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ABSTRACT
Research on data visualization aims at finding the best way
to present data via visual interfaces. We introduce the com-
plementary problem of “data vocalization”. Our goal is to
present relational data in the most efficient way via voice
output. This problem setting is motivated by emerging tools
and devices (e.g., Google Home, Amazon Echo, Apple’s Siri,
or voice-based SQL interfaces) that communicate data pri-
marily via audio output to their users.

We treat voice output generation as an optimization prob-
lem. The goal is to minimize speaking time while trans-
mitting an approximation of a relational table to the user.
We consider constraints on the precision of the transmitted
data as well as on the cognitive load placed on the listener.
We formalize voice output optimization and show that it is
NP-hard. We present three approaches to solve that prob-
lem. First, we show how the problem can be translated into
an integer linear program which enables us to apply corre-
sponding solvers. Second, we present a two-phase approach
that forms groups of similar rows in a pre-processing step,
using a variant of the apriori algorithm. Then, we select
an optimal combination of groups to generate a speech. Fi-
nally, we present a greedy algorithm that runs in polynomial
time. Under simplifying assumptions, we prove that it gen-
erates near-optimal output by leveraging the sub-modularity
property of our cost function. We compare our algorithms
experimentally and analyze their complexity.

1. INTRODUCTION
Prior work studying the optimal representation of rela-

tional data to users is mostly targeted at visual interfaces.
There are however many emerging scenarios in which data is
presented via voice output instead. Cell phones offer nowa-
days audio interfaces as an alternative to more traditional
interaction modes. Devices such as Google Home or Ama-
zon Echo use voice output and input as primary means of
communication. Often, such devices need to transmit re-
lational data to their users, be it structured Web search
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results, information on nearby restaurants, or result rela-
tions answering SQL queries (a voice-based SQL interface
based on Amazon Echo was recently proposed [13]). This
motivates the problem of optimal “data vocalization” (com-
plementary to the problem of optimal data visualization)
which is the focus of this paper.

As pointed out in prior work [18], voice output is sub-
ject to specific constraints, compared to written text. Voice
output has to be of a simple structure in order to restrict
cognitive load on the listener. We need to respect limita-
tions of the user’s short term memory [15] as users cannot
simply re-read preceding passages. For instance, we can-
not generate speeches that require users to memorize many
facts mentioned initially in order to understand the rest of
the speech. Most importantly, we need to make voice output
as concise as possible to avoid exceeding the user’s attention
span. While users can themselves quickly identify relevant
parts in a plot or in written text (via skimming), they have
to trust the computer to select only the most relevant infor-
mation for voice output.

We formalize voice output generation as an optimization
problem. Our goal is to minimize speaking time under con-
straints that reflect the particularities of voice output. The
search space is formed by speeches of a simple structure that
is easy to understand for users, even after listening to out-
put only once. We restrict the search space via additional
constraints, limiting the number of facts that users need to
keep in mind at any point in order to understand the gen-
erated speech. Compared to naive output of relational data
(i.e., reading out one row after the other [13]), we reduce
speaking time by summarizing rows with equal or similar
values in certain columns.

The generated speeches may contain passages, called con-
text in the following, that assign some relation columns to
values or value domains. A context creates a scope, i.e. a
part of the speech within which those value assignments are
valid. For rows that are read out within a scope, we can
omit reading out values for attributes that have been fixed
by the context.

If we assign an attribute to a value domain instead of a
single value then we loose information: listeners will be un-
able to map the following rows to one specific value out of
the value domain. The larger the value domain assigned by
the context, the less precise is the information transmitted
via voice output. Often, there is a tradeoff between output
precision and speaking time: if we are willing to accept less
precise output then speaking time can be reduced. We al-
low to bound the precision of transmitted information by
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constraints that refer to the size of value domains assigned
by a context. We show in Section 2 that finding optimal
voice output plans is an NP-hard problem. We introduce
our running example to illustrate problem and search space.

Example 1. We read out information on nearby restau-
rants, stored in the following relation, to a mobile user.

Restaurant Rating Food Category

Upstate 4.75 Traditional American cuisine

Thai Castle 4.3 Thai cuisine

John’s 4.7 Traditional American cuisine

Paris 4.3 French cuisine

A naive output plan reads out one row after the other
which results in the following output: “Restaurant Upstate,
four point seven five stars average rating, food category tra-
ditional American cuisine. Restaurant Thai Castle, four
point three stars average rating, food category Thai cuisine.
Restaurant John’s, four point seven stars average rating,
food category traditional American cuisine. Restaurant Paris,
four point three stars average rating, food category French
cuisine.” We reduce redundancy by summarizing rows with
equal values in a context, e.g. “Entries for food category tra-
ditional American cuisine: Restaurant Upstate, four point
seven five stars average rating. Restaurant John’s, four point
seven stars average rating. Entries for four point three stars
average rating: Restaurant Thai Castle, food category Thai
cuisine. Restaurant Paris, food category French cuisine.”
This example uses two contexts. Each context assigns one
attribute to a value that applies to all rows within the cor-
responding scope. If we accept approximate output (e.g.,
we consider contexts that assign attributes to intervals such
that the upper bound is higher than the lower bound by no
more than 25%) then we generate even shorter output such
as “Entries for food category traditional American cuisine
and four to five stars average rating: Restaurant Upstate.
Restaurant John’s. Entries for four point three stars average
rating: Restaurant Thai Castle, food category Thai cuisine.
Restaurant Paris, food category French cuisine.”.

We present several approaches to solve that problem. First,
we show in Section 3 how to translate voice output opti-
mization into an integer program. After the transformation,
solvers such as CPLEX or Gurobi can be used to solve the
resulting programs. While this approach guarantees to find
an optimal solution, it turns out that optimization time is
often prohibitive for large problem instances. This motivates
our second approach, presented in Section 4, which uses in-
teger programming as well but within a restricted search
space. We reduce the search space via a pre-processing step
in which we select promising context candidates (i.e., sets
of assignments from attributes to value domains). Our goal
is to generate context candidates that can be used to out-
put a large number of rows. We generate them using a
modification of the apriori algorithm: as context candidates
become valuable if they cover frequent attribute-value pairs,
the problem of generating optimal candidates is similar to
the problem of mining frequent item sets. To deal with even
larger problem instances, we finally present a polynomial
time greedy algorithm in Section 5. Based on submodu-
larity properties of our cost function, we lower-bound its
output quality under simplifying assumptions.

<Output>::=<Row>* <Scope>*

<Scope>::=<Context> <Row>+

<Context>::="Entries for " <DomAsgs> ": "

<DomAsgs>::=<DomAsg>|(<DomAsg>", ")+ "and "<DomAsg>

<DomAsg>::=<CatDomAsg>|<NumDomAsg>

<CatDomAsg>::=<Value> " " <Attribute>|

(<Value>", ")+ "or "<Value>" "<Attribute>

<NumDomAsg>::=<Num> " " <Attribute>|

"from " <Num> " to " <Num> <Attribute>

<Row>::=<ValAsg>|(<ValAsg>", ")+ "and "<ValAsg>"."

Figure 1: Speech output structure in EBNF.

In summary, our original scientific contributions in this
paper are the following:

• We introduce and analyze the problem of voice output
optimization for relational data.

• We present several exhaustive and non-exhaustive al-
gorithms for that problem.

• We prove bounds on the output quality of those algo-
rithms and analyze their complexity.

• We experimentally compare our algorithms based on
several realistic use cases. We also verify, via a small
user study, that the output generated by our algo-
rithms is comprehensible.

The remainder of this paper is organized as follows. We
formalize the voice output optimization problem in Section 2
and show that it is NP-hard. Then, we show how to trans-
late the problem into an integer program in Section 3. In
Section 4, we present a two-phase approach to voice output
optimization that selects promising context candidates in a
pre-processing step before using integer programming. In
Section 5, we present a greedy algorithm and prove lower
bounds on its output quality. We analyze the complexity
of all presented algorithms in Section 6 and evaluate them
experimentally in Section 7. Finally, we compare to related
work in Section 8.

2. PROBLEM MODEL
We treat voice output generation as an optimization prob-

lem. For a given relation to output1, we seek a Voice Out-
put Plan that minimizes speaking time under certain con-
straints. Those constraints refer to the precision of the
transmitted information and to the cognitive load placed
on the listener.

We consider output plans of a simple structure summa-
rized in Figure 1. Each row in the relation to output is either
read out separately (by reading all associated attribute -
value pairs) or within a Scope. At the beginning of a scope,
we provide Context by assigning a subset of attributes to
value domains. The rows within the scope inherit those as-
signments and we omit reading out values for the context
attributes for those rows.

A context assigns categorical attributes to value sets and
numerical attributes to intervals. For value sets, we upper-
bound the number of values (a measure of imprecision) by a

1Note that we output only a single relation (which may how-
ever result from a query over multiple relations).
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Table 1: Overview of Introduced Symbols.

Symbol Semantics

mS Maximal context size

mW Maximal width for intervals

mC Maximal domain cardinality

T (.) Speaking time of element

Matches Row matches context?

parameter mC . For intervals, we upper-bound the relative
width (i.e., the factor separating upper and lower bound) by
parameter mW . Interpreting rows in a scope requires to hold
all domain assignments in short-term memory. Parameter
mS models the number of slots in short term memory [15]
and restricts therefore the context size (i.e., the number of
assignments).

Example 2. We illustrate the aforementioned concepts
in a sentence from Example 1: [[Entries for [food category
traditional American cuisine]DomAsg and [four to five stars
average rating]DomAsg :]Context [Restaurant Upstate.]Row

[Restaurant John’s.]Row]Scope

We formalize the voice output optimization problem. A
relation R to output is a set of rows. Each row r ∈ R is
a set of assignments from attributes to values. A context
c is a set of assignments from attributes to value domains.
A context is valid if the sizes of all of its value domains are
acceptable as defined by parameters mC and mW and if its
size, |c|, is not above the threshold mS . A row r matches
a context c, denoted by the predicate Matches(c, r) in the
following, if the row assigns each attribute to a value that
lies within the value domain assigned to that attribute by c
(if any).

Let T (r) be the time for reading out a row without con-
text. We denote by T (c, r) ≤ T (r) the time for reading
out value assignments only for the attributes that have not
been fixed by context c. T (c) is the time for reading out
the context itself. For a fixed plan p, we denote by C
the set of contexts it uses, by RW ⊆ R the rows that
are read out without context, and by RC = R \ RW the
other rows. Further, we denote for any row r ∈ RC by
cr ∈ C the context that plan p assigns to it. Then the
speaking time for the plan, T (p), is given by the formula
(
∑

c∈C T (c)) + (
∑

r∈RW
T (r)) + (

∑
r∈RC

T (cr, r)). Given a
relation R, the goal in Voice Output Optimization is to find
an output plan p for R whose duration T (p) is minimal.
Table 1 summarizes the most important symbols.

Theorem 1. Voice output optimization is NP-hard.

Proof. We reduce vertex cover to voice output optimiza-
tion in polynomial time. We create a relation that contains
one row for each edge in the vertex cover instance, and one
categorical column for each vertex. For a given column and
row, we store a distinguished value α in the cell if the corre-
sponding vertex is incident to the corresponding edge. All
other values in the relation are mutually different. We as-
sume that speaking time is directly proportional to the num-
ber of values that are read out (i.e., all values have unit
length and the context template text is empty). We set mS

and mC both to one (single assignment contexts and single

value domains). Denoting by n the number of vertices and
by m the number of edges, we find a voice output plan with
length (n − 1) · m + k iff we find a cover with k vertices.
This can be seen as follows. For a given voice output plan,
we select all vertices associated with columns appearing in
any context (thereby covering all edges associated with the
rows that are output within those contexts). For rows that
are output without context, we select an arbitrary vertex to
cover the associated edge. The resulting cover has k vertices.
On the other hand, for a given vertex cover, we create a voice
output plan with one context for each selected vertex. We
output each row within an arbitrary, matching context. The
resulting voice output plan has length (n− 1) ·m+ k.

3. INTEGER PROGRAMMING
We show how to transform an instance of voice output op-

timization into an integer linear program. Integer programs
consist of a set of integer variables, a set of linear constraints,
and a linear function to minimize or maximize. Mature inte-
ger programming solvers such as CPLEX or Gurobi can find
guaranteed optimal solutions for such programs using expo-
nential time algorithms. We show how to represent valid
output plans in Section 3.1. In Section 3.2, we show how
to calculate speaking time for a given plan. Tables 2 to 4
summarize the transformation.

3.1 Representing Output Plans
A context is only helpful if it frees us from reading out sim-

ilar attribute values repeatedly for different rows. Hence,
there is an optimal plan that outputs at least two rows
within each context. Given a relation with n rows, we there-
fore integrate cmax = bn/2c context slots into the corre-
sponding ILP. Each slot can be used to model one context
in an output plan. For each slot, we introduce a binary vari-
able g(c), indicating whether slot c is actually used (we set
g(c) to one in that case).

For each context slot c and attribute a, we introduce a bi-
nary variable f(c, a) indicating whether the context assigns
a domain to the attribute (then f(c, a) = 1). Categorical
attributes are assigned to value sets by a context. We intro-
duce binary variables of the form d(c, a, v) that are set to one
iff value v is in the domain assigned to categorical attribute
a by context c. Numerical attributes are assigned to inter-
vals (or single values as a special case). We introduce binary
variables of the form l(c, a, v) that are set to one iff context
c assigns value v to numerical attribute a as a lower bound.
Similarly, we describe upper bounds by binary variables of
the form u(c, a, v). For the latter two families of variables,
we consider values that appear for the numerical attribute
in the input relation, as well as close-by values that are fast
to read since they only have one significant digit.

Each context is subject to constraints that relate to the
precision of transmitted information and to the cognitive
load placed on the listeners. We restrict the size of a con-
text c by constraints of the form

∑
a f(c, a) ≤ mS . For

each categorical attribute a, we restrict the cardinality of
the domain assigned by context c via constraints of the
form

∑
v d(c, a, v) ≤ mC (summing over all values in the

attribute value domain). For each numerical attribute a, we
restrict the width of the interval assigned by context c via
constraints of the form

∑
v v·u(c, a, v) ≤

∑
v v·l(c, a, v)·mW .

For each numerical attribute a, we ensure that the lower
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Table 2: Summary of ILP Variables.

Variable Semantics

g(c) Is context number c generated?

f(c, a) Context c fixes attribute a?

l(c, a, v) Context c sets v as lower bound for a?

u(c, a, v) Context c sets v as upper bound for a?

e(c, a, v) Lower and upper bound for a in c equal v?

d(c, a, v) Context c includes v in domain of a?

w(c, r) Row r read within context c?

s(c, r, a) Save time for reading a in r due to c?

Table 3: Summary of ILP Constraints.

Constraint Semantics∑
c w(c, r) ≤ 1 Row in at most one context∑
a f(c, a) ≤ mS Limit on context size∑
v d(c, a, v) ≤ mC Limit on domain size∑
v v · u(c, a, v) ≤ Limit on interval width

mW ·
∑

v v · l(c, a, v)∑
v l(c, a, v) = f(c, a) Context fixes lower bound∑
v v · l(c, a, v) ≤ Lower bound below upper∑
v v · u(c, a, v)

l(c, a, v) + w(c, r) + f(c, a) ≤ 2 Row must match context
u(c, a, v) +w(c, r) + f(c, a) ≤ 2
w(c, r)+f(c, a)−d(c, a, vr) ≤ 1

s(c, r, a) ≤ w(c, r) Need context for savings

s(c, r, a) ≤ f(c, a) Must fix attributes to save

g(c) ≥ w(c, r) Generate used contexts

e(c, a, v) ≤ l(c, a, v) Bounds equal if same value
e(c, a, v) ≤ u(c, a, v)

bound assigned by context c (if any) is not above the up-
per bound via constraints of the form

∑
v v · l(c, a, v) ≤∑

v v · u(c, a, v). Finally, we add constraints of the form∑
v l(c, a, v) = f(c, a) for each numerical attribute a to en-

sure that we pick a lower bound whenever context c fixes the
attribute to a domain (and analogue constraints for upper
bounds).

We still need to model the assignment of rows to specific
context slots. We introduce binary variables of the form
w(c, r) for each row r and context c that are set to one iff
the row is read out within the corresponding context. We
introduce constraints of the form g(c) ≥ w(c, r) for each
context slot c and row r to ensure that each context used
for assignments is generated. Rows can only be assigned
to a context mapping attributes to domains that contain
the values found in the row. For each row r with value
vr in numerical attribute a, we introduce constraints of the
form l(c, a, v) + w(c, r) + f(c, a) ≤ 2 for each context c and
v > vr to ensure that one of the following holds: either
the row is not read out within context c (i.e., w(c, r) = 0),
or the context does not assign attribute a to a domain
(i.e., f(c, a) = 0), or the lower bound is not above vr (i.e.,
l(c, a, v) = 0 for v > vr). Similarly, we introduce constraints
of the form u(c, a, v) + w(c, r) + f(c, a) ≤ 2 to account for
upper bounds. For each row r with value vr for a cate-

Table 4: Summary of ILP Cost Terms.

Term Semantics

−
∑

c,r,a
s(c, r, a) · (T (a) + T (var )) Savings due to context∑

c g(c) · T (“Entries for : ”) Context boilerplate time∑
c,a f(c, a) · T (a) Attribute names in context∑
c,a,v d(c, a, v) · T (v) Categories in context∑
c,a,v T (v) · l(c, a, v) Lower bounds in context∑
c,a,v(T (v)+T (“ from to ”))· Upper bounds in context

(u(c, a, v) − e(c, a, v))

gorical attribute a, we introduce constraints of the form
(1 − d(c, a, vr)) + w(c, r) + f(c, a) ≤ 2 for each context c.
This ensures that rows are only assigned to contexts with
matching value assignments for categorical attributes.

Finally, we introduce constraints of the form
∑

c w(c, r) ≤
1 for each row r to ensure that the row is assigned to at most
one context. This is necessary since the objective function,
presented in the next subsection, calculates time savings by
summing over all assignments for a given row.

3.2 Evaluating Output Plans
We show how to formulate our objective function, repre-

senting speaking time. Instead of optimizing absolute speak-
ing time, we equivalently optimize the time difference to a
naive plan (reading out one row after the other without using
any context). This time difference is given by the overhead
due to reading out context text minus the time savings by
omitting attributes that are fixed in a context.

For each context, we read out boilerplate text (e.g., “En-
tries for : ”) and value domain assignments. Time overhead
for boilerplate text can be captured by the term

∑
c g(c) ·

T (“Entries for :”). The term
∑

c,a f(c, a) · T (a) accounts
for time required to read out attribute names inside the
domain assignments. The time required for reading out
the values in those assignments is captured by the term∑

c,a,v d(c, a, v) · T (v) for categorical attributes. For nu-
merical attributes, we capture time required for reading out
the lower bound by the term

∑
c,a,v l(c, a, v) · T (v). Upper

bounds only need to be read out, together with additional
boilerplate text, if the upper bound is different from the
lower bound. We introduce a family of binary variables
of the form e(c, a, v) indicating whether lower and upper
bound assigned to numerical attribute a by context c are
both equal to value v. Introducing constraints of the form
e(c, a, v) ≤ l(c, a, v) and e(c, a, v) ≤ u(c, a, v) forces those
variables to zero if the associated condition is not satis-
fied (forcing them to one is not required as it minimizes
the following cost term). The time required for reading
out upper bounds (if different from the corresponding lower
bound) is captured by the term

∑
c,a,v(T (v) + T (“ from to

”)) · (u(c, a, v) − e(c, a, v)). Note that our cost function is
slightly simplified since we do not take into account the ef-
fect of connectors (e.g., “and” and “or”).

Next, we model time savings by the use of context. We
introduce binary variables of the form s(c, r, a) indicating
whether we save time by omitting attribute a when reading
out row r within context c. Clearly, it is s(c, r, a) ≤ f(c, a)
and s(c, r, a) ≤ w(c, r). Denoting by var the value of row r
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for attribute a, the term −
∑

c,r,a(s(c, r, a) · (T (a) +T (var )))
captures time savings due to the use of context. The over-
all optimization goal is to minimize the sum of all terms
described in this subsection.

Example 3. We sketch the transformation for Example 1.
We have four tuples (i.e., four restaurants) and need there-
fore at most two contexts. Variables g(1) and g(2) indicate
whether the two context slots are actually used. We introduce
eight variables w(c, r) representing assignments between a
tuple and a context. We have two non-key attributes (the
food category, and the average rating) and introduce four
variables of the form f(c, a), indicating for each attribute
whether it is assigned to a domain by the corresponding con-
text. As the rating is a numerical attribute, we introduce
variables of the form l(c,“rating”, v), u(c,“rating”, v), and
e(c,“rating”, v) for each context, describing lower and upper
bounds of the domain assigned by the context (if any). We
introduce those variables for each rating value v that appears
in the corresponding column and for several rounded values
in between. The food category is a categorical attribute and
we introduce variables of the form d(c,“food category”, v) for
both contexts and each food category value v that is men-
tioned in the column. We enforce consistent variable assign-
ments (e.g., tuples are only assigned to matching contexts)
and user preferences (e.g., context size is below threshold)
by constraints. Our cost function sums overhead for reading
context and rows, taking into account that attributes fixed in
a context are never repeated in the same scope.

4. TWO-PHASE ALGORITHM
We present a two-phase approach to voice output opti-

mization. In the first phase, we generate a set of promising
context candidates for a given relation. In the second phase,
we assign rows to context candidates in an optimal fashion
(thereby deciding which candidates are generated). The al-
gorithm can be tuned by a parameter that decides how many
context candidates get generated, thereby trading output
quality for optimization time. We describe the first phase
in Section 4.1 and the second phase in Section 4.2.

4.1 Generating Promising Contexts
Algorithm 1 generates a set of contexts that are poten-

tially useful. Only the resulting contexts are considered in
the row assignment phase described in the next subsection.
Function ContextCandidates takes as input a relation R
to output and a parameter k limiting the number of gener-
ated context candidates. It returns a set of context candi-
dates that are potentially useful to reduce output time. Each
context is modeled as a set of assignments from attributes to
value domains. Function DomainAssignments returns for
a given relation R the set of all assignments for all attributes
(i.e., all admissible intervals for numerical attributes and all
admissible value sets for categorical attributes).

Algorithm 1 is inspired by the apriori algorithm for min-
ing frequent item sets (and association rules) [1]. Contexts,
modeled as assignment sets, take the place of item sets.

The apriori algorithm is based on the apriori rule, speci-
fying that item sets with infrequent subsets cannot be fre-
quent. This enables the algorithm to avoid generating many
infrequent item sets. We need to find a similar rule for voice
output optimization. We base this rule on the following fact:
a context can only be useful if the time required for reading

1: // Generates contexts that could shorten readout of R.
2: // Keeps at most k contexts per context size.
3: function ContextCandidates(R, k)
4: // Generate contexts with single assignment
5: A←DomainAssignments(R)
6: // Initialize context candidates
7: C0 ← {∅}
8: // Iterate over number of assignments
9: for i← 1, . . . ,mS do

10: // Generate new contexts
11: Ci ← {c ∪ {a}|c ∈ Ci−1, a ∈ A \ c}
12: // Prune useless contexts
13: Ci ←PruneUseless(Ci, R)
14: // Select diverse subset
15: Ci ←MaxRowCover(Ci, R, k)
16: end for
17: // Return potentially useful contexts
18: return ∪1≤i≤mSCi

19: end function
Algorithm 1: Generate diverse set of context candidates that
are potentially useful for speech output.

out the context is below the potential time savings when
reading out rows after the context. We calculate potential
time savings of a context as follows: we sum up the time
difference between reading out an entire row (with all at-
tributes and values) and reading out the key attribute (with
unique value) alone over all rows that match the domain as-
signments of the context. Clearly, a context is useless if the
potential time savings do not match the time required for
reading the context, i.e., if the following formula is satisfied:

T (c) ≥
∑

r∈R|Matches(c,r)

(T (r)− T (r.key)). (1)

Furthermore, we show in the following that each possible
specialization (i.e., we specialize a context by adding more
value assignments) of a useless context is useless as well.

Lemma 1. A specialization of a useless context is useless.

Proof. Specializing a context, i.e. adding more value as-
signments, increases the time required for reading out the
context. On the other side, specializing the context can
only reduce the number of rows matching its assignments.
Specializing the context can of course reduce the time re-
quired for reading out a row after that context. However,
when calculating potential time savings, we already assume
the maximal time savings per row that can be achieved by
any specialization of a context. Specializing a context can
therefore only reduce the potential time savings. Hence, if
the reading time of a context exceeds the potential time
savings, then this applies for each specialization as well.

Algorithm 1 iteratively generates candidate sets of in-
creasing size, up to the maximal context size mS . In each
iteration, we extend the candidates generated in the last
iteration by one assignment. Function PruneUseless ex-
ploits (1) to identify and discard useless context candidates.
Still, the set of potentially useful context candidates can be
large, leading to prohibitive context generation time. There-
fore, Algorithm 1 offers the possibility to upper-bound the
number of context candidates kept after each iteration via
parameter k. Setting k to infinity generates all potentially
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useful context candidates (which allows us to find optimal
output plans). Setting k to a finite value ensures that at
most that many context candidates are kept after each iter-
ation (i.e., |Ci| ≤ k).

Function MaxRowCover returns a set of context candi-
dates of cardinality at most k. A context tends to be more
useful, the more rows it can cover (i.e., the more rows match
the context). Ranking context candidates by the number of
covered rows and selecting the top-k candidates leads how-
ever to the following problem: the top-k context candidates
might be very similar and cover essentially the same set of
rows, thereby leaving many rows uncovered. Our goal is to
select a rather diverse set of context candidates that, taken
together, cover as many rows as possible. We use a simple
greedy algorithm to select a fixed number of context can-
didates: at each step, we select the context candidate that
covers the highest number of rows among the rows not yet
covered by the previously selected candidates.

This corresponds to a classical greedy algorithm for sub-
modular maximization [17]. Also, row cover is a submodular
function (i.e., adding more and more context candidates has
less and less effect on the total number of covered rows) as
shown by the following lemma.

Lemma 2. Row cover is submodular.

Proof. Let U(C) be the number of rows in R matching
a context in C. We need to show U(C ∪ {c}) − U(C) ≥
U(C′∪{c})−U(C′) for C′ ⊇ C. The set of new rows covered
by adding a new context c into C is the intersection of all
rows covered by c but not by any context in C. The latter
set can only shrink when replacing C by C′. Hence, the
number of newly covered rows can only shrink as well.

Hence, we select a near-optimal context set when imple-
menting Function MaxRowCover by the greedy algorithm.

Theorem 2. Function MaxRowCover selects contexts
whose row cover is within factor 1− 1/e of the optimum.

Proof. Row cover is non-negative, monotone, and sub-
modular. It satisfies the condition for the near-optimality
guarantees given by Nemhauser and Wolsey [17].

4.2 Mapping Rows to Contexts
The algorithm from the last subsection generates a set of

potentially useful context candidates. We use integer pro-
gramming to map rows to context candidates, thereby im-
plicitly selecting which of the context candidates are actually
used. The corresponding integer program has some similar-
ity with the one presented in Section 3. It is however much
simpler as we delegate many decisions to the pre-processing
step. In the following, we denote by C the set of poten-
tially useful context candidates that was generated by the
algorithm from the last subsection. Additionally, C con-
tains a special context, the empty context, which does not
include any assignments. Mapping a row to the empty con-
text means that the row is output without any context (i.e.,
we read each attribute in the row). Introducing the empty
context simplifies the following expressions as we can assume
that each row is mapped to exactly one context (while not
neglecting the possibility to renounce using any context).

We introduce again a set of binary variables w(c, r) indi-
cating whether row r is output within context c (in that case,
we set w(c, r) to one). Each row is mapped to one context

which translates into constraints of the form
∑

c∈C w(c, r) =
1. We introduce another set of binary variables g(c) indicat-
ing whether context candidate c ∈ C is generated. A context
needs to be generated before it can be used to output rows.
This translates into constraints of the form g(c) ≥ w(c, r).
We can express speaking time using the constants T (c), in-
dicating speaking time for context c, and T (c, r), expressing
the time required to output row r within context c (with
T (c, r) = T (r) for the empty context c). Speaking time is
now the sum of the time overhead due to generating context,∑

c g(c) · T (c), and the time overhead of reading out rows
within their respective context,

∑
r,c(w(c, r) · T (c, r)). The

optimization goal is to minimize that linear formula.

Example 4. We illustrate how the two-phase algorithm
applies to Example 1. Setting k = 2 for instance, the first
phase generates at most two potentially useful context can-
didates for each context size (e.g., the context {〈“food cate-
gory”,“traditional American cuisine”〉} with size one or the
context {〈“food category”,“traditional American cuisine”〉,
〈“average rating”,[4, 5]〉} with size two). In the second phase,
we introduce binary variables of the form w(c, r) for each
context and each of the four rows to output, indicating whether
the row is read out within the corresponding context. We
also introduce a variable g(c) for each context candidate c,
indicating whether at least one row maps to it. Our cost for-
mula sums over the variables g(c) and w(c, r), weighted by
the time it takes to read out the corresponding context or to
read out the corresponding row within the associated context.

5. GREEDY ALGORITHM
Our greedy algorithm consists of two parts. In Section 5.1,

we present an algorithm that forms several sets of context
candidates. For each context set, it generates the best plan
that uses only the context candidates in the set. Finally, it
returns the plan with minimal run time among all generated
plans. The algorithm in Section 5.1 relies on a sub-function
that tries to generate the most promising context candidate
in a given situation. We discuss the implementation of that
function in Section 5.2. Our greedy algorithm is deliberately
kept simple to minimize optimization overhead. Neverthe-
less, we show that it finds at least near-optimal solutions
under several simplifying assumptions.

5.1 Main Function
Algorithm 2 greedily generates voice output for a given

relation. Function GreedyVOO takes as input a relation
and returns a corresponding output plan. The main idea
underlying that function is the following. We decompose
plan generation into two steps: First, we choose what set of
context candidates the plan may use. Then, we map each
relation row to the context which minimizes its output time.
When mapping rows to context candidates, we only consider
the time required for reading out rows within a context but
not the time required for reading out the context itself.

Function GreedyVOO initially generates a naive output
plan (reading out one row after the other one) that does not
use any context. Next, it initializes a set of context candi-
dates that is extended by one context in each iteration. As
discussed in Section 3, an optimal output plan uses at most
one context per row pair. Hence, the size of the largest set
of context candidates that we consider is half the number
of rows in the input relation. Each iteration of the for loop
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1: // Use contexts in C to generate fastest output plan
2: // for relation R.
3: function MinTimePlan(C,R)
4: // Collect unmatched rows
5: U ← {r ∈ R|@c ∈ C :Matches(c, r)}
6: // Start speech with those
7: S ←Speech(U)
8: // Continue with matched rows
9: R← R \ U

10: // Iterate over available contexts
11: for c ∈ C do
12: // Which rows match that context?
13: M ← {r ∈ R|Matches(c, r)}
14: // Which rows favor that context?
15: F ← {r ∈M |T (c, r) = minc̃∈C T (c̃, r)}
16: // Any row favors current context?
17: if F 6= ∅ then
18: // Append to speech
19: S ← S◦Speech(c, F )
20: end if
21: // Discard treated rows
22: R← R \ F
23: end for
24: return S
25: end function

26: // Greedily optimize voice output for relation R.
27: function GreedyVOO(R)
28: // Initialize context set
29: C ← ∅
30: // Generate plan without contexts
31: naiveP lan←MinTimePlan(C,R)
32: // Initialize candidate plans
33: P ← {naiveP lan}
34: // Up to maximal number of useful contexts
35: for i ∈ {1, . . . , b|R|/2c} do
36: // Generate most promising context
37: c∗ ←BestContext(C,R)
38: // Add context to set
39: C ← C ∪ {c∗}
40: // Best plan for given context set
41: p∗ ←MinTimePlan(C,R)
42: // Add to plan candidates
43: P ← P ∪ {p∗}
44: end for
45: // Return best plan among candidates
46: return arg minp∈P T (p)
47: end function
Algorithm 2: Greedy algorithm for generating near-optimal
voice output for a given relation.

adds one context candidate. That context candidate is gen-
erated by an invocation of function BestContext which we
discuss in the next subsection. For each set of context can-
didates, we generate a plan by choosing an optimal mapping
from relation rows to context candidates. Finally, we return
the plan with minimal run time (function T (p) returns the
speaking time for plan p).

Function GreedyVOO uses sub-function MinTimePlan
to identify the best plan for a fixed context set (i.e., we as-
sume that each context in the set is generated anyway and
thereby simplify the problem compared to the one we solve
in Section 4.2). We discuss the implementation of that func-

tion next. Function MinTimePlan first identifies all rows
that do not match any context in the given set. We start
the output speech by reading out those rows one after the
other one (we use function Speech to generate naive out-
put for a set of rows). Next, we focus on the remaining
rows that match one or several context candidates in the
set. We iterate over the set of context candidates and se-
lect for each context all rows that have minimal output time
under that context (among all context candidates). We ex-
tend the speech by outputting each of those rows (if any)
within the current context. We use function Speech with
two parameters to output a row set within a given context,
we concatenate speech fragments by the ◦ operator. We
continue until all rows have been assigned to a context and
are included in the speech.

Next, we show that Algorithm 2 generates near-optimal
plans assuming that function BestContext returns always
the best context candidate (this assumption is simplifying).
Our analysis is based on a diminishing returns property
when generating more and more context candidates. In-
tuitively, the more context candidates we have already, the
more likely it is that one of them is similar to a new context.
We formalize this intuition and introduce the Time Savings
of a context set C for relation R:

Savings(C,R) =
∑
r∈R

(T (r)− min
c∈C:Matches(c,r)

T (c, r))

We prove several properties of time savings.

Lemma 3. Time savings is submodular in the context set.

Proof. We set U(C) = Savings(C,R) for an arbitrary
but fixed relation R in the following. We need to show that
U(C ∪ {c})− U(C) ≥ U(C′ ∪ {c})− U(C′) for an arbitrary
context c and two arbitrary context sets C ⊆ C′. The addi-
tional time gain U(C ∪ {c})− U(C) when adding one more
context c is determined by the sum, over all rows for which
c becomes the ideal context, of the additional gain per row.
Replacing C in the last expression by a superset C′ means
that the new context c is ideal for the same rows as before
or a subset. Also, the additional gain per row is at most the
same as before. Taken together, this implies diminishing re-
turns when adding more and more context candidates.

Lemma 4. Time savings are non-negative.

Proof. It is T (c, r) ≤ T (r) for each context c matching r
(since we can omit all attributes fixed by the context when
reading out row r within context c). Hence, time savings is
a sum over non-negative terms.

Lemma 5. Time savings are monotone in the context set.

Proof. We subtract the minimum over all context candi-
dates when calculating time savings. Hence, increasing the
context set can only increase time savings.

Based on the previous lemmata, we can lower-bound the
output quality of Algorithm 2. This bound refers to the
Total Time Savings, by which we mean the time difference
of a naive plan compared to the greedy plan (note the dis-
tinction to time savings where we do not take into account
the overhead for reading out context). Besides the simpli-
fying assumption that function BestContext returns op-
timal results, we make another assumption: we assume that
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the overhead for outputting each context is a constant. This
assumption is simplifying but not unreasonable: the number
of values that can be fixed by a context is typically restricted
by a small constant (mS) such that a large part of context
output time is due to reading out boilerplate text (which is
the same for each possible context).

Theorem 3. Algorithm 2 generates a plan with total time
savings within factor 1− 1/e of the optimum.

Proof. We assume a constant time overhead per context.
The time overhead for reading out context depends therefore
only on the number of used contexts. The total time sav-
ings are the sum of the time savings minus the time overhead
for reading context. Therefore, if we find for each possible
number of used contexts a plan with maximal time savings
then the optimal plan is one of them. We find for a given
context set a plan with maximal time savings (via function
MinTimePlan). However, we may not find the context set
leading to optimal time savings among all sets with the same
cardinality. Still, we find a near-optimal context set as jus-
tified in the following. If we greedily select k elements in
order to maximize a monotone, non-negative, and submod-
ular function (i.e., we always select the element leading to
the biggest increase) then we find a solution within factor
1 − 1/e of the optimum [17]. Time savings, as a function
of the context set, has all required properties as shown by
the previous three lemmata. Also, we currently assume that
function BestContext adds the context with optimal time
savings. We do not know a-priori what number of context
candidates will lead to an optimal solution. However, we
simply keep the best plan for each context set cardinality
and determine finally the optimum among them.

5.2 Generating a Good Context
The greedy algorithm relies on a function for generating

good context candidates (function BestContext in Algo-
rithm 2). We describe how to implement function Best-
Context in the following.

We denote by Cprev the set of previously generated con-
text candidates for the current output relation R. The set
Runm = {r ∈ R|@c ∈ Cprev : Matches(c, r)} is the subset
of rows in R that is not matched by any of the previous con-
text candidates. Intuitively, we should prioritize matching
those rows when generating the new context.

We model a context as a set of domain assignments. Each
domain assignment assigns one attribute to a value domain.
We denote by A the set of all relevant domain assignments.
For each numerical attribute a, we add the assignment pair
〈a, [l, u]〉 toA where l and u are lower and upper bounds with
l < u and u ≤ l ·mW . Upper and lower bounds correspond
to values for attribute a that we find among the unmatched
rows Runm. For each categorical attribute a, we add the
assignment pair 〈a,D〉 to A, where D is a subset of the
categorical values that we find among the unmatched rows
for attribute a. Additionally, we only consider subsets D of
sufficiently small cardinality (i.e., |D| ≤ mC).

We consider all subsets c ⊆ A of assignments that satisfy
the following two constraints. First, we consider only subsets
that satisfy our constraint on the context size, i.e. subsets
c with |c| ≤ mS . Second, we only consider subsets that
contain for each attribute at most one assignment, i.e. there
is no attribute a and distinct domains X and Y such that
〈a,X〉 ∈ A and 〈a, Y 〉 ∈ A. We write S(c) in the following
if c satisfies both constraints.

In line with the assumptions from the previous subsection,
we aim at generating a context that maximizes time savings
for the unmatched rows. In summary, we want to generate
a context c∗ with the following property:

c∗ = arg max
c⊆A:S(c)

Savings({c}, Runm)

Next, we show that the above problem is an instance of
submodular maximization for which efficient approximation
algorithms exist. We have shown that time savings are sub-
modular in the context candidates (Lemma 3). In the fol-
lowing, we show that time savings for a single context is also
submodular with regards to that context’s assignment set.

Lemma 6. Time savings of a single context is submodular
in the assignment set.

Proof. We need to show that adding an assignment to
a context (i.e., set of assignments) c does not increase time
savings more than adding the same assignment to a superset
of c. The additional savings when adding one new assign-
ment 〈a,D〉 to c is calculated as follows: we sum the time
for outputting the value for attribute a over all rows that
match the context c ∪ {〈a,D〉}. For the rows that do not
match the new context there are two possibilities. Either a
row does not have a value within domain D for attribute a
(i.e., it is discarded by adding the new assignment) or the
row is discarded based on some other assignment in c. The
set of rows discarded due to the latter case is monotone in c
(i.e., the more assignments we have, the less rows will qual-
ify). Hence, we have diminishing returns when adding more
assignments.

Our problem of generating an optimal context reduces to
the problem of optimizing a submodular function. Note that
we optimize a non-monotone function: adding a new assign-
ment specializes the context and may reduce time savings if
it reduces the number of matching rows. We need to con-
sider this fact when selecting an algorithm for submodular
optimization (e.g., we cannot use the classical algorithm by
Nemhauser and Wolsey [17] as it does not offer any guar-
antees in this case). Both our constraints (at most mS as-
signments and at most one assignment per attribute) are in-
stances of matroid constraints (i.e., the uniform matroid and
the partition matroid). We can use the greedy algorithm by
Mirzasoleiman et al. [16] to maximize a submodular function
under matroid constraints. This algorithm has polynomial
run time and produces solutions with quality bounds, lead-
ing to the following guarantee for our algorithm.

Theorem 4. Function BestContext generates a con-
text with time savings within factor 1/7.5 of the optimum
among unmatched rows.

Proof. This is a consequence of the result by Mirza-
soleiman et al. [16] establishing a worst-case guarantee of
factor k/((k+1) · (2 ·k+1)) for maximizing a non-monotone
submodular function under k matroid constraints. Lemma 6
shows that time savings is submodular and we have two ma-
troid constraints (uniform and partition matroid).

We derived lower bounds on output quality based on sim-
plifying assumptions. While those guarantees are not very
strong, we show in Section 7 that average performance is
significantly better than the guarantees.
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Example 5. We illustrate the greedy algorithm on Ex-
ample 1. We perform two iterations as an optimal solution
uses at most two contexts. In the first iteration, we consider
all domain assignments that are possible using the values in
R. From those, we select a (near-)optimal subset with car-
dinality at most mS to form a new context (e.g., the context
“Entries for category traditional American cuisine”). We
generate a plan by assigning each tuple to the context with
maximal time savings. For the second iteration, we remove
all rows from R that are covered by the context that was gen-
erated before (e.g., we remove restaurant John’s and restau-
rant Upstate). We generate possible domain assignments for
the remaining rows and select an optimal subset (i.e., a new
context) again. A new plan is generated by assigning each
row to an optimal context (considering the two previously
generated contexts and the empty context). Finally, we re-
turn the optimum among all generated plans.

6. COMPLEXITY ANALYSIS
We analyze time complexity of the algorithms that we

presented in the previous sections. For the integer linear
programs resulting from our problem transformations, we
analyze the asymptotic number of variables in the generated
programs. It is not possible to calculate the asymptotic
time required to solve an integer program in general as it
depends on the used solver. However, the search space to
explore grows in the number of variables and optimization
time tends to follow.

First, we analyze the size of the integer programs gener-
ated by the pure integer programming approach described
in Section 3. We denote by nR the number of rows in the
relation to output (which is at the same time proportional
to the number of context slots that we create), we use nA for
the number of attributes, and nV for the maximal number
of distinct values in any column.

Theorem 5. The MILP representation of voice output
optimization uses O(nR · nA · (nR + nV )) variables.

Proof. The number of context slots is linear in the num-
ber nR of rows. Hence, the number of variables w(c, r) map-
ping rows to slots is quadratic in nR. The number of vari-
ables f(c, a) is in O(nR ·nA) and therefore dominated by the
number of variables d(c, a, v), l(c, a, v), and u(c, a, v) which
is in O(nR · nA · nV ). To estimate speaking time, we in-
troduce O(nR · nR · nA) variables s(c, r, a), O(nR · nA · nV )
variables e(c, a, v), and O(nR) variables g(c).

Next, we analyze the two-phase algorithm from Section 4.
First, we analyze the time complexity of the pre-processing
stage in which context candidates are generated.

Theorem 6. Generating context candidates takes time in

O(k2 · nA · nmax(2,mC)
V ·m2

S · nR).

Proof. We keep at most k context candidates after each
iteration. We extend those candidate by adding assignments
from attributes to value domains. We consider O(n2

V ) value
domains for numerical attributes and O(nmC

V ) domains for
categorical attributes. By adding one assignment to each
of the k context candidates, we obtain therefore O(k · nA ·
n
max(2,mC)
V ) candidates for pruning in each iteration. Decid-

ing whether one specific context is potentially useful takes
O(mS ·nR) time (we compare at mostmS assignments to ver-
ify whether a row matches a context). Hence, the complexity

of pruning is O(k ·nA ·nmax(2,mC)
V ·mS ·nR). The greedy al-

gorithm for selecting the k best context candidates performs

k iterations and compares O(k · nA · nmax(2,mC)
V ) candidates

in each step. For each candidate, it calculates the number of
covered rows (in time O(mS · nR)). Hence, the complexity

of selecting k candidates is O(k2 ·nA ·nmax(2,mC)
V ·mS ·nR).

Finally, we multiply the complexity of both steps by the
number of iterations which is mS .

Now, we analyze the size of the integer program created to
select between the generated context candidates. In addition
to the previous notations, we designate by nC ∈ O(k ·mS)
the number of useful context candidates.

Theorem 7. The integer program that selects context can-
didates uses O(nR · nC) variables.

Proof. We introduce O(nR · nC) variables of the form
w(c, r) and O(nC) variables of the form g(c).

Finally, we analyze time complexity of the greedy algo-
rithm from Section 5. First, we analyze the time complexity
of the sub-function BestContext. Its complexity depends
on the method that is used to solve the submodular maxi-
mization problem. We assume that the algorithm by Mirza-
soleiman et al. [16] is used.

Lemma 7. Generating a near-optimal context takes time

in O(nR ·mS · (mS · nA · nmax(2,mC)
V + nR)).

Proof. We initially test for a match between each pair
of a row and a context candidate. We have nR rows and
at most nR/2 context candidates. Testing whether a row
matches a context takes O(mS) time as justified before.
Hence, we retrieve unmatched rows in O(n2

R · mS) time.

The number of assignments is in O(nA · nmax(2,mC)
V ). The

complexity of the algorithm by Mirzasoleiman et al. for sub-
modular maximization is in general n · r · p times the com-
plexity of evaluating the submodular function where n desig-
nates the number of elements to choose from, r the maximal
number of elements in an optimal solution, and p the num-
ber of matroid constraints. We select at most mS out of
O(nA · nmax(2,mC)

V ) assignments and have two matroid con-
straints. Calculating time gain takes O(nR ·mS) time.

The time complexity of Algorithm 2 follows immediately.

Theorem 8. The greedy algorithm has time complexity

O(n2
R ·mS · (mS · nA · nmax(2,mC)

V + nR)).

Proof. We perform O(nR) iterations of the for loop. In
each iteration, we generate a new context and generate an
optimal plan with the new set of context candidates. We can
generate a plan in O(mS · n2

R) time. Hence, the complexity
of generating a new context dominates.

7. EXPERIMENTAL EVALUATION
We compare the algorithms presented in the last subsec-

tions against a naive baseline (i.e., reading out one row after
the other). We compare algorithms in terms of optimization
time and in terms of the quality of the generated output.
To judge output quality, we measure speaking time and ask
crowd workers to compare alternative versions.

Our test cases are derived from four data sets. First, we
use restaurant recommendations returned by Google Maps
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Figure 2: Scaled length of voice output generated by different methods for four data sets (from upper row
down: laptops, restaurants, football statistics, mobile phones), when reading out two columns (2C) or three
columns (3C), under varying constraints on precision (low, medium, or high precision: LP, MP, or HP) and
context size (fix up to one or two attributes: 1S or 2S).
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when searching for restaurants around Time Square in New
York City (using rating and food type as attributes besides
the restaurant name). Second, we use descriptions of lap-
top models with attributes such as model name, price, and
main memory size. Third, we use summaries of football
games with attributes such as team name, the number of
wins, and affiliations. Finally, we use descriptions of mobile
phone models with attributes such as model name, operat-
ing system, and storage capacity. All data sets refer to sit-
uations where voice output seems appropriate (e.g., inform
traveling users of nearby dining options via voice output
from a mobile device, or inform users of shopping options
via voice output from Google Home or a similar device).

Our algorithms are implemented in Java 1.8. All of the
following experiments are executed on a MacBook Pro with
Intel Core i7 2.3 GHz CPU and 8 GB of main memory, run-
ning MacOS 10.12. We use CPLEX in version 12.7 as integer
programming solver and the IBM Watson text to speech ser-
vice2 to synthesize voice output. To minimize the number of
speech fragments that we generate, we use as optimization
metric the number of characters in the generated output

2https://www.ibm.com/watson

(instead of the speaking time that we ultimately want to
minimize). We found that the number of characters is suffi-
ciently correlated with the speaking time. Speech output is
only generated for the output plan that is finally selected.

We compare the integer programming algorithm from Sec-
tion 3 (with a timeout of 300 seconds) against the two-phase
algorithm from Section 4 (setting k to 20) and the greedy
algorithm from Section 5. Figure 2 compares length of voice
output generated by different methods for the same data
(we report arithmetic means of 10 test cases). We scale
output length to the length of naive voice output (read-
ing out one row after the other). We compare methods
in different scenarios, varying data set size and configura-
tion parameters. We experiment with high output precision
(mC = mW = 1), medium precision (mC = mW = 2), and
low precision (mC = 2, mW = 4). We focus on data sets
where voice output is a realistic option (i.e., speaking time
of several tens of seconds up to a minute).

The potential for speaking time reduction generally in-
creases in the number of tuples. This seems logical since
having more tuples means more redundant values that we
can avoid reading out via our approaches. Equally, having
more columns leads often to increased time savings. This
effect is amplified once we allow larger context sizes that
can summarize values in multiple columns concurrently. Al-
lowing less precise output equally enables further time sav-
ings as more tuples can be summarized in the same context.
There are however diminishing returns and decreasing pre-
cision has little effect on speaking time after a certain point.
The plans generated by integer programming are generally
optimal. Both, the greedy algorithm and the two-phase ap-
proach, produce however in most cases plans that are very
close to the optimum. The two-phase approach has a slight
edge when approaching the maximal number of 10 tuples.
All three methods achieve time savings of up to factor 2.5.
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Figure 4: Optimization times of different vocalization methods for four data sets (from upper row down:
laptops, restaurants, football statistics, mobile phones), when reading out two columns (2C) or three columns
(3C), under varying constraints on precision (low, medium, or high precision: LP, MP, or HP) and context
size (fix up to one or two attributes: 1S or 2S).

Time savings vary across different scenarios. Given that
our approach reduces speaking time by reducing redundancy,
we suspect that data sets with a higher amount of redun-
dancy benefit more. Figure 3 verifies that intuition by cor-
relating the average raw entropy over all columns (measur-
ing the amount of non-redundant information) with average
time savings for ten tuples across different setting for the
context (i.e., average of exact and approximate settings).
We bucketize numerical columns into intervals of relative
length mW to calculate their entropy. Indeed, we observe a
slight correlation between entropy and time savings.

Figure 4 shows optimization time for the test cases in
Figure 2. Clearly, the integer programming approach is the
most expensive one. Even though optimization time is typ-
ically below a second, we exceed 10 seconds of optimization
time in a few cases. Greedy algorithm and two-phase ap-
proach have optimization times in the order of milliseconds.

Next, we look at some larger problem instances where
speaking time is rather large (this makes them less inter-
esting for the average user while those instances might be
relevant for visually impaired users). Figure 5 shows op-
timization time and relative speech length for up to seven
columns and 50 tuples in the mobile phones scenario (we
set mC = mW = mS = 2). The integer programming ap-
proach often reaches the timeout of five minutes starting
from four columns and 40 tuples (we return the naive plan
in case of a timeout which is why the scaled output length
converges to one). The greedy and two-phase approach can
be applied under run time constraints even in those extreme
cases. The greedy algorithm achieves slightly better quality
for high numbers of tuples and columns while the two-phase
approach is slightly faster (few hundreds of milliseconds).

Reducing speaking time generally saves time for users,
compared to reading out row after row. On the other side,
the speech structure becomes slightly more complicated which
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Figure 5: Optimization time and relative speech
length for XXL instances.

might increase cognitive load. We performed a user study
to find out what version users prefer under specific circum-
stances. We based our study on AMT3 and asked crowd
workers to compare alternative voice output versions. We
presented the naive version and the optimal version accord-
ing to our model to crowd workers and asked them to vote
on their preferred version. Our test cases describe laptops,
we vary the number of tuples and the number of columns.
We asked ten crowd workers with at least 50 approved HITS
per test case and payed 10 cents per comparison task.

Figure 6 reports the results of our user study and cor-
relates them with absolute speaking times for the different
versions. Votes do not always sum up to ten due to workers
who selected the option that both versions are equivalent
(also, we had a single unsolved test case for two columns

3https://www.mturk.com/
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Figure 6: Speech length and user satisfaction.

and two tuples). We experiment with two columns (setting
mS = 1, mC = 1, and mW = 1.5) and three columns (set-
ting mS = 2, mC = 1, and mW = 2). We vary the number
of tuples between two and ten, resulting in speaking times
up to roughly one minute. For a low number of tuples, users
seem to prefer the naive version or are indifferent. This cor-
relates with minor savings in speaking time. As the number
of tuples and the time gap between the two versions grows,
user preferences shift towards the concise speech generated
by our approach. However, once speaking time becomes rel-
atively large for both versions, most users find both versions
equivalent. We believe that we are entering into a range of
speaking times where both versions are perceived as too long
and the amount of data should be reduced.

We asked workers to justify their choices and the rea-
sons match our expectations. Reasons to pick the concise
version included for instance “brief yet still gave informa-
tive answers” or “short and sweet description”. Reasons
to pick the row-by-row version (without approximation) in-
cluded “more details” and “more comprehensive informa-
tion”. Hence, users value conciseness under certain condi-
tions. Finding good policies to select between simple and
concise version is an interesting direction for future work.

8. RELATED WORK
Prior work [7, 11, 14, 19] on generating natural language

descriptions of data sets focuses on producing written text.
We focus on Voice Output which is subject to specific con-
straints [18]: it has to be extremely concise (as opposed
to written text, users cannot skim text to identify relevant
parts quickly) and has to respect memory limitations of the
listener (as opposed to written text, users cannot easily re-
read prior passages). Those constraints motivate our ap-
proach to vocalization as Global Optimization Problem, con-
sidering even the possibility to trade precision for concise-
ness. At the same time, focusing on concise output creates
the opportunity to use optimization methods that would not
scale to the generation of multi-page documents. Our ap-
proach operates on Relational Data which distinguishes it
from prior work on document summarization [8] and text
compression [3] (which uses text as input). Data sonifi-
cation [5], as opposed to vocalization, focuses typically on
transforming data into non-speech audio. Approaches to in-
formation presentation [4] in spoken dialogue systems are
typically specific to scenarios where users select one out of
several options (e.g., flights).

Our work is complementary to prior work on translating
natural language input into SQL queries [2, 12] or queries
into natural language output [9, 10]. It differs in focus and
methods from general data summarization techniques [6]
which do not result in natural language text.

9. CONCLUSION
Current trends towards voice-based interfaces motivate

the problem of data vocalization, a complementary prob-
lem to data visualization. We introduce a variant of data
vocalization where the goal is to reduce speaking time under
constraints on the precision of the transmitted information.
We propose multiple exhaustive and non-exhaustive algo-
rithms and compare them theoretically and empirically.
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