Furthermore, con-
sider finding the maximum clique of G2. Search trees Td and Tb
are outlined in Fig. 8(a) and Fig. 8(b), respectively. As can be seen,
Tb is better than Td. First, Tb prunes fruitless branches, in dashed
lines starting from the root (∅, G2). Second, Tb reduces branches
along the path from (∅, G2) to ({0, 1, 2, 3}, ∅), which are in dotted
lines in Fig. 8(a).

7.4 The Reduction by Dividing
The k-clique decision problem is NP-complete. Therefore, there

are cases where the brute-force search is unavoidable. In our algo-
rithm, such cases are when S is non-empty. By the existing brute-
force search, for each seed (s,Λ(s)) in S, it branches from each
vertex v ∈ Λ(s) to enumerate maximal cliques and prune fruitless
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Algorithm 5 tciSeed (G, S, k)
1: for each (s,Λ(s)) ∈ S do ωs ← |s|+ |Λ(s)| − 1, ωs ← |s|+ 1; ωs;
2: for each (s,Λ(s)) ∈ S in non-ascending order of ωs and ωs do
3: if ωs < k then S ← S \ {(s,Λ(s))};
4: compute the (k-|s|)-truss from Λ(s) andXt;
5: Λ(s)← Λ(s) \Xt;
6: if the (k-|s|)-truss is a clique then
7: Cm ← s ∪ Λ(s), ωc ← |Cm|;
8: S ← S \ {(s,Λ(s))};
9: else if Λ(s) 6= ∅ then
10: compute graph coloring for Λ(s) andXc;
11: Λ(s)← Λ(s) \Xc;
12: if Λ(s) = ∅ then S ← S \ {(s,Λ(s))};
13: (P, I)← compIS (Λ(s));
14: (s,Λ(s))← (s ∪ P,Λ(s) ∩ Λ(P ));
15: if |I|+ |s| ≥ k then Cm ← s ∪ I , ωc ← |Cm|;
16: end if
17: if ωc ≥ k then k ← ωc + 1;
18: end for
19: return (ωc, ωc, Cm, S);

Algorithm 6 compIS (G = (V,E))
1: P ← ∅, I ← ∅;
2: add every (v, δ(v)) into a min-heapH for v ∈ V ;
3: initialize t to be true, and state[1...|V |] be all zeros;
4: whileH 6= ∅ do
5: v ← getMin(H);
6: if state[v] = 0 then
7: state[v]← 1, I ← I ∪ {v};
8: if δ(v) > 1 then t← false;
9: if t = true then P ← P ∪ {v};
10: for every u with (u, v) ∈ G and state[u] = 0 do
11: state[u]← 1;
12: for each w with (u,w) ∈ G and state[w] = 0 do
13: δ(w)← δ(w)− 1;
14: end for
15: end for
16: end if
17: end while
18: return (P, I);

branches. In this paper, we propose a new approach to significant-
ly improve the performance of the existing brute-force search. As
indicated in RMC (Algorithm 2) in Line 22, we find the maximum
clique from the seed set S by calling the algorithm divSeed until S
becomes empty.

The Algorithm divSeed is given in Algorithm 7, which takes 3
inputs: the graph G, the seed set S, and a k value for specific k-
clique. Such a k value offers more chances for divSeed to prune.
Like scSeed and tciSeed, divSeed returns a 4-tuple (ωc, ωc, Cm, S).
Unlike scSeed and tciSeed, divSeed returns a seed set, denoted as
S′, to replace the input S. Here, a seed (s,Λ(s)) ∈ S is replaced
by several smaller and denser seeds (s′,Λ(s′)) in S′, as illustrated
in Fig. 4(c). For each seed (s,Λ(s)) in S, we compute V1 and V2.
As discussed, V1 is a subset of Λ(s) where every vertex in V1 has
a color greater than or equal to k − |s|, and V2 is a subset of Λ(s)
where for every vertex in V2 its neighbors in Λ(s) can be colored
with less than k − |s| − 1 colors (Line 3-4). By Theorem 7.2, ver-
tices in V2 cannot be in a k-clique. We remove the vertices in V2

from Λ(s), and refine V1 to be V1 \ V2 (Line 5). We show that any
k-clique of s∪Λ(s) must contain at least one vertex from a subset
V1 ⊆ Λ(s) Theorem 7.4.

Theorem 7.4: For a graph G, if ω(G) ≥ k, then any k-clique of
G must contain at least one vertex with color ≥ k.

Proof Sketch: We show the claim by contradiction, i.e., we assume
that there is a k-clique with all vertices colored< k inG. Then, the
coloring is still valid if we remove all the other vertices that are not
included in the k-clique. This implies that we get a coloring for a k-

Algorithm 7 divSeed (G, S, k)
1: S′ ← ∅;
2: for each (s,Λ(s)) ∈ S do
3: V1 ← {u | u ∈ Λ(s) ∧ color(u) ≥ k − |s|};
4: V2 ← the vertices in Λ(s) whose neighbors in Λ(s) can be colored with

< k − |s| − 1 colors;
5: Λ(s)← Λ(s) \ V2, V1 ← V1 \ V2;
6: for each v ∈ V1 do
7: s′ ← s ∪ {v}, Λ(s′)← Λ(s) ∩ Γ(v);
8: if |s′|+ |Λ(s′)| < k then continue;
9: if Λ(s′) is a clique then
10: Cm ← s′ ∪ Λ(s′), ωc ← |Cm|;
11: else
12: Xk ← {u | u ∈ Λ(s′) ∧ core(u) < k − |s′| − 1};
13: compute F from Λ(s′) \Xk;
14: Λ(s′)← Λ(s′) \Xk;
15: if Λ(v′) \ F = ∅ then
16: if |F | ≥ k − |s′| then Cm ← s′ ∪ F , ωc ← |Cm|;
17: else
18: if |F | ≥ k − |s′| − 1 then
19: Cm ← s′ ∪ F ∪ u where u ∈ Λ(v) \ F ;
20: ωc ← |Cm|;
21: s′ ← s′ ∪ F , S′ ← S′ ∪ (s′,Λ(s′));
22: else
23: s′ ← s′ ∪ F , S′ ← S′ ∪ (s′,Λ(s′));
24: end if
25: end if
26: end if
27: if ωc ≥ k then k ← ωc + 1;
28: end for
29: end for
30: (ωc, ωc, Cm, S)← tciSeed(G,S′, k);
31: return ;
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Figure 9: The reduction by dividing

clique that uses < k colors, leading to a contradiction. Therefore,
any k-clique in G contain at least one vertex with color ≥ k. 2

In divSeed, in the loop (Line 6-28), we get a new smaller/denser
seed, (s′,Λ(s′)) from the current seed (s,Λ(s)) for every vertex v
in V1. Here, s′ becomes s ∪ {v}, and Λ(s′) becomes Λ(s) ∩ Γ(v)
(Line 7). Then, we reduce the new seed (s′,Λ(s′) using the similar
techniques used in the tciSeed algorithm (Line 6-28).

Example 7.3: Suppose the graph G in Fig. 1 is Λ(s) for some
s, and we search for the maximum clique in Λ(s). In Fig. 9, the
left is Λ(s) where the number of a vertex is its color. Since Λ(s) is
colored with 5 colors, we have ω(Λ(s)) ≤ 5, which implies k ≤ 5.
We can get a smaller/denser seed (s′,Λ(s′)) from (s,Λ(s)) by the
divSeed algorithm. Here, s′ becomes s∪{v} where v is the vertex
with the max color number 5 in Λ(s) as shown in the left in Fig. 9,
Λ(s′) becomes Λ(s) ∩ Γ(s′) as shown in the right half of Fig. 9.
Suppose k = 5, finding a 5-clique in Λ(s) is equivalent to finding
a 4-clique in Λ(s′).

8. EXPERIMENTAL STUDIES
We have conducted experimental studies using 22 real large graph-

s to compare RMC with several state-of-the-art approaches, includ-
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ing FMC [37], PMC [40], MCQD [25], cliquer [34], which are
exact algorithms, and GRASP [1], which is an approximation algo-
rithm. For PMC, we set the number of threads to be one. For M-
CQD, among all variants, we report results on MCQD +CS (which
utilizes improved coloring and dynamic sorting), since it is the best-
performing variant. For GRASP, we repeat 1000 times and select
the largest clique found, following [1]. All the algorithms are im-
plemented in C++ and complied by gcc 4.8.2, and tested on ma-
chine with 3.40GHz Intel Core i7-4770 CPU, 32GB RAM and run-
ning Linux. The time unit used is second and we set time limit as
24 hours. For RMC, we set c = 0.2 (Theorem 7.1) and θ = 3 (In
Algorithm 2, Line 5).

Datasets: We use 22 real-world networks and 2 series of syn-
thetic graphs. Among the real-world networks, Epinions, Live-
Journal, Pokec, Slashdot0811, Slashdot0902, wikivote, Youtube,
Orkut, BuzzNet, Delicious, Digg, Flixster, Foursquare and Friend-
ster are social networks; BerkStan, Google, NotreDame, Stanford
are web graphs; Gnutella is a peer-to-peer network; Amazon is a
product co-purchasing network; WikiTalk is a communication net-
work and lastfm is a music website. Amazon, BerkStan, Epin-
ions, Gnutella, Google, LiveJournal, NotreDame, Pokec, Slash-
dot0811, Slashdot0902, Stanford, WikiTalk and wikivote are down-
loaded from Stanford large network dataset collection (http://
snap.stanford.edu/data); Youtube and Orkut are from http:

//socialnetworks.mpi-sws.org/datasets.html; BuzzNet,
Delicious, Digg, Flixster, Foursquare, Friendster and Lastfm are
downloaded from http://socialcomputing.asu.edu/pages/

datasets. The detailed information of the real-world datasets are
summarized in Table 1. In the table, for each graph, the 2nd and
3rd columns show the numbers of vertices and edges1, respective-
ly. The 4th, 5th, 6th and 7th columns show the size of max degree,
max core value, max truss value and the clique number of each
graph. For synthetic graphs, we use SNAP library [29] to generate
networks by PowerLaw (PL) [33] with n vertices and exponent α,
and by Watts-Strogatz (WS) [48] with n vertices where each ver-
tex is connected to k nearest neighbors in the ring topology and
each edge is rewired with probability p. We do not consider Erdős-
Rényi random graph model [12] since the graphs are significantly
different from real-world massive graphs, and we neglect Barabási-
Albert preferential attachment model [4] since the maximum clique
is known to be a (k + 1)-clique, where k is the number of edges
each new vertex link to existing vertices.

The efficiency on real datasets: Table 2 shows the efficiency of
RMC and its comparisons. The 12th and 15th columns show the
sizes of the maximum cliques found by GRASP and RMC, respec-
tively. We neglect the results of other algorithms since they are ex-
act algorithms. According to the 7th column of Table 1, RMC finds
the maximum cliques in all real graphs while GRASP cannot in
most graphs. The largest cliques found by GRASP in some graphs
(e.g., BerkStan and LiveJouranl) are much smaller than the optimal
solutions. The 2nd, 4th, 6th, 8th, 10th and 13th columns show the
running time of FMC, PMC, MCQD, cliquer, GRASP and RMC,
respectively. In Table 2, the symbol of “-” indicates that the algo-
rithm cannot get the result in 24 hours. RMC outperforms others in
19 out of 22 datasets. The advantage of RMC on graphs like Orkut
is significant. Only FMC and PMC outperform RMC on 3 dataset-
s (Amazon, Gnutella and NotreDame) marginally. The 3rd, 5th,
7th, 9th, 11th and 14th columns show the memory consumption
of FMC, PMC, MCQD, cliquer, GRASP and RMC, respectively.
As demonstrated, RMC outperforms all others in all datasets tested

1for each dataset, we remove directions if included and delete all
self-loops and multi-edges if exist.

Table 1: Summarization of datasets
Graph |V | |E| dmax cmax tmax |ω(G)|
Amazon 403,394 2,443,408 2,752 10 11 11
BerkStan 685,230 6,649,470 84,230 201 201 201
Epinions 75,879 405,740 3,044 67 33 23
Gnutella 62,586 147,892 95 6 4 4
Google 875,713 4,322,051 6,332 44 44 44
LiveJournal 4,036,538 34,681,189 14,815 360 352 327
NotreDame 325,729 1,090,108 10,721 155 155 155
Pokec 1,632,803 22,301,964 14,854 47 29 29
Slashdot0811 77,360 469,180 2,539 54 35 26
Slashdot0902 82,168 504,229 2,552 55 36 27
Stanford 281,903 1,992,636 38,625 71 62 61
WikiTalk 2,394,385 4,659,563 100,029 131 53 26
wikivote 7,115 100,762 1,065 53 23 17
Youtube 1,138,499 2,990,443 28,754 51 19 17
Orkut 3,072,627 117,185,083 33,313 253 78 51
BuzzNet 101,163 2,763,066 64,289 153 59 31
Delicious 536,408 1,366,136 3,216 33 23 21
Digg 771,229 5,907,413 17,643 236 73 50
Flixster 2,523,386 7,918,801 1,474 68 47 31
Foursquare 639,014 3,214,986 106,218 63 38 30
Friendster 5,689,498 14,067,887 4,423 38 31 25
Lastfm 1,191,812 4,519,340 5,150 70 23 14
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Figure 10: The Efficiency of RMC: Varying c

significantly. From Table 2, RMC, PMC and FMC outperform M-
CQD, cliquer and GRASP significantly in most graphs, therefore,
we will focus on the three algorithms below.

The effectiveness of the binary search and divSeed: In order to
illustrate the effectiveness of the binary search and divSeed, we
show the lower bound ωc and upper bound ωc returned by the bina-
ry search, and the time needed for divSeed (the column of timediv
in Table 2) to determine the maximum clique in the 17th, 18th and
16th columns. First, in a large percent of graphs tested, for instance,
Amazon, BerkStan, Google and Pokec, there is no need to invoke
divSeed. Even for graphs that need divSeed to determine the maxi-
mum clique, the time spent by divSeed is much less than expected.
This is largely due to the excellent pruning power of the binary
search. Second, consider those graphs that need invoke divSeed, in
a large percent of these graph, the lower bound ωc is actually the
optimal ω(G).

The influence of the parameter c: We show the influence of c in
Theorem 7.1 on the accuracy and efficiency of RMC. Here we show
the results using 3 datasets: Orkut, WikiTalk, and Foursquare. The
remaining datasets are similar to one of the three. Fig. 10 demon-
strates the running time by employing different values of c. Here,
we set the running time as 1 when c = 2, and use the ratio to indi-
cate the running time with smaller c. As can be seen, 1) employing
smaller c improves the performance of RMC significantly, 2) the
improvement is marginal when c is small enough, and 3) the im-
provement differs significantly in different graphs. The influence
of c on the accuracy of RMC is shown in Table 3. There are some
differences in the 3 graphs. 1) For Orkut, RMC finds the maximum
clique even when c = 0.05 and the bounds ωc and ωc returned
by the binary search are the same for different c. 2) For WikiTalk,
RMC always returns the correct result while the bounds ωc and
ωc returned by smaller c is better than the bounds obtained when
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Table 2: Performance of FMC, PMC, MCQD, cliquer, GRASP and RMC on real-world networks
Graph FMC PMC MCQD cliquer GRASP RMC

time mem time mem time mem time mem time mem ω(G) time mem ω(G) tdiv ωc ωc

Amazon 0.1 112 0.09 114 - - 868.1 19,437 63.17 85 9 0.1 67 11 0 11 11
BerkStan - - 1.04 272 - - - - 708.5 224 53 0.23 144 201 0 201 201
Epinions 5.65 15 0.26 46 7.33 647 31.81 696 15.68 18 22 0.11 12 23 0.02 23 26
Gnutella 0.01 8 0.05 8 4.37 10 22.52 470 2.4 8 4 0.03 8 4 0.01 4 6
Google 0.35 216 0.77 250 - - - - 80.61 163 20 0.24 135 44 0 44 44
LiveJournal - - 6.15 1,412 - - - - 508.49 995 102 1.82 788 327 0.01 326 327
NotreDame 0.01 215 0.19 474 - - 449.73 12,857 30.01 61 154 0.2 46 155 0 155 155
Pokec - - 9.51 1,359 - - - - 369.18 575 13 2.79 407 29 0 29 29
Slashdot0811 6.66 21 0.18 38 7.47 1,943 33.24 724 23.26 18 24 0.06 13 26 0.01 25 32
Slashdot0902 10.18 18 0.19 36 8.53 1,936 37.5 817 14.45 19 25 0.07 14 27 0.01 27 29
Stanford - - 0.48 68 - - 428.31 9,550 201.31 85 49 0.19 51 61 0 61 61
WikiTalk 2,767.95 325 4.87 336 - - - - 298.42 415 24 2.45 314 26 0.41 22 37
wikivote 1.53 3 0.08 49 0.06 3 0.29 435 2.59 3 17 0.03 2 17 0.01 17 21
Youtube 6.13 187 2.04 191 - - - - 1,145.82 216 15 1.26 156 17 0.08 17 20
Orkut - - 208.97 1,692 - - - - 9,132.23 2,520 25 45.01 1,623 51 3.76 50 65
BuzzNet 28,354.4 88 14.37 52 13.15 1479 51.35 1236 758.99 81 30 4.78 48 31 1.89 23 59
Delicious 0.27 83 0.26 86 - - 1,476.15 31,987 33.14 103 20 0.1 73 21 0.01 20 21
Digg - - 10.09 1,388 - - - - 593.21 200 44 2.13 146 50 0.38 45 58
Flixster 71.10 434 2.25 423 - - - - 120.52 473 26 1.04 358 31 0.06 31 33
Foursquare - - 39.36 141 - - 13,698.37 - 470.83 153 27 23.42 113 30 1.82 29 33
Friendster 10.12 823 2.88 852 - - - - 254.74 939 14 1.09 765 25 0 25 25
Lastfm 25.61 205 2.55 265 - - - - 80.84 243 14 1.41 177 14 0.2 14 17

Table 3: The accuracy of RMC: Varying c
c Orkut WikiTalk Foursquare

ωc ωc ω(G) ωc ωc ω(G) ωc ωc ω(G)
2 50 65 51 22 55 26 29 33 30
1 50 65 51 22 37 26 29 33 30
0.5 50 65 51 22 37 26 29 33 30
0.2 50 65 51 22 37 26 29 33 30
0.1 50 65 51 22 37 26 29 33 29
0.05 50 65 51 22 37 26 29 33 29
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Figure 11: FMC, PMC and RMC on synthetic graphs

c = 2. 3) For Foursquare, RMC misses the maximum clique when
c = 0.1 and c = 0.05. On one hand, a smaller c improves the ef-
ficiency and the bounds ωc and ωc as it generates fewer seeds. On
the other hand, it may introduce some errors.

The efficiency on synthetic datasets: We compare RMC, FMC
and PMC on synthetic graphs by PL [33] and WS [48] (Fig. 11).
RMC and PMC significantly outperforms FMC in both PL graphs
and WS graphs. The improvement of RMC over PMC is marginal.
We also study how each parameter in the models influences ω(G).
From Fig. 12(a) and Fig. 12(b), it is interesting to find that, in PL
graphs, ω(G) increases significantly as n increases and α decreas-
es. However, although k has a positive correlation with ω(G) in
WS, the influence is not as obvious as that in PL graphs. In addi-
tion, the effect of n in WS is negligible. The influence of rewiring
probability p of WS is shown in Fig. 12(c). As can be seen, the
clique number decreases as p increases. When p approaches 1, the
graph approximates an Erdős-Rényi random graph [12].

The effectiveness of reduction in RMC: We study the effective-
ness of the reduction techniques used in RMC, namely k-core, col-
oring, the independent set, and k-truss. We take RMC with all
the 4 reduction techniques as the baseline (unit 1), and test the ef-
fectiveness of a reduction technique by disabling it, using all the
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Figure 13: Scalability of RMC on Twitter

22 datasets. The average slowdown by disabling k-core, coloring,
the independent set, and k-truss are 79.17%, 39.84%, 80.62%, and
-5.27%, respectively. The reason for k-truss to be -5.27% on aver-
age is because k-core has pruned almost all the cases. In addition,
the maximum slowdown by disabling k-core, coloring, the inde-
pendent set, and k-truss are 869.38%, 141.44%, 1,033.88%, and
17.32%. The reduction techniques are effective in improving the
RMC performance.

The scalability of RMC: We study the scalability of RMC using
a Twitter social graph with 41,652,230 nodes and 1,202,513,046
edges [27]. To test the scalability, we sample three Twitter sub-
graphs with 10%, 20% and 30% edges. The numbers of nodes
and edges for the 3 sampled Twitter subgraphs are 27,640,227 and
120,243,815, 33,675,404 and 240,490,238, and 36,653,883 and
360,757,098, respectively. Fig. 13 shows that RMC scales linearly.

9. CONCLUSION
In this paper, we study the maximum clique problem. Differen-

t from previous algorithms, our approach RMC employs a binary
search schema. Specifically, RMC maintains a lower bound ωc
and an upper bound ωc of ω(G) and attempts to find a ωt-clique
in each iteration where ωt = b(ωc + ωc)/2c. Due to the NP-
completeness of finding a ωt-clique in each iteration, RMC sam-
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ples a seed set S s.t. finding a ωt-clique in graph G is equivalent to
finding a ωt-clique in S with probability guarantees (≥ 1 − n−c).
For the remaining seeds whose maximum cliques can probably up-
date the maximum clique Cm found so far, we propose a new itera-
tive brute-force searching algorithm divSeed to find the maximum
clique when the seed set S becomes empty. Our extensive experi-
mental studies demonstrate the efficiency and robustness of our ap-
proach. First, RMC finds the exact maximum cliques in all datasets
tested. Second, in 19 out of 22 datasets, RMC outperforms others,
and the performance difference in the other 3 datasets is marginal.
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