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ABSTRACT
Distributed stream processing systems need to support state-
ful processing, recover quickly from failures to resume such
processing, and reprocess an entire data stream quickly. We
present Apache Samza, a distributed system for stateful and
fault-tolerant stream processing. Samza utilizes a parti-
tioned local state along with a low-overhead background
changelog mechanism, allowing it to scale to massive state
sizes (hundreds of TB) per application. Recovery from fail-
ures is sped up by re-scheduling based on Host Affinity. In
addition to processing infinite streams of events, Samza sup-
ports processing a finite dataset as a stream, from either a
streaming source (e.g., Kafka), a database snapshot (e.g.,
Databus), or a file system (e.g. HDFS), without having to
change the application code (unlike the popular Lambda-
based architectures which necessitate maintenance of sepa-
rate code bases for batch and stream path processing).

Samza is currently in use at LinkedIn by hundreds of
production applications with more than 10, 000 containers.
Samza is an open-source Apache project adopted by many
top-tier companies (e.g., LinkedIn, Uber, Netflix, TripAdvi-
sor, etc.). Our experiments show that Samza: a) handles
state efficiently, improving latency and throughput by more
than 100× compared to using a remote storage; b) provides
recovery time independent of state size; c) scales perfor-
mance linearly with number of containers; and d) supports
reprocessing of the data stream quickly and with minimal
interference on real-time traffic.

1. INTRODUCTION
Many modern applications require processing large amount

of data in a real-time fashion. We expect our websites and
mobile apps to be deeply interactive and show us content
based on users’ most recent activities. We expect social net-
works to show us current global and local hashtag trends
within seconds, ad campaigns to orient ads based on cur-
rent user activity, and data from IoT (Internet of Things)
to be processed within minutes.

Processing these streams of data in a real-time fashion
poses some unique challenges. First, at LinkedIn, as a global
social network company, trillions of events are fed to our
production messaging system (Apache Kafka) and change
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capture system (Databus) per day. To process this massive
amount of data, we need to be able to use resources effi-
ciently and at scale, and to handle failures gracefully. Sec-
ond, it is common for applications to access and store addi-
tional stateful data while processing each received event. At
LinkedIn, examples of state include (depending on the ap-
plication): user profiles, email digests, aggregate counts, etc.
State computations include aggregations/counts over a win-
dow, joining a stream with a database, etc. Thus, we need
mechanisms to: i) handle such state efficiently while main-
taining performance (high throughput and low latency), and
ii) recover quickly after a failure in spite of large state [52].

Third, it is common to require a whole database or the full
received stream to be reprocessed completely. Such repro-
cessing is triggered by reasons ranging from software bugs to
changes in business logic. This is one of the primary reasons
why many companies employ the Lambda architecture. In
a Lambda architecture [39], a streaming framework is used
to process real-time events, and in a parallel “fork”, a batch
framework (e.g., Hadoop/Spark [14, 24, 58]) is deployed to
process the entire dataset (perhaps periodically). Results
from the parallel pipelines are then merged. However, imple-
menting and maintaining two separate frameworks is hard
and error-prone. The logic in each fork evolves over time,
and keeping them in sync involves duplicated and complex
manual effort, often with different languages.

Today, there are many popular distributed stream pro-
cessing systems including Storm, MillWheel, Heron, Flink
[7, 13, 35, 54], etc. These systems either do not support re-
liable state (Storm, Heron, S4 [35, 43, 54]), or they rely on
remote storage (e.g., Millwheel, Trident, Dataflow [5, 7, 8])
to store state. Using external (remote) storage increases la-
tency, consumes resources, and can overwhelm the remote
storage. A few systems (Flink, Spark [13,18,59]) try to over-
come this issue by using partitioned local stores, along with
periodically checkpointing the full application state (snap-
shot) for fault tolerance. However, full-state checkpointing
is known to be prohibitively expensive, and users in many
domains disable it as a result [47]. Some systems like Bore-
alis [6] run multiple copies of the same job, but this requires
the luxury of extra available resources [18].

In this paper we present Samza, a distributed stream
processing system that supports stateful processing, and
adopts a unified (Lambda-less) design for processing both
real-time as well as batch data using the same dataflow
structure. Samza interacts with a change capture system
(e.g., Databus) and a replayable messaging system (e.g.,
Apache Kafka, AWS Kinesis, Azure EventHub) [1,10,34,41].
Samza incorporates support for fast failure recovery partic-
ularly when stateful operators fail.

The Lambda-less approach is used by Spark and Flink
[13, 59]. However, Flink still requires the programmer to
access two APIs for streaming and batch processing. We
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present experimental comparisons against Spark. Samza’s
unique features are:

• Efficient Support for State: Many applications need
to store/access state along with their processing. For ex-
ample, to compute the click-through rate of ads, the ap-
plication has to keep the number of clicks and views for
each ad. Samza splits a job into parallel tasks and offers
high throughput and low latency by maintaining a local
(in-memory or on-disk) state partitioned among tasks,
as opposed to using a remote data store. If the task’s
memory is insufficient to store all its state, Samza stores
state on the disk. We couple this with caching mech-
anisms to provide similar latency to, and better fail-
ure recovery than, a memory-only approach. Finally
Samza maintains a changelog capturing changes to the
state, which can be replayed after a failure. We argue
that having a changelog (saving the incremental changes
in state) is far more efficient than full state checkpoint-
ing, especially when the state is non-trivial in size.
• Fast Failure Recovery and Job Restart: When a

failure occurs or when the job needs to be explicitly
stopped and resumed, Samza is able to restart multi-
ple tasks in parallel. This keeps recovery time low, and
makes it independent of the number of affected tasks. To
reduce overhead of rebuilding state at a restarted task,
Samza uses a mechanism called Host Affinity. This helps
us reduce the restart time to a constant value, rather
than linearly growing with the state size.
• Reprocessing and Lambda-less Architecture: It is

very common to reprocess an entire stream or database.
Common scenarios are rerunning using a different pro-
cessing logic or after a bug discovery. Ideally, reprocess-
ing should be done within one system (Lambda-less).
Further, the reprocessing often needs to be done along-
side processing of streaming data while not interfering
with the stream job and without creating conflicting
data. Samza provides a common stream-based API that
allows the same logic to be used for both stream process-
ing and batch reprocessing (if data is treated as a finite
stream). Our architecture reprocesses data without af-
fecting the processing of real-time events, by: a) tem-
porarily scaling the job, b) throttling reprocessing, and
c) resolving conflicts and stale data from reprocessing.
• Scalability: To handle large data volumes and large

numbers of input sources, the system has to scale hori-
zontally. To achieve this goal, Samza: i) splits the input
source(s) using consistent hashing into partitions, and ii)
maps each partition to a single task. Tasks are identical
and independent of each other, with a lightweight coor-
dinator per job. This enables near-linear scaling with
number of containers.

Samza has successfully been in production at LinkedIn for
the last 4 years, running across multiple datacenters with
100s of TB total data. This deployment spans more than 200
applications on over 10, 000 containers processing Trillions of
events per day. Samza is open-source and over 15 companies,
including Uber, Netflix and TripAdvisor, rely on it today [3].

Our experimental results show that Samza handles state
efficiently (improving latency and throughput by more than
100× compared to using remote storage), provides parallel
recovery with almost constant time (regardless of the size of
the state), scales linearly with adding more containers, and
supports reprocessing data with minimal effect on real-time
traffic, while outperforming batch systems. We experimen-
tally compare against both variants of our own system (some
of which capture other existing systems), and against Spark
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Figure 1: Email Digestion System (EDS).

and Hadoop in both production and test clusters.

2. MOTIVATION
2.1 Stateful Processing

Most event processing applications need to access state
beyond the mere contents of the events. In this paper, we
refer to state as any persistent data-structure defined by
the application or used internally in the system. Such state
may arise from cumulative or compact aggregates (com-
puted from the stream), or static settings (e.g., user pa-
rameters), or stream joins. To illustrate, we describe Email
Digestion System (EDS), a production application running
at LinkedIn using Samza. EDS controls email delivery to
users by digesting all updates into a single email (Figure 1).
EDS stores and accesses a large amount of state across mul-
tiple users. For each user, EDS accumulates and aggregates
updates over a large window of time. To know the window
size, EDS looks up the user digestion settings (e.g., every
4 hours) stored in a remote database. Finally, to find the
effectiveness of the digested email, it computes if the email
was opened in the last couple days, by joining two streams
of sent emails and opened emails over a multi-day window.

State is typically categorized into two types:
Read-Only state: Applications look up “adjunct” read-
only data, perhaps for each event, to get the necessary infor-
mation to process it. Examples of such static state include
user digestion settings in EDS or the user profile on each ad
view event (accessed to find the user’s field of expertise).
Read-Write state: Some state is maintained and updated
as the stream events continue to be processed. Examples of
this type of state include: state required for joins of stream-
s/tables over a windows, aggregations, buffers, and machine
learning models. Some applications of this state include
rates/counter over a window of time (used for monitoring
ads or detecting Denial of Service attacks) and guarantee-
ing exactly-once semantics by storing all processed message
ids to verify uniqueness of incoming message ids.

2.2 Data Reprocessing
As described earlier, it is common to reprocess a stream

or database, either in part or entirety. For example, at
LinkedIn, we use a critical production job to standardize
user profile information in order to offer relevant recommen-
dations and advertisements. This job uses a machine learn-
ing model (derived offline) to standardize incoming profile
updates in real-time. However, the model continually gets
updated (even multiple times per week). Upon each update,
all existing user profiles (> 450 millions) have to be repro-
cessed while still processing incoming updates in real-time
and without creating conflicts.

In other scenarios, only a few hours worth of data has to
be reprocessed (instead of a whole database). For example,
during an application upgrade, a software bug may come
up. With proper monitoring, the bug will most likely be
detected within minutes or hours. The need after that is
to revert the application (or fix the bug), rewind the input
stream, and reprocess the data since the upgrade.
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Figure 2: Stream processing pipeline at LinkedIn.

2.3 Application Summary
We summarize 9 major and diverse stream applications

built using Samza that are currently running in LinkedIn’s
production environments across multiple datacenters, in Ta-
ble 1. The location of the application is determined by the
data source, varying from a single cluster to all clusters.

These applications exhibit a wide diversity along several
angles: 1) Scale: throughput (input messages processed per
second) and the number of containers, tasks, and inputs; 2)
State handled : size and type of state; and 3) Lifetime: how
long the job has been running.

Scale: The scale of applications varies widely based on
the computational need of the application, from 70 contain-
ers to more than 500 containers. The higher scale is either
due to higher throughput requirements (e.g., Inception) or
computation load per event (e.g., EDS and Standardiza-
tion). Samza supports various input source types (Kafka,
Databus, Kinesis, etc.) as well as many input streams.
Our applications range from 2 inputs to roughly 900 input
streams with > 27, 000 total partitions. For example, In-
ception processes 880 input streams (capturing exceptions)
from multiple applications.

The number of tasks per container also varies significantly
from 1 task per container (Inception) to ≈65 tasks per con-
tainer (Call graph), with an average value of 10 tasks. A
higher task per container ratio provides more flexibility when
scaling out/in which is a positive factor for stateful jobs.

State: Applications range widely from stateless jobs (e.g.,
filtering done by Inception) to ones using a variety of dif-
ferent stores, ranging from fast in-memory stores to on-disk
local stores with higher capacity (100s of TB vs. a few TBs)
and remote stores with faster failure recovery. The type/size
of the store is determined based on application requirements
on performance, capacity, and failure recovery.

Lifetime: At LinkedIn, the number of production appli-
cations built using Samza has been growing rapidly, with a
tenfold growth in the past 2 years (from 20 to 200). While
we have focused on only the most mature applications here,
newer applications continue to emerge.

3. SYSTEM OVERVIEW
In this section we present our end to end processing pipeline,

Samza’s high-level architecture, and how jobs are handled.

3.1 Processing Pipeline
Our stream processing pipeline works as a feedback loop

(Figure 2). It receives events and updates from the service
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Figure 3: Example Samza job to find trending tags.

tier, processes them, and updates the service tier in return.
This is a common pattern adopted by many companies.

The service tier (top of Figure 2, e.g., the website and
mobile app, where clients interact) generates two main types
of data that need to be processed. First, more than trillions
of events are generated per day. Use cases vary widely from
capturing interactions with the service tier (e.g., viewed ads,
and shared articles) to background monitoring and logging
(e.g., site latency, exceptions and call tracing). Additionally,
an often-overlooked source of data are updates occurring on
databases (both SQL and NoSQL). Our databases have a
transaction log capturing the stream of updates.

At the first phase in Figure 2, called the Ingestion layer,
these stream of events and updates are ingested into fault-
tolerant and replayable messaging systems. We use Apache
Kafka [34], a large-scale publish-subscribe system (widely
adopted by > 80 other companies [15]), and Databus [1], a
database change capture system, as our messaging system
for events and updates, respectively. Both these systems
have the ability to replay streams to multiple subscribers
(or applications), from any offset per subscriber. Databus
also supports streaming a whole database from a snapshot.

In the next phase, called the Processing layer, these mul-
tiple streams of events and updates are fed to one or many
Samza jobs. Samza acts as our core processing framework,
processing input and generating output in real-time. Fi-
nally, in the Serving layer, results of the processing layer
(e.g., connection recommendations and suggested feeds), are
persisted to an external database or a pub-sub system (e.g.,
Kafka). Results are also returned to the service tier to up-
date the services accordingly.

3.2 Processing Layer Design
A Samza job is an intact stage of computation: one or

many input streams are fed to the job; various processing–
from simple operations (e.g., filter, join, and aggregation) to
complex machine learning algorithms–are performed on the
input; and one or many new output streams are generated.

3.2.1 Logical Representation
Samza represents jobs as a directed graph of operators

(vertices) connected by streams of data (edges). Figure 3
shows an example Samza job consuming a stream of user
profile updates, splitting the stream into skill and job up-
dates, extracting tags, and computing the top k trending
tags (we use this as a running example in our discussion).

A stream is an infinite sequence of messages, each in the
form of a (key, value) pair, flowing through the system. A
stream is internally divided into multiple partitions, based
on a given entry. There are three types of streams: 1) in-
put streams that enter the job, without a source operator
(e.g., Profile updates); 2) output streams that exit the job,
without a destination operator (e.g., Trending tags); and 3)
intermediate streams that connect and carry messages be-
tween two operators (e.g., skills, jobs, tags and counts).

An operator is a transformation of one or many streams
to another stream(s). Based on the number of input and
output streams, Samza supports three types of operators: a)
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Table 1: Applications running in LinkedIn’s production across multiple datacenters. State size ranges from
to 10s of GB to 100s of TBs (actual sizes not shown due to confidentiality). Max values shown in bold.
Name Definition Containers Tasks Inputs Throughput

msg/s
State
type

EDS Digesting updates into one email (aggregation, look-up, and join). 350 2500 14 40 K on-disk
Call graph Generating the graph of the route a service call traverses (aggregation). 150 9500 620 1 Million in-mem
Inception Extracting exception information from error logs (stateless filter). 300 300 880 700 K stateless
Exception Tracing Enriching exceptions with the source (machine) of the exception (join). 150 450 5 150 K in-mem
Data Popularity Calculating the top k most relevant categories of data items (join and

machine learning).
70 420 9 3.5 K on-disk

Data Enriching Enriching the stream of data items with more detailed information (join). 350 700 2 100 K on-disk
Site Speed Computing site speed metrics (such as average and percentiles) from the

stream of monitoring events over a 5-minute window (aggregation).
350 600 2 60 K in-mem

A/B testing Measuring the impact of a new feature. This application first categorizes
input data (by their tag) into new and old versions and then computes
various metrics for each category (split and aggregate).

450 900 2 100 K in-mem

Standardization
(>15 jobs)

Standardizing profile updates using machine learning models. This ap-
plication includes > 15 jobs, each processing a distinct features such as
title, gender, and company (join, look-up, machine learning).

550 5500 3 60 K in-mem
remote
on-disk

1:1 operators (e.g., Count), b) m:1 operators (e.g., Merge),
and c) 1:m operators (e.g., Split), as shown in Table 2.

System API: The API of Samza is based on Java 8 Stream
package [46] because of its ease of programming and func-
tional programming capabilities. Listing 1 demonstrates the
sample code for the Trending Tags job (Figure 3).

Listing 1: Sample API – Trending Tags Job.
public void create(StreamGraph graph, Config conf) {

//initialize the graph
graph = StreamGraph.fromConfig(conf);
MsgStream<> updates = graph.createInStream();
OutputStream<> topTags = graph.createOutStream();

//create and connect operators
MsgStream skillTags = updates.filter(SkillFilter f_s)

.map(SkillTagExtractor e_s);
MsgStream JobTags = updates.filter(JobFilter f_j)

.map(JobTagExtractor e_j);
skillTags.merge(jobTags).map(MyCounter)

.window(10, TopKFinder).sendto(topTags);
//10 sec window

}

class MyCounter implements Map<In, Out>{
//state definition
Store<String, int> counts = new Store();
public Out apply (In msg){

int cur = counts.get(msg.id) + 1;
counts.put(msg.id, cur);
return new Out(msg.id, cur)

}
}

The basic 1:1 operators are: a) map: applying a user-
defined function on each message (e.g., SkillTagExtractor
extracting tags using a machine learning model or MyCounter
updating a local store); b) filter: comparing each message
against a filter condition (e.g., SkillFilter); c) window:
partitioning a stream into windows and applying a user-
defined function on the window (e.g., TopKFinder over 10
s windows); and d) partition: repartitioning and shuffling
a stream on a different key. The main m:1 operators are:
e) join: joining two streams on a user-defined condition,
and f) merge: merging two streams into one (e.g., merging
skillTags and jobTags). Finally, the 1:m operators are
defined by feeding the same stream into different operators
(e.g., feeding update stream into two different filters).

The combination of diverse operator types and support
for arbitrary user-defined functions enables handling a wide

Table 2: Operators supported in Samza.
Type Options Definition

1:1

map applying a defined function on each message.
filter filtering messages based on a function.
window splitting a stream into windows and aggregat-

ing elements in the window.
partition repartitioning a stream on a different key.

m:1
join joining ≥ 2 streams into one stream based on

a given function
merge merging ≥ 2 two streams into one stream.

1:m user-
defined

user-defined split or replication of a stream
into ≥ 2 streams. This is achieved by allowing
multiple operators consume the same stream.

Resource Manager (e.g., Yarn, Mesos, etc.)

Coordinator

Container 1

Task 1 Task 5 ...
Container k

Task 2 ......
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Input Stream 1
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Output
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Figure 4: The internal architecture of a job.

range of applications. For example, to perform aggregation
(1:1 operator), depending on whether to be done over an
entire stream or a window of data, a single aggregation logic
(e.g., count) can be used in a map or window operator.

3.2.2 Physical Deployment
Internally, as depicted in Figure 4, a job is divided into

multiple parallel, independent, and identical tasks, and an
input stream is divided into partitions (e.g., {P1, ..., Pp}).
Each task executes the identical logic, but on its own input
partition (a data parallelism approach). Each task runs the
entire graph of operators. For each incoming message, the
task flows the message through the graph (executing oper-
ators on the message), until an operator with no output or
the final output stream is reached.

Most intermediate stream edges stay local to the task, i.e.,
they do not cross the task boundary. This keeps most com-
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munications local and minimizes network I/O. The only ex-
ception is the partition operator, where messages are redis-
tributed across all tasks based on the partitioning logic. For
non-local streams and the job’s input and output streams,
Samza utilizes a fault-tolerant (no message loss) and re-
playable (with large buffering capabilities) communication
mechanism. At LinkedIn, we mainly use Kafka, although
other communications mechanism supporting partitioning,
e.g., Kinesis or Azure EventHub [10,41] can be used instead.

By employing replayable communication with large buffer-
ing capabilities, Samza can temporarily overcome conges-
tion. Lagging messages are buffered without impacting up-
stream jobs, and replayed with the pace of the slow job. This
is particularly important at non-local streams with high po-
tential of creating congestion. This gives enough time for a
temporary spike to pass, or to scale-out a slow job.

We leverage the partitioning already performed by the in-
put streams in order to split jobs into tasks. The number of
partitions of the input streams (configured by the applica-
tion developer) indicates the number of tasks. For a single
stream, each partition is mapped to a single task. However,
partitions of different streams (e.g., partition 1 stream A
and partition 1 stream B) can be mapped to the same task
(used for joining two streams). A higher number of tasks
provides more parallelism and finer granularity when scal-
ing. However, too many tasks can create excessive overhead.

Resource Allocation: Tasks are grouped together into
containers using a round-robin, random, or user-defined strat-
egy. The number of threads is configurable, ranging from
one per container up to one per task1. The spectrum of
choices defined by these extremes also defines a trade-off
between ease of programming (with no race conditions in
a single-threaded model) and performance (with potentially
higher throughput by exploiting more parallelism).

The application developer configures the number and ca-
pacity of containers, which defines the amount of resources
assigned to a job2. Samza offloads container allocation and
placement to a separate Resource Manager layer. This layer
manages the available resources in cluster by handling: re-
source allocation, monitoring, failure detection, and failure
recovery (by restarting or reallocation). This layered and
modular design provides pluggability and flexibility. Cur-
rently, we use Apache YARN [55], one of the most popular
resource managers, in our pipeline. Samza is also available
as standalone Samza, an embeddable client library allowing
applications to be hosted in any environment.

Coordinator: Each job has a lightweight Coordinator man-
aging and tracking the job. The Coordinator maintains sev-
eral pieces of metadata pertinent to the job including: i) job
configuration (such as the number of containers and input
sources); ii) placements (mapping of containers to machines,
tasks to containers, and input partitions to tasks). When
using YARN, the coordinator is part of YARN’s Application
Master, and when using standalone Samza, the coordinator
uses Zookeeper to elect a singleton leader.

4. SYSTEM DESIGN
In this section we discuss Samza’s goal (Section 1), exist-

ing ways to address it, and key design techniques in Samza.

1
Within a tasks users can implement multi-threaded logic.

2
Configuring the optimal number of containers is a challenging prob-

lem, especially in the presence of unpredictable workload changes [57].
As future work, we are working on dynamically and adaptively scaling
the number of containers (based on the job’s load and requirements).
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4.1 Efficient Access to State
Several applications (Section 2.1) access/store large amou-

nts of state along with processing incoming events. Some
streaming engines have tackled this problem by using a reli-
able external remote store [5,7], e.g., MillWheel persists data
in Bigtable [20]. This remote store has to independently
handle fault-tolerance (by replicating data) while still pro-
viding some notion of consistency (the weakest requirement
is usually read-your-writes consistency per task).

While storing state in an external file system outsources
the responsibility of fault-tolerance, this approach is not ef-
ficient. It consumes network and CPU resources, increases
average and tail latency, and limits throughput. It may also
overwhelm the remote store (e.g., in presence of spikes), neg-
atively impacting other applications using the shared store.
When a single input message generates multiple remote re-
quests, this is further amplified. For example, Millwheel and
Trident provide exactly-once semantics by storing processed
message keys (one write per message) along with verifying
that incoming messages are unique (one read per message).

Another approach is to keep data local and, for fault-
tolerance, use periodic checkpointing, i.e., a snapshot of the
entire state is periodically stored in a persistent storage [13,
18, 59]. However, full state checkpointing in general slows
down the application. It is particularly expensive when state
is large, such as 100s of TB (Section 5); users tend to disable
full state checkpointing for even smaller state sizes [47].

4.1.1 State in Samza
Samza moves the state from a remote store to instead

being local to tasks – the task’s local store (memory and
disk) is used to store that task’s state. This is particularly
feasible in Samza with independent tasks (Figure 5).

Samza supports both in-memory and on-disk stores as op-
tions to trade off performance, failure recovery, and capac-
ity. The in-memory approach is the fastest, especially for
applications with random access (poor data locality). The
on-disk store can handle state that is orders of magnitude
larger while reducing failure recovery time. For our on-disk
store we use RocksDB, a high-performance and low-latency
single machine storage, widely used [4]. Other embeddable
stores, e.g., LevelDB and LMDB, can be used as well.

Samza further improves on-disk stores by leveraging mem-
ory as a 3-layer cache. At the deepest layer, each RocksDB
instance caches the most popular items using a least re-
cently used (LRU) mechanism. To mitigate the deserial-
ization cost of RocksDB, Samza provides a caching layer of
deserialized data in front of RocksDB. Finally, we rely on OS
caches to keep the frequently accessed pages around (similar
to [44]). Our experiments show that for applications with
good-locality workloads, caching mechanisms ensure on-disk
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stores perform close to in-memory stores. For random access
workloads, on-disk still achieves acceptable performance.

In most cases, state is partitioned across tasks using the
same partitioning function and key as used for the input
stream. Hash or range partitioning can be used. For in-
stance, in a word-count job, a task is assigned to process
words in a specified range (e.g., words starting with [a− g])
and stores state for the same range (e.g., counts of words
starting with [a− g]). Joins, aggregations, metric computa-
tion (count/rates), are all supported in this manner.

For applications that absolutely need to use a remote
store, Samza supports asynchronous processing of remote
requests for efficiency and concurrency. When using asyn-
chronous processing, Samza handles out of order event pro-
cessing while ensuring at-least-once guarantees (even in the
event of failures). This may be needed if the input partition-
ing is different from the state partitioning. In a job enriching
place-of-birth updates with country information, the input
is a stream of profile updates (key = userid) while the store
is keyed by country (key = countryid). In such cases, if the
state is small (tens of GB), Samza can broadcast the state
to all tasks and store it locally, otherwise, Samza uses a re-
mote store along with caching (for performance). Another
use case is when tasks need to share state, or state needs
to be queried from outside the job, where a remote store
satisfying the consistency requirements of the job is used.

4.1.2 Fault-Tolerance
Using local state, requires solving a main challenge that

arises out of it: how to provide efficient fault-tolerance?
Samza equips each task with a changelog that captures all
updates done on the local store (Figure 5). A key feature
of the changelog is that it is only capturing incremental
changes rather than the entire state. The changelog is an
append-only log maintained outside of the job architecture.
Samza stores the changelog in Kafka, enabling fast and easy
replays in case of a failure, although, any other durable,
replayable and ordered messaging system can be used.

For efficiency, the changelog is kept out of the hot path
of computation. Updates are batched and periodically sent
to Kafka in the background using the spare network band-
width. After successfully writing a batch of updates, the lat-
est offset–indicating the latest successfully processed input
message–is persisted in the Coordinator (Figure 5). After a
failure, state is rebuilt by replaying the changelog, then, all
messages after the latest offset are reprocessed.

Moreover, to reduce changelog overheads and prevent an
indefinitely growing changelog, Samza utilizes Kafka’s com-
paction features. Compaction retains the latest value for
each key by removing duplicate updates. Compaction is per-
formed in the background and outside the hot path. Com-
paction is used in two cases: 1) compacting the batch of
updates sent to the changelog (reducing the network over-
head); 2) compacting the changelog itself (reducing stor-
age overhead). Right after compaction, the changelog is no
larger than a snapshot of the task’s most critical state.

Samza guarantees at-least-once processing, preferring per-
formance over consistency. In practice, we observe that at-
least-once is sufficient for our applications requirements. For
a few cases requiring exactly-once, it is implemented by the
application (with low overhead) by leveraging local state.

The changelog approach in Samza provides a read-your-
writes consistency level on a per task basis. Without fail-
ures, data is stored locally on single replica, straightfor-
wardly providing read-your-writes consistency. In presence
of a failure, processing and state are rolled back to the point
of time where consistency is conserved, i.e., the latest per-
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sisted offset, wherein all updates from processed messages
up to the latest offset are reliably reflected in the state.

The changelog in Samza adds less than 5% performance
overhead. An append-only log has been measured to be far
more efficient (2 million op/s with 3 machines in Kafka [25])
compared to accessing a remote store (at most 100K op/s
with 3 machines [22,49]).

4.1.3 Fast state recovery
After a failure, a job or a portion of it needs to be restarted.

Failures may include node, container, or disk failures. Restart
may also be warranted upon preventive maintenance (either
stop-the-world or one container at a time), and configuration
updates (due to misconfiguration or workload changes).

Replaying the changelog (even compacted) can still intro-
duce excessive overhead and long pauses, e.g., with 100s of
TBs of state. This will be especially pronounced when the
changelog is accessed remotely. To mitigate this, Samza uses
a fast state recovery mechanism called Host Affinity (HAff).
The key idea in HAff is to leverage the state already stored
on disk (in RocksDB) by preferring to place a restarting
task on the same physical machine where it was running
prior to the failure (stored in the Coordinator). This is a
best-effort mechanism, and will continually try to optimize
placement, even in presence of repeated failures. However,
HAff is not effective in case of permanent machine failures,
where replaying the changelog is used instead.

To make HAff feasible, Samza stores state in a known di-
rectory (in the native file system) outside of the container
namespace. This allows state to live independent of the ap-
plication lifecycle. A garbage collection agent runs in the
background, removing state of permanently deleted appli-
cations. Since the underlying system cannot distinguish be-
tween stopped and deleted applications, we rely on the appli-
cation developer to manually mark applications as deleted.

In production, we found that HAff is effective in over 85%
of restart cases. By using HAff in our large stateful ap-
plications (≈ 100 of TBs of state), we were able to reduce
recovery time by 60× (from 30 minutes to 30 seconds).

4.2 Lambda-less
Inevitable software bugs and changes along with inaccu-

racies (late or out-of-order arrivals) can require parts (or
even a whole) stream to be reprocessed. To mitigate this
issue, many companies [17] utilize a Lambda architecture,
wherein data is dispatched in a parallel “fork” to both an on-
line stream and offline batch path (e.g., Hadoop or Spark),
as shown in Figure 6). The stream path processes incoming
data in real-time (latency is first-class) while the batch path
acts as source-of-truth, periodically generating batch views
of accurate results (accuracy is first-class). Final results are
computed by merging stream and refined batch views [39].
To reprocess data it is sent via the batch path.

However, the Lambda architecture comes at a high man-
agement cost, requiring duplicate development of stream
and batch logic and code for the same application, and keep-
ing these logics in sync as the application evolves over time.
The Lambda approach also consumes double resources (for
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stream and batch processing). In the batch path inaccura-
cies could still occur–there can be late arrivals at the begin-
ning, and missing data at the end of the batch interval.

Samza instead adopts a unified model supporting both
stream and batch. The main challenges are: 1) to process
late events, and 2) to reprocess a stream or database without
impacting incoming messages or pressuring the database/ser-
vice. 3) to support an easy-to-use API (Section 3.2.1) readily
available in batch systems [45,53,59].

Unified Model: Similar to [8,12], Samza treats batch data
as a finite stream of data, with a special token indicating the
end of the stream. Application logic is developed and main-
tained in one place using a unified API. A single application
can switch between real-time traffic, batch data from HDFS
(integrated with Samza), or a database snapshot.

Processing Late Events: Samza employs a reactive ap-
proach, i.e., processing and fixing previous results when late
or out-of-order results arrive (this bears similarities to Mill-
wheel [7]). To avoid reprocessing the entire stream, the in-
put is split into windows. Upon processing a late message,
the impacted windows are found, rolled back, and recom-
puted [8]. State management is a key element in late event
handling. Generally, the whole window of messages should
be stored (e.g., a join operation). For some operations, stor-
age can be optimized where a compact final “result” is avail-
able (e.g., for a counter or aggregations).

Currently, the application is in charge of implementing
the late arrival logic 3. However, the windowing function-
ality along with the efficient state handling make Samza an
perfect fit for this I/O intensive feature.

Reprocessing: To reprocess an entire stream or database
(Section 2.2), Samza leverages: a) Kafka’s replaying capa-
bility to reprocess a stream, and b) Databus’ bootstrapping
capability to reprocess a database. During bootstrapping,
Databus generates a stream from a database snapshot (with-
out impacting the database service) followed by the stream
of new updates after the snapshot.

To perform reprocessing, Samza simply switches between
different inputs: real-time traffic, replayed stream, or boot-
strap stream, in single intact application. Reprocessing can
be done in two modes: 1) blocking where real-time compu-
tation blocks until all reprocessing is complete, or 2) non-
blocking where reprocessing is done in parallel with real-
time processing. Typically, blocking reprocessing is used
with small datasets, e.g., rolling-back latest upgrade due to
a bug, while non-blocking processing is used with massive
datasets, e.g., business logic change requiring reprocessing of
whole database. In non-blocking reprocessing, Samza min-
imizes the impact on the real-time processing via: i) throt-
tling reprocessing, ii) temporary job scale out.

Late events may create conflicts. A merge job is used
to resolve conflicts (between the reprocessing and real-time
stream) and prioritize the real-time results. This is devel-
oper specified logic. For instance, in the Standardization
job, the user may change the profile, pnew, while the repro-
cessing will also process the user’s old profile, pold. If repro-
cessing of pold occurs after processing pnew, it can override
the results of the new profile. Thus, a merge job is needed
to merge both updates and prioritize the results of pnew.

4.3 Scalable Design
Samza provides scalability via a decentralized design, max-

imizing independence among its components.

3
As future work, we are adding late event handling as a built-in sup-

port in Samza.

Table 3: Main parameters of data generation in each
approach, and the range of values studied.
Approach Parameter Definition Range

Checkpoint
interval time between two con-

secutive checkpoints. 10 min - 90 min

state size total size of state in
Bytes 100 GB - 100 TB

Changelog
change rate rate of entry changes

in the state (msg/s). 10 K - 10 M

entry size size of each entry of
the state in Bytes 10 B - 1 KB

1. Scaling resources: As discussed in Section 3.2, a job
is split into independent and identical tasks (with input/s-
tate partitioning). Then, independently tasks are allocated
on containers. This decoupling allows tasks to be flexibly
scheduled and migrated if necessary.
2. Scaling state: Samza scales to a massive amount of
state, by leveraging independent partitioned local stores.
Also, state recovery is done in parallel across tasks and is
not impacted by the number of failed containers.
3. Scaling input sources: Samza treats each input
stream autonomously from other inputs. This enables scal-
ing to many inputs, e.g., the Inception application (Table 1)
processes exceptions from more than 850 different streams
sources. Due to its modular design, Samza works with a va-
riety of systems including: Databus, DynamoDB Streams,
Kinesis, ZeroMQ and Mongo DB [1,2,9,10,31,34], and this
set is continuously growing.
4. Scaling number of jobs: Samza utilizes a decentral-
ized design with no system-wide master. Instead, each job
has a lightweight Coordinator managing it. Also, jobs main-
tain their independence from each other, and each job is
placed on its own set of containers. This enables Samza to
scale to large numbers of jobs. We have seen a 10× growth
in the number of applications over the past 2 years.

5. CHECKPOINTING VS. CHANGELOG
To provide fault-tolerance, Samza uses a changelog cap-

turing changes to the state in the background. Another pop-
ular approach is full state checkpointing, where periodically
a snapshot of the entire state is taken and stored in an exter-
nal storage [13,18,27,59]. Checkpointing can be either syn-
chronous (pause, checkpoint, and resume) or asynchronous
(in the background)–a more performant but also more com-
plex approach. In both cases, the overhead of checkpointing
can be prohibitive especially for large state sizes.

In this section, we quantitatively compare full-state check-
pointing vs. Samza’s changelog approach, taking into ac-
count characteristics of real applications from production.

The average amount of additional data generated (Bytes/s)
is the main source of overhead in both checkpointing and
changelog. Table 3 summarizes the parameters that affect it.
For checkpointing, data generation depends on checkpoint-
ing interval (interval) and size of each checkpoint (state size).
The interval trades off checkpointing overhead (less for larger
intervals) and the amount of work needed to be redone
in the case of a failure (more for larger intervals). On
the other hand, changelog depends on the rate of changes
(change rate) and the size of each change (entry size). Thus,
the average rate of data generation for these approaches are:

Datacheckpoint =
state size

interval

Datachangelog = change rate × entry size

We define the break-even point, bp, as whereDatacheckpoint

equals to Datachangelog. For any change rate value below
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Figure 7: Comparison of checkpointing under var-
ious state size (100 TB and 100 GB) and interval
values with changelog under various entry size (10
B and 1 KB) and change rate values. Shaded region
shows 10× typical values from applications (Table 1)

bp, changelog is the preferred approach, and for any value
above, checkpointing. For various checkpointing configura-
tions (interval and state size) and entry size values, we
measure change rate at break-even point. This is depicted
as the lines in Figure 7. For example, for a state size of 100
TB, an interval of 20 minutes, and entry size of 10 B, bp
is ≈ 10 Trillion changes/s. For any change rate below 10
Trillion/s, changelog would be a better option.

Based on our production application configurations (Sec-
tion 2.3) a change rate of Trillions of changes/s is not real-
istic. As a pessimistic estimate of the change rate (account-
ing for our application growth over the next few years), we
use the throughput achieved in our production applications
(Table 1) as a proxy for the change rate and multiply it by
10. This range, is shown by the shaded area in Figure 7.

We observe that for large state size values (100 TB),
changelog is clearly a better choice (the shaded area is be-
low the 100 TB lines). A small state size with a large
entry size (100 GB - 1 KB, the lowest line in the plot) is
also uncommon in production-scale applications, since the
state should compose of only a few entries. For a small
state size and a small entry size (100 GB–10 B, second low-
est line in plot), at a change rate of around 10 M change/s,
changelog performs worse than checkpointing. To mitigate
this issue, Samza utilizes batching along with a compaction
mechanism (removing redundant keys) to reduce the effec-
tive change rate. By batching data for a couple of seconds,
even with a change rate of 10 M change/s (given the to-
tal state has ≈ 10 Million entries in the 100GB–10B case),
the effective change rate is reduced significantly, keeping
changelog efficient and the more preferable technique.

6. EVALUATION
Our evaluation addresses the following questions:

1. How effective is local state, versus alternative options?
2. What is the effect of failures, and how fast is recovery?

How much does Host Affinity help in failure recovery?
3. How fast is reprocessing, especially compared to existing

systems?
4. How does Samza scale?

In doing so, we compare Samza with existing systems in-
cluding Spark and Hadoop, as well as against other alterna-
tive Samza-like designs.

6.1 Experimental Setup
We evaluated the system using both production jobs and

microbenchmarks, subjecting the system to much higher
stress than production workloads. Our experiments were

performed on both small (6 nodes) and large (500 nodes)
production clusters at LinkedIn.

Microbenchmarks were performed on a test YARN and
Kafka cluster. We used a 6 node YARN cluster, with 4
Resource Managers (RMs) and 2 Node Managers (NMs).
Each NM was a high-end machine with 64GB RAM, 24 core
CPUs, a 1.6 TB SSD, 2 1TB HDDs, and a full-duplex 1
Gbps Ethernet network. We also used an 8 node Kafka
cluster of similar machines. We tested the system using two
applications: a ReadWrite and ReadOnly job.

The ReadWrite job contains a map of ids to counters. For
each input message, an embedded id is extracted, current
count for id is read, the counter is incremented, and then
written back. This job mimics the trend in real-world ag-
gregation and metrics collecting jobs, e.g., EDS, Call Graph,
Site Speed, and A/B Testing in Table 1.

The ReadOnly job consists of a join between a database
and an input stream. For each message, an embedded id
is extracted, value val for id is read from a database, val is
joined with (a fraction of) the input message, and outputted
as a new message. This follows the pattern used in many
real-world enriching jobs, e.g., Data Enriching (enriching a
stream of data with additional details) and Exception Trac-
ing (enriching exceptions with source information).

We use a single input stream with infinite tuples (id,
padding). id is a randomly generated number in the range
[1, 10k] and padding is a randomly generated string of size
m. We use k and m as tuning knobs of the workload. k
trades off state size for locality–a larger k creates more en-
tries (larger state) while decreasing the chance of reading
the same data twice. m is used to tune CPU/network usage.
Since the serialization/deserialization overhead and header
overhead per message is almost constant, m tunes the ratio
of overhead to Bytes/s processed. We chose m such that
the system is under stress (CPU and network utilization ≥
60%). We found 100 and 130 Bytes padding to be the ap-
propriate values for ReadWrite and ReadOnly, respectively.

Before submitting a job, we pre-populate the input stream,
so that no time is spent on waiting for new data (inter-arrival
between messages is 0). Additionally, in ReadOnly case, we
pre-populate the store with random values for all keys.

6.2 Effectiveness of Local State
In order to evaluate our design of local state, we compare

our choice against other alternative designs:
• in-mem and on-disk : A partitioned in-memory store

(our homegrown key-value store) or on-disk store (Rocks-
DB), without any fault-tolerance mechanism. Stateless
systems, such as Storm and Heron, use these type of
stores (typically in-mem). Additionally, without con-
sidering the checkpoint overhead which depends on the
interval and state size (Section 5), systems using check-
pointing, e.g., Flink and Spark [13,18,59], also fall here.
• in-mem + Clog and on-disk + Clog : Samza’s in-mem or

on-disk store along with changelog for fault-tolerance.
• on-disk no cache: On-disk with no in-memory caching.

This mimics the behavior of applications with large state
and poor data locality (high cache misses).
• remote store: An external remote storage, used in many

systems including Millwheel, Trident, Dataflow [5,7, 8].

Although our Samza implementation supports all these
variants, the default is on-disk + Clog. This variant per-
forms the best, has large state support (hundreds of TBs),
and offers low cost failure recovery (close to stateless).

To evaluate state, we used ReadWrite and ReadOnly micro-
benchmarks. In each test we continuously added containers
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Figure 8: Comparision of storing state using an in-
memory structure, local on-disk storage, or a remote
database, with and without a changelog (CLog).
Theses graph show throughput and latency in a read
only and a 50-50 read write workload.

until throughput is saturated. Figure 8 shows maximum
achieved throughput and average latency for different stores.
We computed the theoretical maximum throughput achiev-
able by the network (Max-Net), i.e., network bandwidth di-
vided by the message size. Since ReadOnly messages are
larger than ReadWrite, both maximum and achieved net-
work throughput are smaller.

6.2.1 In-memory vs. On-disk
As shown in Figure 8, in-mem and on-disk stores perform

similarly, and both approach the network maximum (Max-
Net). The in-mem and on-disk stores do not handle fault-
tolerance. However, even when we add fault-tolerance using
a changelog, the overhead is negligible.

To measure the effect of caches, we also plot numbers
from disabling all internal caches, including the caching layer
provided by Samza and Rocks DB (on-disk no cache). This
reduced throughput by only 50-60%, indicating the caching
is not solely responsible for our performance gains.

We conclude that on-disk state coupled with a caching
strategy can achieve the same performance as using in-mem
store, but it also achieves better fault-tolerance and supports
larger state than in-mem (TBs vs tens of GBs).

6.2.2 Local vs. Remote state
We compared using local state (in-mem or on-disk) to re-

mote state. As our remote state we used Espresso [48], a
scalable key-value store widely used in LinkedIn’s produc-
tion (e.g., storing user profiles). We used an additional 5
node cluster (4 data nodes and a router) with nodes similar
to the Kafka cluster. As shown in Figure 8, even with addi-
tional resources used for the remote store, latency increases
by 3 orders of magnitude (a few µs to a few ms). This is due
to traversing multiple hubs (router, data nodes, replication,
and back to the user) which each takes hundreds of µs.

Throughput is impacted less than latency, and drops by
two orders of magnitude (100-150 ×), since requests are is-
sued in parallel. ReadOnly achieves 3× better throughput
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than ReadWrite because a) the former issues fewer requests
per message (one vs. two), and b) reads have lower overhead
vs. writes (no replication needed).

We expect this large difference between local and remote
state to hold beyond Espresso. Other studies [22, 49] show
that most popular stores, such as Cassandra, HBase, Volde-
mort, MySQL, Couchbase, and Redis [16, 23, 28, 36, 42, 50],
can only reach tens of 1000s of requests/s using of 4 nodes.
When using local state we perform millions of requests/s.

6.2.3 Resource Utilization
Figure 9 measures the resource utilization (CPU, disk,

network) for each test. We elide disk utilization (being <
5% for all except for no-cache case) and outbound network
(following the same pattern as inbound link) due to space.

When using in-mem store or on-disk with caching (with
or without changelog), we saturate the network (utilizing ≥
85%). Note that our benchmarks are configured to stress-
test the system using ≥60% of CPU resources, while in pro-
duction this value is typically below 20%.

Adding changelog has a small impact (≈ 15%) on CPU
utilization (additional serialization and deserialization over-
head), and less than 2% effect on network. Similarly, remov-
ing the internal caches (on-disk no cache) causes a spike in
CPU usage, though it is processing fewer messages–this is
because of RocksDB’s serialization/deserialization overhead.

The remote DB has a low utilization (< 20%) in all re-
sources, since the job is mostly idle–waiting for a response
from the database. The resources are used inefficiently as
well. For example, using remote store, the amount data
transfered over the network for processing a single message
is 5-10× higher than local store.

6.2.4 Latency Tail and Variance
We define latency as the total time spent in processing a

message (event), including time spent in fetching the mes-
sage from the input source. Figure 10 shows the Cumulative
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Distribution Function (CDF) of latencies in all cases. Since
Samza fetches messages in batches (50 K messages in our
test), a few messages incur very long latencies causing long
tails in the CDF. However, for the rest, the variance is low
and a majority of values are close to the median.

6.3 Failure Recovery
To measure failure recovery overhead when using local

state, we randomly killed a percentage of containers (6% to
50%) in a stateful job. We measured the recovery time–the
time spent between the first failure until all containers are up
and running–both with Host Affinity disabled and enabled
(w/ HAff). In Host Affinity, we used a success rate of 100%,
i.e., ratio of containers placed on the same machine as before.
Although this might seem extreme, it is not far from our
production success rate (85-90%). In production, the main
reason for misses are permanent node failures, and being a
shared cluster with other jobs filling the free capacity.

In this experiment we used the ReadWrite workload, 16
8GB containers, on-disk + Clog store, and an input stream
containing all keys in the range [1− 1012] in order. For each
input message processed a new entry was stored locally and
added to the changelog.

As Figure 11 shows, without Host Affinity, recovery time
increases proportionally with state size. With Host Affin-
ity recovery time becomes near constant independent of the
state size. In our production jobs, recovery time reduced
from 30 minutes to less than 30 seconds using Host Affinity.

Furthermore, failure recovery time was nearly indepen-
dent of the percentage of containers failing. This is because
tasks are recovered in parallel.

6.4 Reprocessing
We analyzed the impact of reprocessing in our produc-

tion jobs. We evaluated the Standardization job, our most
frequently reprocessed job, over a 24 hour period. Standard-
ization consumes profile updates and using a machine learn-
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Figure 13: Comparison of Samza with other batch
processing frameworks in reprocessing data.

ing model, transforms the update to a standardized text.
After 2 hours, we started reprocessing the entire database
of user profiles (> 450 Million entries). Simultaneously, we
scaled-out the job from 8 containers to 24.

Figure 12 shows the reprocessing throughput. Repro-
cessing peaks and remains at 10,000 messages per second
(due to our throttling mechanism). After all the data is
processed (≈16 hours), reprocessing throughput drops and
starts catching up with the real-time data. At this point,
we stop reprocessing and scale-in the job. Reprocessing time
can be reduced, similar to a batch job, by simply allocating
more resources. The combination of scale-out and throt-
tling mechanisms ensure that reprocessing does not affect
real-time processing performance.

6.4.1 Batch Processing using Samza
We compared Samza’s reprocessing/batch solution with

other mainstream batch processing solutions including Spark
and Hadoop [14,58]. Spark offers high similarity of code for
batch and stream processing, thus making it a near-Lambda-
less architecture. Hadoop is a system that might be used
modularly inside the Apache Beam architecture.

In this experiment we used Members Per Country (MPC),
a real-world batch job running at LinkedIn, and reimple-
mented the job in Samza (with HDFS consumer). MPC
reads a snapshot of all user profiles, groups them by coun-
try (Map), and then counts the members in each country
(Reduce). We used 450 million profile records stored across
500 files (250 GB of data) in a production YARN cluster (≈
500 nodes), and single core containers with 4GB RAM.

Figure 13 shows Samza has better throughput than Spark
and Hadoop4. This is because it streams data to down-
stream operators as soon as it becomes available, while Hadoop
and Spark (in batch mode) are limited by the barrier be-
tween Map and Reduce phases [21] 5.

6.5 Scalability
Figure 14 shows maximum throughput and average la-

tency in Samza as the number of containers increases (in
the ReadWrite workload). Throughput increases linearly,
saturating just beyond 60 containers. The saturation point
is very close to the optimum throughput possible in the net-
work. Latency stays low at first and increases thereafter.
This knee of increase in latency coincides with the through-
put saturation, and thus, can be used as an indicator of
when to stop scaling. For maximizing throughput, there is
low marginal utility in scaling beyond the saturation point.

Figure 14(c) shows the CDF of the latency. Even with
twice more containers than needed, a majority of messages

4
Latencies are higher in Hadoop due to the barrier and Spark due to

micro-batching; these are not plotted.
5
Samza is also able to exploit more parallelism than the other frame-

works, better utilizing CPU cores.
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Figure 14: Throughput, average latency and CDF of latency in scalability study adding containers, under a
50-50 read write workload using local state. The saturation point of the system is 64 containers.

(> 80%) are processed within a few microseconds, and with
small variance. The tail prolongs when containers are be-
yond the throughput saturation point, primarily because
more time is spent waiting for the next events than process-
ing them. We also observe that latencies are higher with
more containers (e.g., 128 vs. 32). This is because the la-
tency is calculated from message fetch time to processing
completion. With more containers, more outlier messages
need to be fetched remotely, and this drives up the average.

7. RELATED WORK
State management: State management varies signif-

icantly among stream processing solutions. Many indus-
trial scale systems, such as Apache Storm, Heron and S4
[35, 43, 54] are built with no support for state. Trident and
MillWheel [5, 7] manage state by using a combination of
“hard state” persisted in an external store along with “soft
state” stored in memory as a non-fault-tolerant cache. Thus,
they either incur high overhead by relying on a remote stor-
age or accept the chance of losing data.

There has been some work on partitioning state similar to
the idea of local state [13, 59]. StreamCloud [30] discusses
elastic and load-balanced state partitioning. However, par-
titioning is only supported for specific operators (join and
aggregation) and it does not address fault-tolerance. S-Store
[40] proposes transactional state management for stream
data that is a potential add-on to Samza.

Fault-tolerance in local state: Upstream backup recov-
ery [6,54] successfully restore processing, but not the state.
One approach to add fault-tolerance is by using replication
[6] (as studied in [32]). However, this requires the luxury of
extra available resources [18], and approaches like Sweeping
checkpointing [29] do not ameliorate this problem.

Another popular approach is continuous full-state check-
pointing of state along with input replay in presence of fail-
ures. Fernandez et al. [18] discuss scale-out state man-
agement for all operators by partitioning state and using
checkpoint. Many others [13,33,37,56,59] also employ check-
pointing mechanism to ensure fault-tolerance. The SDG ap-
proach [27] enables asynchronous checkpointing by locking
the state, keeping a dirty buffer for incoming changes dur-
ing checkpointing, and then applying the dirty buffer on the
state. [33] generates a global snapshot by using a blocking
variation of Chandy-Lamport snapshot [19] where it blocks
on on-the-fly messages before generating the snapshot. In-
stead of blocking, IBM System S [56] persists checkpoints in
the external DBMS (which is slow), and [18] captures pend-
ing asynchronous operations as part of the state (which is
complex). The excessive overhead of full-state checkpoint-
ing, especially with large state sizes, make these approaches

prohibitive. Sebepou et al. [51] partition state into smaller
chunks, with incremental updates. However, it was only
evaluated for aggregation operators, and it is unclear how
effective it will be on user-defined logic.

Unified stream and batch: MapReduce Online [21] has
explored processing batch jobs in an online barrier-free man-
ner, but they do not fully support stream-processing. Liquid
[26] also has a unified integration stack, but still maintains
two separate subsystems.

Apache Beam, Dataflow, and Flink [8,12,13] have moved
toward integrating batch into stream as a unified environ-
ment. Dataflow and Borealis [6,8] have investigated how to
handle inaccuracies caused by out-of-order messages occur-
ring in stream frameworks. However, Dataflow relies on a
remote store (not handling large state efficiently), and Flink
is not fully unified (separate APIs for batch and stream).
Samza can be used modularly inside Beam which acts as
a wrapper API. Besides, Dataflow and Beam incur extra
overhead by not leveraging the inherent partitioning capa-
bilities of systems like Kafka, Kinesis, or EventHub. Spark
Streaming [59] also has a unified environment, however, it
processes data in micro-batches incurring higher processing
latency. Also, Flink and Spark Steaming are not available
as a standalone version and lose the deployment flexibility.

Scalability: Scaling to large state necessitates going be-
yond relying on memory, e.g., by using disk spilling [38].
This is orthogonal to our approach and could be used as
an extra optimization in Samza. For better scalability, op-
erators need to work with maximum independence. Thus,
many systems have opted to use reliable, replayable commu-
nication mechanisms to handle data buffering between oper-
ators, e.g., Streamscope and Heron [35, 37]. IBM System S
[11,56] utilizes fault-tolerant replayable communication and
distributes operations into a set of independent component-
local operators. These systems deploy a similar approach to
the scalable design in Samza. However, none of them target
large state or reprocessing.
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9. CONCLUSION
This paper described Samza, a distributed system that

supports stateful processing of real-time streams, along with
reprocessing of entire data streams. Samza recovers quickly
from failures, with recovery time independent of application
scale (number of containers). It can support very large scales
of state in spite of limited memory, by combining local on-
disk storage, an efficient changelog, and caching.

Our experiments showed Samza has higher throughput
than existing systems like Spark and Hadoop. Samza runs
both batch and stream processing in a unified way while
minimizing interference between them. We also described
several applications that rely on Samza.

Samza’s approach opens up many interesting future direc-
tions including: dynamic rebalancing and task re-splitting
(changing number of tasks), automatic configuring and scal-
ing of resources (containers), investigating stragglers (not a
major issue so far), and handling hot vs. cold partitions.
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J. Haberman, et al. Millwheel: fault-tolerant stream processing
at internet scale. Proc. VLDB, pages 1033–1044, 2013.

[8] T. Akidau, R. Bradshaw, C. Chambers, et al. The dataflow
model: a practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data
processing. Proc. VLDB, 8(12):1792–1803, 2015.

[9] Amazon. DynamoDB streams. http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/Streams.html.

[10] Amazon. Kinesis. https://aws.amazon.com/kinesis/.
[11] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King, et al.

SPC: a distributed, scalable platform for data mining. In Proc.
IWMSSP, pages 27–37. ACM, 2006.

[12] Apache. Beam. http://beam.incubator.apache.org.
[13] Apache. Flink. https://flink.apache.org.
[14] Apache. Hadoop. http://hadoop.apache.org/.
[15] Apache. Kafaka - powered by. https:

//cwiki.apache.org/confluence/display/KAFKA/Powered+By.
[16] A. Auradkar, C. Botev, S. Das, et al. Data infrastructure at

LinkedIn. In Proc. ICDE, pages 1370–1381, 2012.
[17] A. AWS. Lambda. https://aws.amazon.com/lambda/.
[18] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and

P. Pietzuch. Integrating scale out and fault tolerance in stream
processing using operator state management. In Proc.
SIGMOD, pages 725–736. ACM, 2013.

[19] K. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. TOCS, pages
63–75, 1985.

[20] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
et al. Bigtable: A distributed storage system for structured
data. TOCS, 26(2):4:1–4:26, 2008.

[21] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, et al.
Mapreduce online. In Proc. NSDI, pages 20–25, 2010.

[22] E. P. Corporation. Benchmarking top nosql databases.
Technical Report, page 19, 2015.

[23] Couchbase. Couchbase. http://www.couchbase.com.
[24] J. Dean and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. CACM, 51(1):107–113, 2008.
[25] L. Engineering. Benchmarking apache kafka: 2 million writes

per second (on three cheap machines).
https://engineering.linkedin.com/kafka.

[26] R. Fernandez, P. Pietzuch, et al. Liquid: Unifying nearline and
offline big data integration. In Proc. CIDR, page 8.

[27] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Making state explicit for imperative big data
processing. In Proc. ATC, pages 49–60. USENIX, 2014.

[28] T. A. S. Foundation. Apache HBase. http://hbase.apache.org/.

[29] Y. Gu, Z. Zhang, F. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu.
An empirical study of high availability in stream processing
systems. In Proc. Middleware, page 23, 2009.

[30] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez,
C. Soriente, and P. Valduriez. Streamcloud: An elastic and
scalable data streaming system. TPDS, 23(12):2351–2365, 2012.

[31] P. Hintjens. ZeroMQ: Messaging for Many Applications.
O’Reilly Media, Inc., 2013.

[32] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, et al.
High-availability algorithms for distributed stream processing.
In Proc. ICDE’05, pages 779–790, 2005.

[33] G. Jacques-Silva, F. Zheng, D. Debrunner, K.-L. Wu,
V. Dogaru, et al. Consistent regions: Guaranteed tuple
processing in ibm streams. Proc. VLDB, 9(13):1341–1352, 2016.

[34] J. Kreps, N. Narkhede, et al. Kafka: A distributed messaging
system for log processing. In Proc. NetDB, pages 1–7, 2011.

[35] S. Kulkarni, N. Bhagat, M. Fu, et al. Twitter heron: Stream
processing at scale. In Proc. SIGMOD, pages 239–250, 2015.

[36] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. In Proc. SIGOPS OSR, pages
35–40, 2010.

[37] W. Lin, Z. Qian, J. Xu, S. Yang, J. Zhou, and L. Zhou.
Streamscope: continuous reliable distributed processing of big
data streams. In Proc. NSDI, pages 439–454, 2016.

[38] B. Liu, Y. Zhu, and E. Rundensteiner. Run-time operator state
spilling for memory intensive long-running queries. In Proc.
SIGMOD, pages 347–358. ACM, 2006.

[39] N. Marz and J. Warren. Big Data: Principles and Best
Practices of Scalable Realtime Data Systems. Manning
Publications Co., 1st edition, 2015.

[40] J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Cetintemel,
et al. S-store: Streaming meets transaction processing. Proc.
VLDB, pages 2134–2145, 2015.

[41] Microsoft. Azure event hub.
https://azure.microsoft.com/en-us/services/event-hubs/.

[42] MySQL. Mysql. http://www.mysql.com.
[43] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:

Distributed stream computing platform. In Prod. ICDM
Workshop, pages 170–177. IEEE, 2010.

[44] S. A. Noghabi, S. Subramanian, P. Narayanan, S. Narayanan,
G. Holla, et al. Ambry: Linkedin’s scalable geo-distributed
object store. In Proc. SIGMOD, pages 253–265. ACM, 2016.

[45] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In
Proc. SIGMOD, pages 1099–1110. ACM, 2008.

[46] Oracle. Package java.util.stream. https://docs.oracle.com/
javase/8/docs/api/java/util/stream/package-summary.html.

[47] M. Pundir, L. M. Leslie, I. Gupta, and R. H. Campbell. Zorro:
Zero-cost reactive failure recovery in distributed graph
processing. In Proc. SoCC, pages 195–208. ACM, 2015.

[48] L. Qiao, K. Surlaker, S. Das, T. Quiggle, B. Schulman, et al.
On brewing fresh espresso: Linkedin’s distributed data serving
platform. In Proc. SIGMOD, pages 1135–1146. ACM, 2013.
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