
ExtraV: Boosting Graph Processing Near Storage with a
Coherent Accelerator

Jinho Lee†, Heesu Kim*, Sungjoo Yoo*, Kiyoung Choi*,
H. Peter Hofstee†,‡, Gi-Joon Nam†, Mark R. Nutter†, and Damir Jamsek†

†IBM Research *Seoul National University ‡TU Delft

†{leejinho, hofstee, gnam, mrnutter, jamsek}@us.ibm.com
*hkim@dal.snu.ac.kr, sungjoo.yoo@gmail.com, kchoi@snu.ac.kr

ABSTRACT
In this paper, we propose ExtraV, a framework for near-
storage graph processing. It is based on the novel concept of
graph virtualization, which efficiently utilizes a cache-coherent
hardware accelerator at the storage side to achieve perfor-
mance and flexibility at the same time. ExtraV consists of
four main components: 1) host processor, 2) main memory,
3) AFU (Accelerator Function Unit) and 4) storage. The
AFU, a hardware accelerator, sits between the host processor
and storage. Using a coherent interface that allows main
memory accesses, it performs graph traversal functions that
are common to various algorithms while the program running
on the host processor (called the host program) manages
the overall execution along with more application-specific
tasks. Graph virtualization is a high-level programming
model of graph processing that allows designers to focus
on algorithm-specific functions. Realized by the accelerator,
graph virtualization gives the host programs an illusion that
the graph data reside on the main memory in a layout that
fits with the memory access behavior of host programs even
though the graph data are actually stored in a multi-level,
compressed form in storage. We prototyped ExtraV on a
Power8 machine with a CAPI-enabled FPGA. Our experi-
ments on a real system prototype offer significant speedup
compared to state-of-the-art software only implementations.

1. INTRODUCTION
Large-scale graph processing is one of the key applications

in big data analytics for various domains such as social net-
works, biomedical problems, and even VLSI designs. At the
same time, the volume of data is growing at an exponen-
tial rate. According to [4], Facebook users share nearly 2.5
million pieces of contents per minute while email users send
over 200 million messages every minute. The explosion of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

information results in large scale graph databases and creates
a need for a new kind of system that can process extremely
large graphs with a reasonable throughput.

Thus far, the scalability issue of graph size has been mainly
addressed by a cluster of servers [40, 42, 24]. However, so-
lutions based on clustered servers are known to suffer from
scaling problems due to sub-optimal partitioning and IO
complexity [37]. Recently, out-of-memory graph processing
has become popular. Out-of-memory systems usually use a
single server machine with large storage devices (such as an
SSD (Solid-State Drive)) that stores the graph data [37, 46,
29, 55]. Earlier research has demonstrated that such systems
are promising alternatives to cluster-based approaches. How-
ever, out-of-memory approaches fundamentally suffer from
low disk bandwidth. Thus, many approaches are based on
partitioning graphs into chunks, thereby exploiting the high
sequential bandwidth of disks. The partitioning incurs the
overhead of converting data between disk format and main
memory format. The conversion overhead often occupies a
significant portion (88% in [37]) of total runtime.

In conjunction with the problem, Near-Data Processing
(NDP) seems to be a promising solution for out-of-memory
graph processing. By processing buffer management and
traversals at the storage side, a significant portion of the con-
version overhead can be saved, and the corresponding storage
bandwidth demands can be mitigated. NDP is drawing sig-
nificant attention from the industry these days in many ways.
A direct example would be accompanying SSDs with SQL
processing engines [22] or programmable components [47,
25]. However, offloading all of the graph processing to the
storage side can be inefficient due to the limitation of the
computing power and memory bandwidth/capacity of the
processing logic at the storage side.

In this work, we provide further improvements for out-
of-memory graph processing in the direction of near-data
processing by leveraging coherent accelerator interfaces. Co-
herent accelerator interfaces [48, 27] allow processors and ac-
celerators to share information in main memory in a seamless
way. It is considered one of the most important technologies
to maintain the growth of computing power. By placing a
coherent accelerator at the storage side, we can exploit the
benefit of NDP while not giving up the use of the flexibility
of CPUs and the system main memory.

We propose the ExtraV framework (that extracts and

1706

traverses graphs). In the framework, a coherent accelerator
is placed in front of the storage device and communicates with
the processor and its main memory. The common library
functions for general graph processing are implemented and
executed at the storage side by the accelerator unit to provide
speedup, while algorithm-specific tasks are left to the host
processor so that the users can freely implement their own
algorithm in a flexible way.

For efficient coordination of the coherent accelerator, we
devised a novel scheme of graph virtualization. By using
graph virtualization, we provide the program running on the
host processor with high-level abstractions that the graph
in the storage resides in main memory in the order that
the program wants to process it. Upon the host program’s
request, the accelerator of ExtraV accesses the graph data in
the storage, interpret the data, and bring it to the main mem-
ory in time by exploiting the feature of coherent accelerator
interface. Therefore the host program can digest the data
from memory without the overhead of directly accessing the
storage device, unlike sharding techniques, while the actual
format of the data or computations done in the accelerator
is invisible to the host program.

Additionally, because of the virtualization, the accelerator
can apply optimizations to the data under the abstraction
layer, without affecting processor functions or programma-
bility. We propose two optimization schemes, (1) expand-
and-filter and (2) multi-versioning.

Expand-and-filter first decompresses (i.e., expands) graph
data fetched from the storage and sends only necessary data
to the host processor by filtering out the unnecessary portion
of the data, which improves effective bandwidth between
the disk (to be exact, the hardware accelerator) and the
host processor thereby enhancing the performance of graph
processing. We also design a randomly accessible, hardware-
friendly compression scheme suited for expand-and-filter. On
the other hand, multi-versioning allows past states of the
graph to be visible, and enables tracking. It also provides an
efficient interface for making modifications to the compressed
graph without having to decompress the current data.

Our contributions are summarized as follows:

• Proposing ExtraV, a framework using a coherent ac-
celerator and a graph-specific compression scheme to
boost near-storage graph processing.

• The design of graph virtualization, a programming
model that allows designers to focus on algorithm-
specific functions while implementation details (e.g.,
(de)compression, filtering, multi-versioning, etc.) are
hidden and handled by the coherent hardware acceler-
ator.

• Proposing an expand-and-filter technique to amplify
the effective bandwidth of storage devices.

• Proposing a compression scheme that is suitable for
enhancing the performance of graph processing.

• Hardware-managed multi-versioning that allows change
tracking and non-invasive updates.

• The design of a hardware accelerator that processes a
compressed graph and feeds it to the host processor
using a coherent interface.

2. RELATED WORK
Near-data Processing The idea of near-data processing

was once popular in the late 90’s. It is now seeing a resurgence
due to some key enabling technologies emerging. While there
is also numerous related work on applying NDP (also called
processing-in-memory) for memories such as DRAM [38, 12,
52, 39] or STT-MRAM [26], in-storage processing is also
getting more attention at the industry side because emerging
storage devices such as SSDs provide a good environment
for their implementations.

SmartSSD [22] is one of the early implementations of in-
storage processing, which places a subset of an SQL server in
the SSD controller’s firmware. Willow [47] explored through
programmable interface for SSDs to support in-storage pro-
cessing. Recently, [25] proposed a framework for general
in-storage processing for SSDs.

BlueDBM [34] and Tesseract [11] are interesting archi-
tectures that exhibit similar structure in different scales.
BlueDBM is a rack-scale system where each node has flash de-
vices and in-storage processors. Tessaract uses a 3D stacked
memory with on top of a logic layer as a building block, and
connects multiple such blocks together to form an accelerator.

However, none of these explore the out-of-memory graph
processing domain, and the use of coherent accelerators. Ex-
traV aggressively uses coherent interfaces to bring flexibility
and ease of development to the framework.
In-memory Graph Analytics The Pegasus framework [35]
is a graph processing system based on MapReduce [21] ex-
tending matrix-vector multiplications to graph processing.
However, such general distributed processing frameworks
were found to be inefficient for graph processing due to ir-
regular access patterns, and consequently many frameworks
specifically targeting graph analytics have been presented.
Pregel [42] proposed using a Bulk Synchronous Parallel [49]
model for distributed graph processing. GraphLab [40] em-
ployed a shared memory model instead of a message passing
scheme. Its successor, PowerGraph [24] introduced the GAS
(Gather, Apply, Scatter) model for graphs with power-law
distributions. Most recently, PGX.D [31] demonstrated sig-
nificant performance improvement by implementing efficient
communication and workload balancing.
Out-of-memory Graph Analytics GraphChi [37] is the
first out-of-memory system to show the potential to match
the performance of clustered servers. GraphChi carefully
optimized sequential access patterns to the disks for perfor-
mance improvement. X-stream [46] uses the edge-centric
processing model to minimize random accesses to the disks.
Turbograph [29] proposes the pin-and-slide model to take ad-
vantage of inherent parallelism available on SSDs. Llama [41]
reduces the overhead of buffer management using mmap. Ad-
ditionally, it introduces the new concepts of snapshots and
indirection tables to support multi-version graphs. Grid-
Graph [55] proposes 2D partitioning and selective scheduling
to further improve system performance.

More recently, FlashGraph [53] and PrefEdge [43] are
architectures that optimize semi-external graph processing
on SSDs. FlashGraph is implemented on a user-space file
system, and overlaps the latencies of requests to gain high
IOPS (Input/Output Operations Per Seconds). PrefEdge is
implemented as a graph-specific prefetch engine to improve
the throughput to SSDs. However, even with advanced
SSDs, the overall system performance is not on a par with
the cluster server in-memory graph analytics. Also, to the

1707

best of our knowledge, none of the previous approaches try to
take advantage of hardware accelerator technology commonly
available in recent heterogeneous computing platforms [6].
Hardware based Approaches [30] introduces new imple-
mentations of BFS, SSSP, and APSP algorithms on GPUs
using CUDA. [32] improves the performance of BFS using
hybrid approaches between host processor and GPU. [19] pro-
poses building a computer architecture suitable for irregular
memory accesses. Also, [28] and [44] describes accelerators
that maximize memory parallelism in graph processing.

All those related works assume in-memory processing, and
none of them consider providing a new abstraction to the
CPU or amplifying the storage bandwidth. We believe that
our approach can be combined with these approaches to
further enhance the performance. However, it is beyond the
scope of this paper.

3. BACKGROUND: CAPI (COHERENT AC-
CELERATOR PROCESSOR INTERFACE)

Coherent accelerations are an emerging technology that
draws tremendous interest from both industry and academia
as a new heterogeneous computing platform for using accel-
erators in a system. IBM CAPI [48] and intel HARP [27]
are two available well-known systems. This work makes use
of IBM CAPI (Coherent Accelerator Processor Interface).

CAPI is a new feature introduced in the IBM POWER8
processor. It is intended to assist the host POWER8 proces-
sor by offloading some workloads to more efficient hardware
accelerators such as FPGAs or GPUs. One unique feature
of CAPI is that it enables accelerators to coherently access
the entire main memory of the system. The processor and
accelerators share the same memory space and virtual ad-
dresses while the cache coherence is supported by hardware.
This is achieved by CAPP (Coherent Attached Processor
Proxy) implemented in a host processor and PSL (POWER
Service Layer) implemented on an accelerator unit. The
CAPP maintains a cache directory of shared memory space.
The PSL works in concert with the CAPP unit across a
PCI-e connection. It provides a straightforward interface to
the accelerator to grant access to coherent memory. When
needed, the CAPP and PSL communicate with each other
for memory coherent actions such as writebacks or cache
reads. Because all the data movement and coherency are
managed by the PSL and CAPP, the client can focus on
their accelerator algorithms and implementations.

The AFU (Accelerator Function Unit) is the place where
custom acceleration functions are implemented and executed.
An accelerator consists of one or more AFUs. Each AFU can
be customized with application specific user-defined logic.
The PSL takes charge of the link between the AFU and
the host system, and it is comprised of several interfaces
including command interface, buffer interface, response inter-
face, control interface, and MMIO interface. The command
interface executes memory commands issued from the AFU.
It can support various options such as bypassing PSL and
CAPP caches, or modifying initial cache line state accord-
ing to the scenario of future accesses. All data are moved
through the buffer interface. The PSL reorders the data move
commands to improve memory operation latency. Since the
order of responses to memory operations is not guaranteed,
it sets a tag to each command to identify them. The response
interface notifies the completion of commands to AFU, along

AFU
(FPGA)

StorageCPU

Memory

0
21D

ec
om

pr
es

si
on

Tr
av

er
se

 &
 F

ilt
er

Figure 1: Overview of the ExtraV framework.

with the associated credits, so that the AFU can continue
issuing commands to the PSL. The host can start or reset the
AFU via the control interface. Lastly, the MMIO interface
maps the AFU registers and allows a host program to read
or write AFU registers directly via handshaking.

Because CAPI can remove the need for explicitly copy-
ing the data between processor and the accelerator, one
can expect performance advantage with low communication
latencies. IBM has built a key-value store using CAPI in sup-
port for NoSQL [16], and [23] has implemented accelerating
arithmetic kernels using CAPI. In this work, we aggressively
utilize the fine-grained communication capability of CAPI
to boost graph analytics performance.

4. THE EXTRAV FRAMEWORK

4.1 Framework Overview
Figure 1 shows an overview of the ExtraV framework.

The system has four main components: CPU, main memory,
AFU, and storage.

The AFU is placed in front of storage and processes the
common work that is independent of any graph processing
algorithm. For instance, assume that a graph processing
program running on the CPU tries to retrieve an edge list
consisting of the vertices satisfying a certain condition. The
host program sends a request to the AFU. Upon the host
program’s request, the AFU first interprets the graph data
for the requested vertex, and then retrieves the corresponding
edge list data from the storage. When the edge list data
arrives from the storage, it decompresses the edge list, applies
filtering if needed, and transfers the results to the main
memory, so that the host program sees the edge list on the
memory, in the order that it wants to process. All this
work is invisible to the host program. Hence the graph
processing program running on the host processor does not
need any knowledge of the work done by the AFU, or the
format in which the data is stored in the storage. By placing
the AFU near storage, ExtraV not only offloads compute-
intensive workloads to hardware, but also reduces the off-
chip data traffic. While the same functionality could also
be implemented as a software driver, this would cause the
unfiltered data to travel from storage to memory and bring
the computations back to the CPU with loss of performance.

In this work, we assume a semi-external graph processing,
where the main memory cannot store the entire graph but
can store the attributes of vertices. Since the number of edges
in a real-world graph is often far (more than 10×) larger than

1708

Table 1: Streaming Queries Used for Graph Virtualization

Type Input Output
Startup G (identifier with level) num vertices(G), num edges(G)

Sequential In/Out, F⊂G (optional) {N|N=nbr(v), v∈G∩F}
Job-queue In/Out, Q⊂G, F⊂G (optional) {N|N=nbr(v), v∈Q∩F}

Degree In/Out {d|d=degree(v), v∈G}

Start(G)

Num_vertices(G) , Num_edges(G)

...

Seq, out_edges (iter 1)

(0: 1, 3, 4) (1: 3, 7) (2: 0) …(N‐1:...)

...

Seq, out_edges (iter 2)

(0: 1, 3, 4) (1: 3, 7) (2: 0) …(N‐1:...)

CPU AFU
(FPGA)

Figure 2: Graph virtualization programming model.

that of vertices [8], this is an acceptable assumption, and
this approach has been adopted by existing works [53, 43].
We leave the extension to the environment where the vertices
do not fit into the main memory as future work. The stored
graph data is in the CSR (Compressed Sparse Row) form,
but the edge list is further compressed (See Section 4.4).

The main memory stores temporary data and vertex at-
tributes. Examples would be parent values in the BFS
algorithm or PageRank values for individual vertices in the
PageRank algorithm. Optionally, the memory also stores
some values that are shared between the processor and the
AFU using the coherent interface. As will be explained later,
the job queue and the filter bitmap are two items that are
shared between the two.

The program running on the CPU processes the application-
specific part of the algorithms. For example, it can propagate
the PageRank value of a vertex to its neighbors or check
to see whether a certain vertex is already visited or not.
Although the application-specific part can also be executed
in an AFU, accessing the vertex attributes on the main mem-
ory will consume a lot of bandwidth. Since the bandwidth
available to AFU is significantly less than that of the host
processor (about 3GB/s for PCI-e), processing such large
data in the main memory is much more efficient at the host
processor side. Furthermore, designing custom hardware for
application specific algorithms would require significantly
large hardware as well as design effort. Thus, by leaving
the application-specific code to the host processor, any new
algorithm or improvements of the existing algorithm can be
implemented easily by software and we gain both algorithmic
flexibility and memory access efficiency.

4.2 Programming Model
We propose graph virtualization as a high-level abstrac-

tion of graph processing on the ExtraV system. We need a
high-level abstraction mainly because the round-trip latency
between the processor and the AFU is too long (about 1 µs
on PCI-e Gen3 x8). If such fine-grained communications

are exposed to graph processing programs running on the
host processor, the communication overhead can become pro-
hibitively expensive. For instance, in the case of PageRank,
if each access to an entry in the edge list is performed in
the fine-grained manner incurring 1 µs of latency, the per-
formance of graph processing will be extremely poor. The
graph virtualization programming model tries to minimize
such communication overhead and thus maximize the algo-
rithm speedup.

Figure 2 shows the graph virtualization model. For the
start-up procedure, the host program informs the AFU of
the graph it intends to process, and as an acknowledgement,
the AFU sends the metadata (the numbers of vertices and
edges). Then, instead of requesting individual vertices or
edges, the program sends a streaming query to the AFU,
e.g., for a specific set of edges. When the AFU receives the
query, it starts sequentially streaming the response, e.g., the
set of edges, to the host program. Each response to the
query is written to the response queues in the main memory
in the form of (vertex: {neighbor list}), and the responses
are continuously sent (e.g., until all the edges are traversed).
These response queues are managed by leveraging the coher-
ent interface. Because of this, graph virtualization does not
pay expensive overheads such as AFU polling on memory,
CPU polling on MMIO registers or issuing hardware memory
barriers, which exist in conventional queue-pair models used
for conventional accelerators. Instead, the CPU and the AFU
spin on their own caches and get informed by the coherence
mechanism. If the graph processing algorithm on the CPU
wants to perform next iteration, the host program sends the
streaming query again. For algorithms that have phases, the
type of streaming query may differ depending on the specific
phase (as will be explained later).

In our implementation, there are four streaming query
types as shown in Table 1: startup, sequential, job-queue,
and degree. In the table, G represents a graph, with a version
specified. F and Q are the subsets of a graph which are used
to represent vertices in the filtering set and the job-queue,
respectively. nbr(v) represents the neighbors of vertex v,
and degree(v) represents the degree of the vertex v. Startup
queries tell the AFU which graph at which level (for multi-
versioning. See Section 4.5) the host program wants to
process, and the AFU responds with the number of vertices
and edges in the graph. Sequential queries are used for
many iteration-based graph analytics that access all vertices
in an iteration and returns their neighbor lists. Job-queue
queries are used for algorithms such as BFS and Dijkstra
which require random accesses to a subset of vertices. The
host program writes the list of vertices to be processed in a
job queue Q and the AFU returns to the host program the
neighbor lists of the vertices retrieved from the job queue.
The job queue also resides in the memory and can be accessed
by both the host program and the AFU. Lastly, the degree
queries are used for some algorithms that require degrees of

1709

Table 2: Compression format used in ExtraV
Vertex

Level (10 bits) Offset to edges (54 bits)

Edges

Num intervals Residual offset { (∆begin1, len1), ...} { ∆residual1, ...} EOL/CONT

VLI (Variable Length Integer)/Control Tokens

Len/control (6 bits) Additional
000000-111101 VLI length Bit length of the following integer Binary encoded integer

111110 CONT Continuation reference Level (VLI), Offset (VLI)
111111 EOL End-of-list -

AFU Storage

Filter

CPU AFU

Expand

Figure 3: An illustration of the expand-and-filter
scheme.

vertices. The degree query is used typically at the first phase
of an algorithm, and the degrees are stored in the memory
for the remaining phases. Optionally, the streaming queries
can provide a filter bitmap F to implement the expand-and
filter mechanism (see Section 4.3). These types of streaming
queries were enough for our benchmark algorithms, but they
can be easily extended to include other types if needed.

The use of the streaming query provides virtualization of
graphs to the programs running on the processor. In the host
program’s view, entries in the response queues are visible,
and the program needs to sequentially read the contents in
the response queues in an illusion that the graph data is
pre-ordered in the way that it is going to be accessed. Under
the graph virtualization programming model with streaming
queries, each iteration requires only one round-trip latency,
which is only a small fraction of the total processing time for
an iteration (ranging from a few seconds to a few minutes).
There is an additional round-trip overhead at the start-up
procedure, but it is required only once for the entire run, and
the latency is amortized over all the iterations. Note that
when the host program reads the responses, they are deleted
from the main memory, so the response queues require a
small amount of memory space (64MB in our experiments).

4.3 Expand-and-filter
In most out-of-memory graph processing frameworks, the

system bottleneck is the bandwidth of the storage device.
Taking advantage of graph virtualization, ExtraV uses the
expand-and-filter scheme under the abstract layer to effec-
tively amplify the storage bandwidth.

Figure 3 illustrates the expand-and-filter scheme. In the
system, there are two inter-device interfaces that can become
the performance bottleneck: the storage-AFU interface, and
the AFU-processor interface. First, in order to reduce the
bandwidth consumption of the storage-AFU interface, graph

data is stored in a compressed form in the storage device
(See Section 4.4). When the AFU reads the graph data, it
decompresses the data on-the-fly (expand). The provided
bandwidth of the storage device is effectively amplified by
the compression ratio.

However, when the data is decompressed, the data becomes
a few times larger than the original compressed data, and this
increases the bandwidth requirement of the AFU-processor
interface. Depending on the bandwidth ratio between the
AFU-processor interface and the storage-AFU interface, this
may become a new bottleneck to the system. To mitigate this
effect, the AFU can drop some of the data that is not going
to be used by the host program (filter). Some algorithms
such as BFS [13] and betweenness centrality [17] maintain a
bitmap that determines which neighbors actually participate
in processing. If the filtering option of the streaming query
is set, the AFU looks up a shared bitmap, and gives as
output only the neighbors of the vertices whose bits are set
in the shared bitmap. The bitmap resides in the memory
like the job queue, and is shared between the AFU and the
host program using a coherent interface. As a result, the
bandwidth requirement of the AFU-processor interface can
be greatly reduced.

4.4 Compression Scheme
Compression is one of the key features in ExtraV that

delivers a speed superior to existing frameworks. A good
compression scheme for graph processing requires three char-
acteristics: high compression ratio, random accessibility, and
fast decompression speed. The compression ratio determines
how much bandwidth amplification can be obtained from
the storage. However, it is also important to have a high
enough decompression speed to exploit the full bandwidth of
the storage. Otherwise, the storage would be underutilized
and the speedup would be reduced. Random accessibility is
also essential to support graph processing algorithms (e.g.,
the job-queue query).

The BV (Boldi-Vigna) scheme [15] provides a high com-
pression ratio for web graphs, but to decompress a vertex,
it has to repeatedly follow backward dependencies and de-
compress many other vertices. This would not only slow
down the decompression speed, but also increase the amount
of data the AFU has to fetch from the storage. Also, BL
(Back-Links) compression [20] stores only one side of the
bidirectional edges, and thus it is almost impossible to access
a random vertex. Pathgraph [51] adopted some ideas based
on variable length integers, but their technique is simple and
the compression ratio was not high enough for our purposes.
Our compression scheme adopts some key ideas from BV and

1710

1 master_thread:
2 kernel->init()
3 do {
4 kernel->prepare()
5 streaming_query(kernel->query_type())
6 while(num_processed < kernel->worksize())
7 } while (!kernel->end() && ++iter < max_iter)

8 worker_thread:
9 while(1) { //worker never returns

10 (u, u_nbr) = resp_queue.next()
11 kernel->body(u,u_nbr)
12 num_processed++ //atomic
13 }

(a) Master thread (b) Worker Thread

14 Procedure PageRank(graph G) :
15 init()
16 do {
17 PR = PR_next
18 for u in G {
19 for v in in_nbr(u) {
20 sum += PR[v] / degree[v]
21 }
22 PR_next[u] = (1-d)/N + d*sum
23 }
24 diff += |PR_next - PR| //atomic
25 } while (diff > e && ++iter < max_iter)

26 Class PageRank : inherit Kernel
27 Procedure prepare() :
28 PR = PR_next
29 Procedure query_type() :
30 return (sequential, in_edges)
31 Procedure worksize() :
32 return G.num_vertices
33 Procedure end() :
34 return (diff <= e)
35 Procedure body(u, u_nbr) :
36 for v in u_nbr {
37 sum += PR[v] / degree[v]
38 }
39 PR_next[u] = (1-d)/N + d*sum
40 diff += |PR_next - PR| //atomic

(c) PageRank Algorithm (Pesudo-code) (d) PageRank Kernel Implementation of ExtraV

Figure 4: Execution model and the PageRank example.

BL, but ours allows random access and the decompression
procedure is hardware-friendly, yet the compression ratio is
high enough to provide a significant speedup.

Our compression scheme is mainly based on run-length
and differential coding. Using the two coding techniques,
the size and the number of data to be stored are reduced.
Then variable length encoding is used to achieve additional
compression. Table 2 displays the compressed graph for-
mat (a vertex and the list of edges connected to the vertex;
each edge is represented by a neighboring vertex). The com-
pressed edge list is composed of two parts: intervals and
residuals. The interval part stores sets of consecutively num-
bered (neighboring) vertices, and the residual part stores the
remaining neighbors that do not fall into the interval part.
The compressed edge list first has the number of intervals
and the offset to the beginning of the residuals. The interval
parts are in the form of (∆begin, length). ∆begin stores the
difference between the ids at the beginning of the interval
and at the end of the previous interval (for the first interval,
the difference with the vertex id). For example, if the vertex
id is 3, ∆begin of the first interval is 4, and the length of
that interval is 5, then the first interval represents neighbor-
ing vertices with ids from 7 to 11. We can decompress the
residuals by regarding them as intervals with the implied
length of zero. Because we have added the residual offset at
the beginning of the list, the acceleration hardware can jump
to the residuals without decompressing the whole interval
part, enabling parallel decompression. All the integers in
the compressed edge list are further compressed by using
variable-length integer coding. The first six bits represent
the length of the binary coded integer, followed by the ac-
tual binary number. The code 111111(2) and 111110(2) are
reserved for the end-of-list indicator, to avoid decoding junk
(see Section 5), and for continuation to next level indicator
(see Section 4.5), respectively.

The vertex list provides additional opportunity for com-
pression with similar techniques. However, we chose not to
compress it, because it would incur more overhead in the

AFU. Furthermore, the benefit will be small since the vertex
list takes only a small portion of the graph data.

4.5 Multi-versioning
Multi-versioning allows graphs to store past versions at

different time points. It is not only useful for looking at the
history of changes, but also essential to CSR-based graph
databases for keeping updates. Addition of new edges or
vertices to CSR-based graphs is almost impossible because
CSR is an array-based architecture and thus multi-versioning
is used. ExtraV provides abstract multi-versioning based on a
scheme similar to Llama [41] with a few minor modifications.

In Llama, the edgelist of each version only keeps the delta
from the previous version. The end of the edgelist of a
version stores a continuation reference to the edgelist from
the previous edgelist (version and offset) so that reading
through the references would eventually provide the whole
list of the edges. Each vertex table entry has a reference to
the neighboring edgelist with the length of the edgelist. The
length information is to know the end of the edgelist and
interpret the data as a reference instead of an edge. To avoid
the vertex tables in different versions having similar contents,
the vertex tables are divided into large chunks called pages
and only the pages that have changes are newly written.
Additionally, each version provides an array of pointers to
the pages, allowing re-use of the pages of previous versions.

In ExtraV, the version and offset of continuation references
are also encoded using variable-length integers. 111110(2) in
the length field indicates that the next two integers belong to
a continuation reference. 111111(2) indicates the end-of-list
where there are no further entries. Because of this, there is
no need to store the length information of the edgelist in the
vertex tables, and thus ExtraV can allocate 64bit for each
entry in the vertex table, compared to 128bit in Llama.

4.6 Execution Model
The execution model of ExtraV provides flexibility to the

design of custom algorithms. As we assume a semi-external

1711

Stage	3

Stage	6 Stage	5 Stage	4

Stage	1 Stage	2

Gen	Node # Read
Indirection

Read
Vertex

Frontend
(VLI,	Control)FilterOutput

Backend
(Intervals)
Backend
(Residuals)

Read
ET

Read
Edge

Figure 5: Pipeline architecture of ExtraV workers.

environment, it is intuitive to use a vertex-oriented model
as in prior work [53, 43]. The execution model is shown
in Figure 4. The backbone software structure of ExtraV
consists of a master and a few worker threads, as shown in
Figure 4 (a) and (b), respectively. The master thread handles
the global jobs which have to be done between iterations
(line 4), and invokes streaming queries to the AFU (line 5).
After the streaming query is sent, it waits until the worker
threads on the host program process the data from AFU
responses. When the number of processed vertices reaches
the defined work size, the current iteration is ended (line 6).
The master then checks for the termination condition (line
7). If it does not meet the condition yet, it proceeds to the
next iteration repeating the loop of lines 3-7.

The worker threads wait on the response queue for the
AFU to send responses (line 10). Upon receiving a response,
it runs the body function that has to be performed on each
vertex (line 11). Afterwards, it atomically increases the
global variable which indicates the total number of vertices
processed by the worker threads (line 12). The worker threads
wait again on the response queue and keep running until the
end of the algorithm.

Figure 4 (c) and (d) shows pseudo-code for the PageRank
algorithm and its implementation on ExtraV, respectively.
The PageRank runs as follows. After initializing the program
(line 15), it starts the iteration. It traverses through all
the vertices in the graph, while obtaining their incoming
neighbors (lines 18-19). From the collected neighbors, the
PageRank value for the next iteration is calculated (lines
20 and 22) and the convergence error is accumulated (line
24). If the convergence error is below a certain threshold
or the max iteration count has been reached, the algorithm
terminates (line 25).

Users can implement their algorithm by describing a kernel
class and its member functions as Figure 4 (d) shows. The
prepare() function handles the job between iterations. The
query type() function determines which streaming query to
send to the AFU. In PageRank, each iteration performs se-
quential traversal of the incoming neighbors. To implement
more complicated applications, different query types can be
used for each iteration. The worksize() function determines
the number of vertices to be processed per iteration. It is usu-
ally all the vertices in the graph, but in some algorithms, only
a subset of vertices are accessed per iteration, and it should
be explicitly determined by the function. The end() function
determines the termination condition for the algorithm. For
example, the PageRank algorithm terminates when the rank
values converge, and the BFS algorithm terminates when
all the vertices are visited from the source vertex. Finally,
the body() function defines the core jobs to be performed on
each vertex.

Execution	
Pipeline
(Section	5.1)

Scheduler

R Buffer

Arbiter

R Buffer Job	Queue

Work	Chunk

Vertex Table

R Buffer Edgelist	Table

R Buffer

Bitmap

W	Buffer
Filtered
Edges

PSL

AFU

CP
U

Ac
ce
le
ra
to
r

...

Worker	Modules

Indirection

R Buffer

Edge List

Figure 6: Architecture of the hardware accelerator
in ExtraV.

5. ACCELERATOR DESIGN

5.1 Execution Pipeline
Figure 5 shows the pipeline architecture of ExtraV. The

boxes shaded in light gray represent modules that read from
the storage, while boxes shaded in dark gray represent mod-
ules that read/write from the memory. White boxes do not
access outside the accelerator.

Stage 1 generates a node number, optionally by reading
from the job queue. Stage 2 reads the indirection table
to find a page and to see if the node number crosses the
page boundary. Then it reads in the corresponding vertex
table to find out which edgelist and the offset to look for
its neighbors. In stage 3, the edgelist is continuously read,
followed by the front-end decompressor that includes VLI
(Variable Length Integer) decoding and handling of controls
such as length of list, end-of-list, and continuation references.
Before reading the edgelist, if the version has been changed
from the previously processed vertex, or if a continuation
reference is found at the front-end decoder, an entry from
ET (edgelist table) is retrieved to find out the location of the
edgelist. Stage 4 includes back-end decompression of interval
decoding and residual decoding. The results are passed on to
Stage 5, where the results are filtered, and only the filtered
results are written to the processor memory in Stage 6. We
place multiple pipelines into our accelerator design to draw
the maximum parallelism.

5.2 Stream Buffer
Even though PSL itself has 256KB of cache for the accel-

erator, having it shared among all 16 pipelines often causes
conflicts that significantly delay the pipelines. To resolve the
problem, we place a small buffer called the stream buffer on
each IO channel of the pipeline. Since most of the accesses
to the storage/memory are sequential, we chose the size of
each stream buffer to be equal to a single cache-line size
(128B). It is the minimum data width that the PSL can
access at a time. Those stream buffers not only reduce the
cache thrashing by separating IO channels from each other,
but also saves latency to/from the PSL cache, functioning
similar to a partitioned L1 cache.

While we could use a larger centralized buffer as a cache,

1712

Table 3: Graph Datasets

Graph Type #Vertices #Edges Max. In-degree Max. Out-degree
Twitter Social network 41,652,230 1,468,365,182 770,155 2,997,469

Friendster Social Network 124,836,180 1,806,067,135 4,223 3,615
MS-ref Citations 46,742,304 528,682,289 178,438 19,028

Gsh-tpd Web crawl 30,809,122 602,119,716 2,174,980 526,114

we found that each channel having a single-block sized buffer
is more efficient because 1) each channel usually exhibits
a sequential access pattern and 2) the data seldom shows
temporal locality.

To reduce resource usage, the indirection and vertex table
channels share the stream buffer. This does not affect the
system much because the indirection is read only once per
page (with thousands of vertices) and the two ports are not
accessed at the same time.

5.3 Overall Architecture
The design of the hardware accelerator used in ExtraV is

shown in Figure 6. The accelerator is designed to work for the
CAPI system. At the top level, it consists of a PSL and an
AFU as explained in Section 3. The PSL is an interface layer
that connects the accelerator to the host memory system. It
also maintains coherence between the AFU and the memory.
The AFU performs the acceleration jobs. It contains an
arbiter, a scheduler, and multiple worker modules.

The scheduler divides the range of work to be done into
small chunks, and sends them to the worker modules that are
ready to process the next chunks. Upon receiving the work
chunk, each worker module starts executing the pipeline with
the data read through read-stream buffers. The output data
are put to the main memory through the write-stream buffer.
Each worker module gets its own response queue, so that
they don’t suffer from synchronization issues between each
other. After a chunk of work is finished, the worker signals
the scheduler and the scheduler assigns another chunk to the
worker module.

The stream buffers make accesses to outside the AFU;
the vertex table, indirections, edgelist table and edgelist are
read from the storage, while others access the system main
memory. The arbiter is used to avoid conflict between the
read/write stream buffers during communication with system
objects outside the accelerator.

In addition to relying on parallel processing with multiple
worker modules, we employ prefetching to hide the latency
of the storage. Inspired by [43], we prefetch data from the
storage either in a sequential way, or following the vertices
stored in the job queue, according to the type of streaming
query being executed.

6. EVALUATION
6.1 Experimental Setup

We prototyped our design on an Alphadata CAPI devel-
opment card ADM-PCIE-KU3 [1] which has a Xilinx Ul-
trascale [45] FPGA, and an SSD with a capacity of 512GB

Table 4: Test Set Applications

Application Seq. Queue Deg. Filter
AT 4
PR 4 4
BFS 4 4 4 4
CC 4 4 4

and maximum sequential read bandwidth of approximately
540MB/s. The FPGA has 332K CLB blocks and 663K regis-
ter blocks. The board is connected with the processor using
a x8 PCI-express Gen3 interface. The FPGA and the SSD
are attached to a CAPI-enabled POWER8 processor [5]. The
processor has 20 cores running at 3.7 GHz, each with 512KB
L2 cache and 8MB L3 cache. The control group feature in
linux is used to limit the physical memory to be 4GB, thus
forcing the algorithms to run in a semi-external environment.

The worker modules in the AFU are designed using Vivado-
HLS [10] from a C++ model and run at 125 MHz. 16 worker
modules are placed inside the AFU, which is enough to draw
the full bandwidth out of the SSD attached to the server.
The CAPI streaming framework [2] is used to connect the
AFU to the PSL. The mmap feature is used to allow access
to the SSD from the AFU via the PCI-e channel. Any other
interfaces such as SO-DIMM or SATA slots can also be used
between the storage device and the FPGA.

We test four real-world graphs, and their statistics are
shown in Table 3. Twitter [36], a social network graph,
has 42M vertices and 1.5B edges. Friendster [50], another
social network graph, has 124M vertices and 1.8B edges.
MS-ref [7], a graph of paper citations, has 30M vertices and
0.6B edges. Gsh-tpd [14], representing web crawl graphs, has
39M vertices and 0.94B edges. Four algorithms are tested:
PageRank, BFS, average teenage followers and connected
components. Table 4 shows the types of streaming queries
used for each algorithm. The followings are brief explanations
of the algorithms.

AT [33]: AT (Average Teenage followers) iterates over the
whole graph, and computes the average number of teenage
followers over K years old. AT uses sequential queries.

PR [18]: Being the most famous graph processing algo-
rithm, PR (PageRank) gathers PR values from neighbors of a
vertex, and updates the PR value of that vertex. Sequential
streaming queries are used to process this algorithm. We ran
the algorithm for ten iterations on each graph.

BFS [13]: BFS (Breadth-First Search) visits neighbors
in breadth-first order and marks each vertex’s parent. It
uses job-queue queries and sequential queries with filtering.
We implemented the hybrid approach from [13], but the
parameters related to transitions between the top-down phase
and the bottom-up phase were tuned for our platform. The

Table 5: Synthesis Results

Module
Resource CLB Register

Count Util Count Util

PSL 82K 30.0% 76K 26.0%
AFU 191K 70.0% 216K 74.0%
↘ Worker (×16) 9.4K 3.4% 13K 4.6%

↘ Ex. Pipeline 5.8K 2.1% 5.6K 1.9%

↘ Stream Buf. (×6) 0.6K 0.2% 1.3K 0.4%

↘ Misc. 41K 14.9% 1.6K 0.5%

Total 273K 100% 292K 100%

1713

0

20

40

60

80

Twit Frnd MS GSH

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

ExtraV FlashGraph Llama X-stream

183 226 370

Figure 7: Performance comparison of AT.

0
100
200
300
400
500

Twit Frnd MS GSH

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

ExtraV FlashGraph Llama X-stream

931 1157 1616

Figure 8: Performance comparison of PR.

algorithm ran until termination.
CC: CC (Connected Components) uses label propaga-

tion [54] to group the neighbors of a vertex into a single
component. Sequential, filtering and job-queue queries are
used. We ran the algorithm until the number of vertices
updated reached 1/10000 of the total number of vertices.

6.2 Synthesis Results
The accelerator of ExtraV was synthesized using Xilinx

Vivado [9]. The synthesis results of the accelerator are shown
in Table 5. The design consumes about 273K CLB blocks
and 292K register blocks in the FPGA, which is around 80%
and 40% of the FPGA resources, respectively. The PSL,
which handles communication and manages coherence with
the CPU consumes a little more than a quarter of the FPGA.
The AFU is mostly comprised of 16 worker modules, where
each worker module consists of an execution pipeline and six
stream buffers. The execution pipeline occupies the majority
of the CLB blocks in the worker module, while most of its
registers are consumed by the stream buffers. Aside from the
worker modules, there are a few miscellaneous components
in the AFU, which include an arbiter, a scheduler, and some
glue logic.

6.3 Performance Results
We compare the performance of ExtraV with three other

state-of-the-art out-of-memory graph processing frameworks,
Llama [41], FlashGraph [53], and X-stream [46]. We used
the same hardware machine environment for all the frame-
works. We newly implemented some algorithms that are not
provided: the AT on all three frameworks and the CC on
Llama and FlashGraph. Figure 7 shows the execution time
of the AT (average teenager follower) on four graphs. ExtraV
outperforms all the other frameworks. For the twitter graph,
ExtraV runs AT in 10.3 seconds while FlashGraph runs in 44
seconds, and Llama finishes in 27 seconds, which translates

0

100

200

300

400

Twit Frnd MS GSH

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

ExtraV FlashGraph Llama X-stream

650 1479

Figure 9: Performance comparison of BFS.

0
100
200
300
400
500

Twit Frnd MS GSH

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

ExtraV FlashGraph Llama X-stream

797 593 6478

Figure 10: Performance comparison of CC.

into 4.27× and 2.62× improvement, respectively. X-stream,
on the other hand, suffers from much longer execution time
compared to all other frameworks. We found that X-stream
dumps its intermediate results to the storage even though
there is remaining memory space to hold them. Thus it
suffers from extra storage reads and writes, resulting in infe-
rior performance in all benchmarks. The speedup of ExtraV
mainly comes from the compression and the reduction of
buffer management overhead. Consequently, the speedup of
ExtraV in AT over Llama show a strong correlation to the
compression ratios of the Graph datasets (See Section 6.6).
The geometric mean speedup of ExtraV is 3.29×, 2.47×, and
23.9× over FlashGraph, Llama, and X-stream, respectively.

The performance results of PR (PageRank) in Figure 8 is
similar to that of AT. In AT, Llama generally runs faster than
FlashGraph because Llama eliminates buffer management
overhead by aggressively using mmap. However, FlashGraph
performs relatively better in PR, since it adopts selective
scheduling, which omits nodes that have already converged.
It can be seen that the speedup of ExtraV over FlashGraph
for PR is smaller than that of AT. ExtraV performs 2.05×,
2.08×, and 11.2× better than FlashGraph, Llama, and X-
stream, respectively.

The performance of BFS (Breadth-First Search) is dis-
played in Figure 9. Out of the four benchmark algorithms,
ExtraV shows the least speedup for BFS. It still outperforms
4.27× over Llama and 14.9× over X-stream. On the other
hand, its speedup over FlashGraph for BFS is 1.84×, which
is still significant, but far less than those of other algorithms.

What ExtraV is not good at is accessing partial graphs.
Even though it provides partial access methods with job
queue queries and filtering options, it still suffers from fre-
quent flushes of stream buffers, which slows down the traver-
sal. BFS often requires traversal of significantly large por-
tions of the graphs called frontiers, usually less than a quarter
of the entire graph [32]. To traverse in such a way, some

1714

0

500

1000

1500

Twit Frnd MS GSH

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)

No opt +SB +SB+Pref

Figure 11: Performance effects of stream buffers and
prefetching.

performance is lost during the flushing of stream buffers (as
in twitter) or round-trip between CPU and accelerator for
frequent streaming queries (as in gsh-tpd). With selective
scheduling in FlashGraph, the time to traverse a partial
graph is almost proportional to the ratio of the partial graph
to the entire graph, explaining the reduction in speedup.

In Figure 10, execution times for CC (connected compo-
nents) is shown. In CC, each vertex propagates its vertex
index, and the neighbors record the smallest as their com-
ponent index. When a vertex does not get an update, it
does not propagate its component index in the next itera-
tion. ExtraV starts with sequential streaming query since
all vertices have to participate in the propagation in the
beginning. When the number of updated vertices decreases
below a threshold, it changes to the usage of job-queue query
and processes the remaining small set of vertices. ExtraV
runs 2.87× faster than FlashGraph, 2.34× than Llama, and
28.2× than X-stream on the Twitter graph. CC also re-
quires partial traversals in later iterations, but the speedup
of ExtraV is huge, unlike BFS. Because the CC algorithm
runs asynchronously, the behavior of each iteration is not
deterministic, and it can vary greatly depending on the pro-
gramming model. FlashGraph makes use of selective vertex
scheduling to skip some vertices during execution. While this
can reduce the number of vertices to access, on the opposite
side, it slows down the convergence speed. As a result, the
impact of slow convergence is larger and FlashGraph runs
significantly slower despite the use of selective scheduling.

6.4 Optimizations
Figure 11 displays the effect of using optimization tech-

niques. The performance numbers were measured using
PageRank with multiple optimization combinations. The
white bars represent the performance of ExtraV where the
worker modules lack stream buffers. The light-gray bars rep-
resent the performance when the stream buffers are added
to the pipeline but the prefetching is not used, and the dark-
gray bars represent the performance with both the stream
buffers and prefetching. Without stream buffers, workers
rely on the PSL cache to access data outside the FPGA.

Even though the PSL cache has a 256KB capacity, sharing
it among multiple worker modules incurs frequent conflicts,
resulting in an inefficient use of the cache. Moreover, the
latency of the PSL cache from the AFU is around 120 ns [3],
which translates to 15 cycles at 125 MHz every time a worker
module reads a word. As a result, ExtraV’s accelerator
without stream buffers suffers almost a 10× slowdown.

To hide the latency of storage devices, software-based
frameworks usually rely on highly parallel I/O requests,
either by using custom file systems [53] or multiple worker

0.9

1

1.1

1.2

1.3

0 20 40 60 80 100

N
or

m
. E

xe
cu

tio
n

Ti
m

e
(S

ec
.)

Levels

PR BFS Size

Figure 12: Multi-version traversal performance.

threads [41]. ExtraV employs 16 worker modules, but it’s
not enough to draw the full bandwidth from the storage
without prefetching techniques. With the prefetching, the
performance rises up to almost three times.

6.5 Multi-version Performance
To see the scalability of multi-version traversal perfor-

mance, we divided Friendster dataset into 100 versions. We
took 90% of the edges at the base version, and the rest of the
edges were randomly distributed into the remaining versions.
Figure 12 shows the performance trend.

The results show about 0.18% latency increase per version
for PageRank and 0.15% for BFS, indicating some overhead
in addition to the size of added edges. The overhead from the
increasing the number of versions comes from flushing the
stream buffers. When traversing a single-versioned graph,
the edges in a single array are accessed in order even though
there may be jumps between accesses due to partial traversals.
On a multi-versioned graph, accesses to edges in each version
would still be sequential, but as a whole it would exhibit
a random access pattern. It also explains the difference
between BFS and PageRank. BFS uses partial traversal
more often, and slowdowns from the stream buffer flushes
are already happening at version 0. One could mitigate this
by having a separate stream buffer for each version, but it
would require significant more resources and problem is still
there if the number of versions exceed that of the stream
buffers. We plan to address this issue in future work.

6.6 Compression Ratio
The compression ratio is the most critical factor that deter-

mines the speedup of ExtraV. Table 6 shows the compression
ratios of various graphs. To show that our scheme works on
a broad range of graphs, we include a few additional datasets.
The uncompressed size is measured in the CSR format, and
the compressed size includes both the vertex table and the
compressed edge list. Graphs from the web usually show high
compression ratios, arabic-2002 being the best with 9.36×.
This comes from the fact that the vertices from web graphs
often have continuously labeled vertices as their neighbors.
The Gsh-tpd graph shows a smaller compression ratio than
other web graphs. The reason is that the edges of Gsh-tpd
graph are not densely packed together since it is not lim-
ited to a certain subdomain and covers a much wider area.
The differences of vertex indices could be larger and there
is less chance of having intervals or small differences within
neighbor lists. Social network and citations graphs, on the
other hand, show even lower compression ratios. They show
less regularity, and the edges span over an even wider range.
Livejournal shows the best compression ratio among them
with 2.70×, while Twitter, Friendster and MS-ref shows a

1715

Graph Type #Vertices #Edges Uncompressed Compressed Ratio
Gsh-tpd [14] Web crawl 30,809,122 602,119,716 9.89GB 2.47GB 4.00×
uk-2005 [14] Subdomain Web 39,459,925 936,364,282 15.8GB 1.71GB 9.24×

arabic-2002 [14] Subdomain Web 22,744,282 639,999,458 10.2GB 1.09GB 9.36×
Twitter [36] Social Network 41,652,230 1,468,365,182 23.7GB 9.8GB 2.41×

Friendster [50] Social Network 124,836,180 1,806,067,135 30.6GB 13.8GB 2.22×
Livejournal [8] Social Network 4,847,571 68,993,773 1.23GB 456MB 2.70×

MS-ref [7] Citations 46,742,304 528,682,289 9.27GB 4.40GB 2.10×
Road-TX [8] Road Network 1,379,917 1,921,660 102MB 54MB 1.89×
Road-CA [8] Road Network 1,965,206 2,766,607 145MB 76MB 1.90×

Table 6: Compression Ratio of Various Graph Datasets

little over 2×. Vertices in the road networks are physically
limited in 2D spaces and have small degrees ranging from 3
to 5. Thus there is relatively small room to compress and
the ratio is around 1.9× for both networks.

7. CONCLUSION
In this paper, we propose the ExtraV system that uses a

coherent hardware accelerator to gain significant speedup
with near-storage processing. Our ExtraV significantly im-
proves the performance of out-of-memory graph processing,
thereby closing the gap towards in-memory graph processing.
Common graph processing functions are implemented and
executed on the AFU (Accelerator Functional Unit) in front
of the storage device, while more application specific tasks
are implemented as software that runs on the host processor
for flexibility. The key technique in ExtraV is the graph vir-
tualization programming model. Using streaming queries, it
provides the program running on the host processor with an
abstraction that the entire graph dataset resides in memory.
To mitigate the fundamental limit of storage bandwidth, an
expand-and-filter scheme is applied to graph traversal, which
processes the graph data, filters them, and feeds only desired
results back to the host processor. Multi-version traversal is
also processed by the AFU to provide access to past states
and easy modifications.

Our ExtraV system is prototyped on a CAPI-enabled
POWER8 processor with a Xilinx Ultrascale FPGA accel-
erator card. The accelerator functions are designed and
implemented using a high-level synthesis flow. System per-
formance results on multiple graph algorithms and datasets
indicate that the ExtraV system gains significant speedup
compared to software based state-of-the art implementations.

8. REFERENCES
[1] Adm-pcie-ku3. http://www.alpha-

data.com/dcp/products.php?product=adm-pcie-ku3.

[2] Capi-streaming-framework.
https://github.com/mbrobbel/capi-streaming-
framework.

[3] Coherent accelerator processor interface frequently
asked questions.
https://www.ibm.com/developerworks/community/
files/basic/anonymous/api/library/88b7bb80-c4f6-
4f85-86af-92b8a44af584/document/c7d4e29d-cff7-
45c8-a27c-370a1e07c361/media.

[4] The data explosion in 2014 minute by minute -
infographic. http://aci.info/2014/07/12/the-data-
explosion-in-2014-minute-by-minute-infographic/.

[5] IBM POWER system S824L. http://www-
03.ibm.com/systems/power/hardware/s824l/specs.html.

[6] ICCAD 2014 workshop: Heterogeneous computing
platforms (HCP). https://iccad.com/sites/2013.iccad.
com/files/files/hcp14-final-program.pdf.

[7] Microsoft academic graph. https://academicgraph.blob.
core.windows.net/graph/index.html.

[8] Stanford large network dataset collection.
https://snap.stanford.edu/data/index.html.

[9] Vivado Design Suite.
https://www.xilinx.com/products/design-
tools/vivado.html.

[10] Vivado High-Level Synthesis.
http://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html.

[11] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A
scalable processing-in-memory accelerator for parallel
graph processing. In ISCA, pages 105–117, 2015.

[12] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-enabled
instructions: a low-overhead, locality-aware
processing-in-memory architecture. In ISCA, pages
336–348. IEEE, 2015.

[13] S. Beamer, K. Asanovic, and D. Patterson.
Direction-optimizing breadth-first search. In SC, pages
1–10, 2012.

[14] P. Boldi, A. Marino, M. Santini, and S. Vigna.
BUbiNG: Massive crawling for the masses. In WWW,
pages 227–228, 2014.

[15] P. Boldi and S. Vigna. The Webgraph framework I:
Compression techniques. In WWW, pages 595–602,
2004.

[16] M. H. Brad Brech, Juan Rubio. IBM data engine for
NoSQL. IBM White Paper, 2014.

[17] U. Brandes. A faster algorithm for betweenness
centrality. Journal of Mathematical Sociology,
25:163–177, 2001.

[18] S. Brin and L. Page. Reprint of: The anatomy of a
large-scale hypertextual web search engine. Computer
networks, 56(18):3825–3833, 2012.

[19] M. Ceriani, S. Secchi, O. Villa, A. Tumeo, and
G. Palermo. Exploring efficient hardware support for
applications with irregular memory patterns on
multinode manycore architectures. Parallel and
Distributed Systems, IEEE Transactions on,
PP(99):1–1, 2014.

[20] F. Chierichetti, R. Kumar, S. Lattanzi,
M. Mitzenmacher, A. Panconesi, and P. Raghavan. On
compressing social networks. In KDD, pages 219–228,
2009.

[21] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

1716

[22] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and
D. J. DeWitt. Query processing on smart SSDs:
Opportunities and challenges. In SIGMOD, pages
1221–1230, 2013.

[23] H. Giefers, R. Polig, and C. Hagleitner. Accelerating
arithmetic kernels with coherent attached FPGA
coprocessors. In DATE, pages 1072–1077, 2015.

[24] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30,
2012.

[25] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon,
J.-U. Kang, M. Kwon, C. Yoon, S. Cho, J. Jeong, and
D. Chang. Biscuit: A framework for near-data
processing of big data workloads. In ISCA, ISCA ’16,
pages 153–165, Piscataway, NJ, USA, 2016. IEEE
Press.

[26] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G.
Friedman. AC-DIMM: Associative computing with
STT-MRAM. In ISCA, pages 189–200, New York, NY,
USA, 2013. ACM.

[27] P. K. Gupta. Xeon+ FPGA platform for the data
center. In CARL, 2015.

[28] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and
M. Martonosi. Graphicionado: A high-performance and
energy-efficient accelerator for graph analytics. In
MICRO, pages 1–13, 2016.

[29] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim,
J. Kim, and H. Yu. TurboGraph: A fast parallel graph
engine handling billion-scale graphs in a single PC. In
KDD, pages 77–85, 2013.

[30] P. Harish and P. Narayanan. Accelerating large graph
algorithms on the GPU using CUDA. In HiPC, pages
197–208. 2007.

[31] S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt,
M. Verstraaten, and H. Chafi. PGX.D: A fast
distributed graph processing engine. In SC, pages
58:1–58:12, 2015.

[32] S. Hong, T. Oguntebi, and K. Olukotun. Efficient
parallel graph exploration on multi-core CPU and
GPU. In PACT, pages 78–88, 2011.

[33] S. Hong, S. Salihoglu, J. Widom, and K. Olukotun.
Simplifying scalable graph processing with a
domain-specific language. In CGO, pages
208:208–208:218, New York, NY, USA, 2014. ACM.

[34] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn,
M. King, S. Xu, and Arvind. Bluedbm: An appliance
for big data analytics. In ISCA, pages 1–13, New York,
NY, USA, 2015. ACM.

[35] U. Kang, C. Tsourakakis, and C. Faloutsos. PEGASUS:
A peta-scale graph mining system implementation and
observations. In ICDM, pages 229–238, 2009.

[36] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW,
pages 591–600, 2010.

[37] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale graph computation on just a PC. In OSDI,
pages 31–46, 2012.

[38] J. Lee, J. H. Ahn, and K. Choi. Buffered compares:
Excavating the hidden parallelism inside DRAM
architectures with lightweight logic. In DATE, pages

1243–1248, March 2016.

[39] J. Lee, J. Chung, J. H. Ahn, and K. Choi. Excavating
the hidden parallelism inside dram architectures with
buffered compares. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Preprint, 2017.

[40] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: A framework for machine learning and data
mining in the cloud. VLDB, 5(8):716–727, Apr. 2012.

[41] P. Macko, V. Marathe, D. Margo, and M. Seltzer.
Llama: Efficient graph analytics using large
multiversioned arrays. In ICDE, pages 363–374, 2015.

[42] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[43] K. Nilakant, V. Dalibard, A. Roy, and E. Yoneki.
PrefEdge: SSD prefetcher for large-scale graph
traversal. In SYSTOR, pages 4:1–4:12, 2014.

[44] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth,
S. Burns, and O. Ozturk. Energy efficient architecture
for graph analytics accelerators. In ISCA, pages
166–177, 2016.

[45] B. Przybus. Xilinx redefines power, performance, and
design productivity with three new 28 nm FPGA
families: Virtex-7, Kintex-7, and Artix-7 devices. Xilinx
White Paper, 2010.

[46] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream:
Edge-centric graph processing using streaming
partitions. In SOSP, pages 472–488, 2013.

[47] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker,
A. De, Y. Jin, Y. Liu, and S. Swanson. Willow: a
user-programmable ssd. In OSDI, pages 67–80, 2014.

[48] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel. CAPI:
A coherent accelerator processor interface. IBM Journal
of Research and Development, 59(1):7:1–7:7, Jan 2015.

[49] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

[50] J. Yang and J. Leskovec. Defining and evaluating
network communities based on ground-truth. In ICDM,
pages 745–754, 2012.

[51] P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and K. Lee.
Fast iterative graph computation: A path centric
approach. In SC, pages 401–412, 2014.

[52] D. Zhang, N. Jayasena, A. Lyashevsky, J. L.
Greathouse, L. Xu, and M. Ignatowski. TOP-PIM:
Throughput-oriented programmable processing in
memory. In HPDC, pages 85–98, 2014.

[53] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.
Priebe, and A. S. Szalay. FlashGraph: Processing
billion-node graphs on an array of commodity SSDs. In
FAST, pages 45–58, 2015.

[54] X. Zhu and Z. Ghahramani. Learning from labeled and
unlabeled data with label propagation. Technical
Report CMU-CALD-02-107, Carnegie Mellon
University, 2002.

[55] X. Zhu, W. Han, and W. Chen. GridGraph:
Large-scale graph processing on a single machine using
2-level hierarchical partitioning. In USENIX ATC,
pages 375–386, 2015.

1717

