
PaxosStore:
Highavailability Storage Made Practical in WeChat

Jianjun Zheng† Qian Lin§†
∗

Jiatao Xu† Cheng Wei†

Chuwei Zeng† Pingan Yang† Yunfan Zhang†

†Tencent Inc. §National University of Singapore

†{rockzheng, sunnyxu, dengoswei, eddyzeng, ypaapyyang, ifanzhang}@tencent.com
§linqian@comp.nus.edu.sg

ABSTRACT

In this paper, we present PaxosStore, a high-availability stor-
age system developed to support the comprehensive busi-
ness of WeChat. It employs a combinational design in the
storage layer to engage multiple storage engines constructed
for different storage models. PaxosStore is characteristic of
extracting the Paxos-based distributed consensus protocol
as a middleware that is universally accessible to the under-
lying multi-model storage engines. This facilitates tuning,
maintaining, scaling and extending the storage engines. Ac-
cording to our experience in engineering practice, to achieve
a practical consistent read/write protocol is far more com-
plex than its theory. To tackle such engineering complex-
ity, we propose a layered design of the Paxos-based stor-
age protocol stack, where PaxosLog, the key data structure
used in the protocol, is devised to bridge the programming-
oriented consistent read/write to the storage-oriented Paxos
procedure. Additionally, we present optimizations based
on Paxos that made fault-tolerance more efficient. Discus-
sion throughout the paper primarily focuses on pragmatic
solutions that could be insightful for building practical dis-
tributed storage systems.

1. INTRODUCTION
WeChat is one of the most popular mobile apps with 700

million active users per day. Services provided by WeChat
include instant messaging, social networking, mobile pay-
ment, third-party authorization, etc. The comprehensive
business of WeChat is supported by its backend which con-
sists of many functional components developed by different
teams. In spite of the diversity of business logic, most of
the backend components require reliable storage to support

∗Part of this work was done while Qian Lin was an intern
at Tencent.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 21508097/17/08.

their implementation. Initially, each development team ran-
domly adopts off-the-shelf storage systems to prototype the
individual component. However, in production, the wide
variety of fragmented storage systems not only costs great
effort for system maintenance, but also renders these sys-
tems hard to scale. This calls for a universal storage system
to serve the variety of WeChat business, and PaxosStore is
the second generation1 of such storage system in WeChat
production.

The following requirements regarding storage service are
common among WeChat business components. First, the
well-known three V’s of big data (volume, velocity, variety)
are a real presence. On average, about 1.5 TB data are gen-
erated per day carrying assorted types of content including
text messages, images, audios, videos, financial transactions,
posts of social networking, etc. Application queries are is-
sued at the rate of tens of thousands queries per second in
the daytime. In particular, single-record accesses dominate
the system usage. Second, high availability is the first-class
citizen regarding the storage service. Most applications de-
pend on PaxosStore for their implementation (e.g., point-to-
point messaging, group messaging, browsing social network-
ing posts). Availability is critical to user experience. Most
applications in WeChat require the latency overhead in Pax-
osStore to be less than 20 ms. Such latency requirement
needs to be met at the urban scale.

Along with building PaxosStore to provide high-availability
storage service, we face the following challenges:

• Effective and efficient consensus guarantee. At
the core, PaxosStore uses the Paxos algorithm [19] to
handle consensus. Although the original Paxos proto-
col theoretically offers the consensus guarantee, its im-
plementation complexity (e.g., the sophisticated state
machines needs to be maintained and traced properly)
as well as the runtime overhead (e.g., bandwidth for
synchronization) render it inadequate to support the
comprehensive WeChat services.

• Elasticity and low latency. PaxosStore is required
to support low-latency read/write at the urban scale.
Load surge needs to be handled properly at runtime.

• Automatic cross-datacenter fault-tolerance. In
WeChat production, PaxosStore is deployed over thou-

1The first generation of WeChat storage system was based
on the quorum protocol (NWR).

1730

sands of commodity servers across multiple datacenters
all over the world. Hardware failure and network out-
age are not rare in such large-scale system. The fault-
tolerant scheme should support effective failure detec-
tion and recovery without impacting the overall effi-
ciency of system.

PaxosStore is designed and implemented as the practical
solution of high-availability storage in the WeChat backend.
It employs a combinational design in the storage layer to en-
gage multiple storage engines constructed for different stor-
age models. PaxosStore is characteristic of extracting the
Paxos-based distributed consensus protocol as a middleware
that is universally accessible to the underlying multi-model
storage engines. The Paxos-based storage protocol is exten-
sible to support assorted data structures with respect to the
programming model exposed to the applications. Moreover,
PaxosStore adopts the leaseless design, which benefits im-
proved system availability along with fault-tolerance.

The key contributions of this paper are summarized as
follows:

• We present the design of PaxosStore, with emphasis on
the construction of the consistent read/write protocol
as well as how it functions. By decoupling the consen-
sus protocol from the storage layer, PaxosStore can sup-
port multiple storage engines constructed for different
storage models with high scalability.

• Based on the design of PaxosStore, we further present
the fault-tolerant scheme and the details about data
recovery. The described techniques have been fully ap-
plied in a real large-scale production environment, en-
abling PaxosStore to achieve 99.9999% availability2 for
all the production applications of WeChat.

• PaxosStore has been serving the ever growing WeChat
business for more than two years. Based on this prac-
tical experience, we discuss design trade-offs as well as
present results of experimental evaluation from our de-
ployment.

The remaining content of this paper is organized as fol-
lows. We first present the detailed design and architec-
ture of PaxosStore in Section 2, and then describe its fault-
tolerant scheme and data recovery techniques in Section 3.
We discuss the key points of PaxosStore implementation in
Section 4. In Section 5, we conduct a performance study of
PaxosStore and collect measurements from the running sys-
tem. We discuss related research in Section 6, and finally
conclude the paper as well as list the lessons learned from
building PaxosStore in Section 7.

2. DESIGN

2.1 Overall Architecture
Figure 1 illustrates the overall architecture of PaxosStore

which comprises three layers. The programming model pro-
vides diverse data structures exposed to the external appli-
cations. The consensus layer implements the Paxos-based
storage protocol. The storage layer consists of multiple stor-
age engines implemented based on different storage models
to fulfill various kinds of performance requirements. The ar-
chitecture of PaxosStore differs from the traditional design

2Such result comes from the statistics for six months of op-
erating data.

Paxos based Storage Protocol

Key Value Table Queue Set

Programming

Model

Storage

Layer

Consensus

Layer

Application Clients

... ...

Bitcask Main/Delta
Table

LSM tree

Figure 1: Overall architecture of PaxosStore.

of storage system mainly in that it explicitly extracts the im-
plementation of the consensus protocol as a middleware and
universally provides data consensus guarantee as a service
to all the underlying storage engines.

Conventional distributed storage systems, more often than
not, are built based on their individual single storage model
and tweak the design and implementation to fulfill the vari-
ous application demands. However, these tend to introduce
complicated trade-offs between different components. Al-
though assembling multiple off-the-shelf storage systems to
form a comprehensive system can meet the diversity of stor-
age requirements, it usually makes the entire system difficult
to maintain and less scalable. Moreover, each storage sys-
tem embeds its implementation of data consensus protocol
into the storage model, and the consequential divide-and-
conquer approach for consensus could be error-prone. This
is because the consensus guarantee of the overall system is
determined by the conjunction of consensus achievements
provided by the individual subsystems. Furthermore, appli-
cations with cross-model data accesses (i.e., across multiple
storage subsystems) can hardly leverage any consensus sup-
port from the underlying subsystems, but have to separately
implement the consensus protocol for such cross-model sce-
nario by their own.

PaxosStore applies a combinational storage design such
that multiple storage models are implemented in the storage
layer with the only engineering concern of high availability,
leaving alone the consensus concern to the consensus layer.
This facilitates each storage engine as well as the entire stor-
age layer to scale on demand. As the implementation of the
consensus protocol is decoupled from the storage engines,
universal service of providing data consensus guarantee can
be shared among all the supported storage models. This
also makes the consensus of cross-model data accesses easy
to achieve.

While the design and implementation of the programming
model layer are straightforward in terms of engineering, in
this section, we mainly present the detailed design of the
consensus layer and storage layer of PaxosStore.

2.2 Consensus Layer
The distributed storage protocol stack of PaxosStore con-

sists of three bottom-up layers as shown in Figure 2.

2.2.1 Paxos

The storage protocol relies on the Paxos algorithm [19]
to determine the value of data object that is replicated over

1731

Consistent Read/Write

Data access based on PaxosLog

PaxosLog

Each log entry is determined by Paxos

Paxos

Determining value with consensus

Figure 2: Storage protocol stack.

multiple nodes. In theory, a Paxos procedure contains two
phases in sequence: the prepare phase for making a pre-
liminary agreement, and the accept phase for reaching the
eventual consensus. By convention, the Paxos procedure
is depicted using state machines. However, the excessive
states and complicated transitions not only defeat elegant
implementation but also lead to low-performance runtime.

In the development of PaxosStore, we deprecate the state
machine based Paxos interpretation, and alternatively in-
terpret the Paxos procedure using semi-symmetry message

passing. To this end, we first define symbols that are essen-
tial for our algorithmic interpretation. We define a proposal
P as

P = (n, v)

where n is the proposal number and v is the proposal value.
Let NX denote a node whose node ID is X. Let r be a

data record and rX be the r replica at node NX . Let SX

Y be
the state of rY from the view of NX , and it is defined as

S
X

Y = (m, P)

where m is the least proposal number that rY promises to
accept, and P is the latest proposal that rY has accepted.
In other words, any proposal with n < m will be rejected
by rY . Specially, we term SX

Y (X 6= Y) the view state and
SX

X the actual state. Note that the view states and the
actual state of a data replica could be different under certain
situations, and synchronization of the states relies on the
Paxos procedure [19].

In PaxosStore, consensus between data replicas is achieved
by mutually exchanging the view states and the actual states,
and the corresponding message MX→Y sending from NX to
NY is defined as

MX→Y =
{

S
X

X , S
X

Y

}

That is, node NX sends the actual state of rX and its view
state of rY to node NY . Unlike other Paxos implementations
which employ many types of messages, PaxosStore uses a
universal message format as defined above in its Paxos im-
plementation.

Algorithm 1 summarizes the Paxos implementation in Pax-
osStore. Initially, when a node (e.g., NA) receives a write
request, it starts the prepare phase by invoking Issue(mi)

where mi is a node-specific intention proposal number. NA

pushes the actual state of rA and its view state of rX to
each remote node NX . Whenever a node (including NA)
receives a message, the function OnMessage() will be in-
voked to update the local states with respect to the actual
state of remote replica contained in the received message
(i.e., UpdateStates()). Apart from the conditional update

Algorithm 1: Paxos implementation in PaxosStore.

Input: intention proposal number mi

1: Procedure Issue(mi): /* invoked at NA */
2: SA

A
← actual state of rA

3: if SA

A
.m < mi then

4: SA

A
.m← mi

5: write SA

A
to the PaxosLog entry of rA

6: foreach remote replica node NX do

7: send MA→X

Input: proposal Pi with Pi.n = mi

8: Procedure Issue(Pi): /* invoked at NA */
9: SA

A
← actual state of rA

10: SA ← all the states of r maintained at NA

11: if
∣

∣

{

∀SA

X
∈ SA | SA

X
.m = Pi.n

}∣

∣× 2 >
∣

∣SA
∣

∣ then

12: if
∣

∣

{

∀SA

X
∈ SA | SA

X
.P.v 6= null

}∣

∣ > 0 then

13: P ′ ← the proposal with maximum P.n in SA

14: SA

A
.P ← (Pi.n, P ′.v)

15: else

16: SA

A
.P ← Pi

17: write SA

A
to the PaxosLog entry of rA

18: foreach remote replica node NX do

19: send MA→X

Input: message MX→Y sent from NX to NY

20: Procedure OnMessage(MX→Y): /* invoked at NY */
21: SX

X
, SX

Y
← MX→Y

22: UpdateStates(Y , SX

X
)

23: if SY

Y
is changed then

24: write SY

Y
to the PaxosLog entry of rY

25: if IsValueChosen(Y) is true then commit

26: if SX

Y
.m < SY

Y
.m or SX

Y
.P.n < SY

Y
.P.n then

27: send MY →X

Input: node ID Y , actual state SX

X
of rX

28: Function UpdateStates(Y , SX

X
): /* invoked at NY */

29: SY

X
← view state of rX stored in NY

30: SY

Y
← actual state of rY

31: if SY

X
.m < SX

X
.m then SY

X
.m← SX

X
.m

32: if SY

X
.P.n < SX

X
.P.n then SY

X
.P ← SX

X
.P

33: if SY

Y
.m < SX

X
.m then SY

Y
.m← SX

X
.m

34: if SY

Y
.m ≤ SX

X
.P.n then SY

Y
.P ← SX

X
.P

Input: node ID Y

Output: whether the proposals in NY form a majority
35: Function IsValueChosen(Y): /* invoked at NY */
36: SY ← all the states of r maintained at NY

37: n′ ← occurrence count of the most frequent P.n in SY

38: return n′ × 2 >
∣

∣SY
∣

∣

of states, the OnMessage() routine involves checking whether
the proposal value can be chosen based on the criterion of
reaching the majority (i.e., IsValueChosen()). In addition,
the receiver node will send back its states if any local state
update is found to be newer. Note that NA counts for a
timeout to check whether the proposing mi reaches the ma-
jority. If the majority cannot be reached within the time-

1732

Entry EntryPaxosLog

Request

ID

Timestamp
(16 bits)

Request Seq.
(16 bits)

Client ID
(32 bits)

Promise

No.

Entry

Proposal

No.
Value

Proposer

ID

Figure 3: The PaxosLog structure.

out, NA will invoke Issue(mi) again to restart the Paxos
procedure with a larger mi. Only after the majority of
the proposing mi is reached before timeout, NA will invoke
Issue(Pi) to start the accept phase with the proposal Pi,
where Pi.n = mi is held and Pi.v is the value given by the
write request. Subsequently, the same process of state ex-
change through message passing operates until the majority
condition is satisfied (i.e., chosen).

As can be seen, the uniform processing routine (i.e., per-
formed by OnMessage()) with respect to the identical for-
mat of messages autonomously drives the Paxos procedure
to operate till consensus reached. This not only simplifies
the Paxos implementation but also benefits the locality of
message processing. In PaxosStore, the Paxos protocol de-
picted as Algorithm 1 is implemented in about 800 lines of
C++ code, with robustness proven by its successful deploy-
ment in WeChat production.

2.2.2 PaxosLog

PaxosLog serves as the write-ahead log [3] for data up-
date in PaxosStore. Figure 3 shows the data structure of
PaxosLog, where each log entry is determined by the Paxos
algorithm and indexed by an immutable sequence number,
namely entry ID, that increases monotonically within the
PaxosLog. The maximal entry ID of a PaxosLog entry that
has been applied to the physical storage represents the ver-
sion of the associated data replica. Conceptually, a Pax-
osLog instance could accommodate infinite amount of log en-
tries that are generated along with the Paxos procedures. In
practice, obsolete log entries are asynchronously evicted by
following the LRU policy. Apart from the data value, each
PaxosLog entry contains the Paxos-related meta data of the
promise number m and the proposal number n, which are
used for the Paxos procedure as discussed in Section 2.2.1
but discarded once the log entry is finalized (marked by
dashed boxes, indicating the mutability and volatility). In
addition, as multiple replica hosts of the same data may
issue write requests simultaneously but only one of these re-
quests will be eventually accepted, a proposer ID is attached
to each chosen value to indicate the value proposer. The
proposer ID is a 32-bit machine ID that uniquely identifies
a node in the datacenter. It is used for the pre-preparing

optimization [2] where the current write can skip the pre-
pare/promise phase if it shares the same origin of request
with the previous write, in anticipation of the locality of
write requests. Moreover, a request ID is constructed to
uniquely identify the write request associated with the data
value. It is used for preventing duplicated Paxos procedures
caused by false positive of failover (details are discussed in
Section 3.3). Specifically, a request ID consists of three seg-

� � 1 � ! 1 � ! 2 ⋯

#

PaxosLog

Data Object
Pending

Chosen

Figure 4: PaxosLog + Data object.

���� !

PaxosLog

Data Key

Figure 5: PaxosLog-as-value for key-value storage.

ment fields: a 32-bit client ID (e.g., IPv4 address) identify-
ing the external client that issued the write request, a 16-bit
timestamp in seconds assigned by the client’s local clock for
rough time reference, and a 16-bit sequence number assigned
by the client’s request counter for distinguishing the write
requests within the same second.

According to the mechanism of write-ahead log for data
update [3], the PaxosLog entry must be settled before the
corresponding value change is materialized to the storage. In
general, the PaxosLog storage and the data object storage
are separated, as shown in Figure 4. Consequently, for each
data update, two write I/Os need to be completed in ordered:
one for writing the PaxosLog entry, followed by the other one
for updating the data object.

PaxosLog for Key-Value Data. Considering the key-
value storage, we make two optimizations to simplify the
construction and manipulation of PaxosLog.

First, we cancel out the data value storage and make key-
value access through PaxosLog instead, namely PaxosLog-

as-value. In the Paxos-based key-value storage, one data
key is mapped to one data value and associated with one
PaxosLog. Such one-to-one mapping renders storing both
the PaxosLog entry and the data value redundant, as each
PaxosLog entry already contains the entire image of data
object (i.e., the single data value). Therefore, we can refer to
the PaxosLog entry for the data value and get rid of storing
the data value separately. This makes only one write I/O
(i.e., to PaxosLog only) for every key-value update and thus
saves the I/O bandwidth.

Second, we trim the PaxosLog for key-value data by re-
taining two log entries only: one is the latest chosen log
entry, and the other is the pending log entry with respect
to the ongoing Paxos procedure. In other words, log entries
older than the latest chosen one are considered obsolete and
therefore can be thrown away. The resulting PaxosLog struc-
ture is illustrated in Figure 5. As can be seen, PaxosLog for
key-value data becomes compact and of constant length, i.e.,
only two entries are maintained in each PaxosLog. Since the
PaxosLog does not grow in size, memory and disk space al-
location for PaxosLog along with data updates can be elim-
inated, yielding storage and computation resources. More-
over, key-value data recovery can be simplified and conse-
quently efficient. As the latest chosen PaxosLog entry con-
tains the entire image of data object (i.e., the data value),

1733

PaxosLog of

Status of : version , with

PaxosLog entry pending

PaxosLog of

Status of : version , with

PaxosLog entry pending

PaxosLog of

Status of : version

Read

Figure 6: Sample scenario of read processing in Pax-
osStore.

it can be referred to for the recovery of data value when
failure happens. In contrast, data recovery of normal data
object needs to redo all the historical log entries since the
last checkpoint maintained in the general PaxosLog (i.e., as
shown in Figure 4), especially for collection-oriented data
structures such as list, queue and set.

2.2.3 Consistent Read/Write

PaxosStore is designed as a multi-homed system [13] that
runs actively on multiple datacenters around the clock, and
meanwhile employs the Paxos protocol for operational con-
sensus in a leaseless fashion, i.e., each node can handle
data updates equally3. Specifically, each data access (i.e.,
read/write) is constantly processed through the cooperation
of all its replica nodes and relies on the PaxosLog to achieve
strong consistency of data.

Consistent Read. Consistent read depends the criterion
of returning the value of data replica with the maximum
version that necessarily reaches the majority among all the
related replicas. In other words, for a data object r, system
reads its value from any of the up-to-date r replicas and
meanwhile these up-to-date replicas are required to domi-
nate the total replicas of r. For data that are read-frequent,
the above criterion tends to be satisfied most of the time,
and thus the corresponding read processing could be very
lightweight with rare failures. Specifically, for a node storing
a replica of data object r, after it receives the read request
on r and figures out the current version of its r replica is i, it
queries all the other replicas whether their PaxosLog entries
of entry ID i + 1 are inactive, i.e., either absent or P.n = 0
if entry does exist. If the majority of the i + 1 PaxosLog
entries are inactive, then the node can immediately respond
to the read request with its r replica of version i.

Read fails if the up-to-date replica version cannot account
for the majority, especially when data contention is high. In
particular, data replicas may be in asynchronous states due
to the ongoing Paxos procedure when the read request is
processed. For example, in Figure 6, a read request on data
object r is being processed while its replicas residing in nodes
NA, NB and NC are being updated as per another write re-
quest on r. Specially, the three replicas rA, rB and rC are
all of version i, but both rA and rB have PaxosLog entries
with entry ID i + 1 corresponding to the in-progress Paxos
procedure for the write request. As a consequence, whether
version i is the latest valid version cannot be determined
from the majority since some i + 1 PaxosLog entry may be

3In contrast, lease-based Paxos systems only allow those
elected leader nodes with time-based leases to issue the
Paxos procedure. Leader election is performed periodically,
or bypassed if lease renewal is granted to the same leader.

chosen but not detected. To address this issue, an immedi-
ate approach is to query all the replica versions through a
trial Paxos procedure issued with mi = i+1. The trial Paxos
procedure does not correspond to any substantive write op-
eration, i.e., leaving P.v to be a blank no-op value. If the
trial Paxos procedure completes with success, all the i + 1
PaxosLog entries of r replicas are inferred to be inactive, and
thus version i is validated to be up-to-date. Using the trial
Paxos procedure to resolve the ambiguity due to read-write
contention can guarantee strong-consistency read operations
in PaxosStore.

Consistent Write. Consistent write relies on the Paxos
procedure as described in Algorithm 1. Although Paxos
guarantees the consensus once reached, its liveness could
be an issue—it may not terminate in some cases due to
write-write contention. To tackle the problem of livelock,
PaxosStore pessimistically prevents different replicas of the
same data from issuing Paxos procedures simultaneously. To
this end, when a replica receives a Paxos message sent from
a remote replica indicating an ongoing Paxos procedure, a
time window is set to the local replica such that the replica
promises not to issue any concurrent Paxos procedure within
the time window. In other words, succeeding write requests
to the replica will be postponed for its processing till the
expiry of the time window. This is in anticipation of the
processing of the preceding write request completed within
the time window.

Towards performance gain in practice, PaxosStore fur-
ther enforces a constraint such that only the prespecified
replica nodes (e.g., NA and NB but not NC) can process
the read/write requests. Therefore, only those prespecified
replicas need to be checked for their versions and status.
Moreover, those unspecified replica nodes (e.g., NC) apply
the chosen PaxosLog entries to the physical storage in a
batch manner, rather than applying them timely and indi-
vidually. We term this as PaxosLog-entry batched applying.
Note that batching is only performed on log entries belong-
ing to the same PaxosLog. The strategy of PaxosLog-entry
batched applying can effectively reduce the cost of applying
PaxosLog entries to the storage when the workload appears
to be write-frequent.

2.3 Storage Layer
Applications in WeChat production have raised kinds of

data access requirements as well as performance concerns.
After rounds of restructuring our previous generation stor-
age system, we realized that it was essential to support mul-
tiple storage models in the storage layer. This motivates
the design of storage layer of PaxosStore to involve multi-
ple storage engines built based on different storage models.
In particular, Bitcask [31] and LSM-tree [26, 30] are the
two primary models used in PaxosStore. Both models are
designed for key-value storage: the Bitcask model is prefer-
able to point queries, whereas the LSM-tree model is supe-
rior in range queries. We implement all the storage engines
in the storage layer of PaxosStore with the main concerns
of availability, efficiency and scalability, excluding consensus
(as handled by the consensus layer). Extracting the consen-
sus protocol out of the storage layer and making it as a
middleware greatly ease the development, tuning and main-
tenance of storage engines in the storage layer of PaxosStore.
The storage engines can not only be tuned individually but
also work collaboratively so that they support more flexible

1734

@Datacenter 1

@Datacenter 2 @Datacenter 3

Paxos

Paxos Paxos

Figure 7: Sample intra-region deployment of Paxos-
Store, with C = 2.

options to meet the application/business specific demands.
The most frequently used physical data structures4 in Pax-

osStore are key-value pair and relational table. Key-value
storage is naturally supported by the Bitcask and LSM-tree
based engines. Fundamentally, tables in PaxosStore are also
stored as key-value pairs where each table represents a value
and is indexed by a unique key. However, naively storing
tables as normal key-value pairs would cause performance
issue. This is because most of the tables are read-frequent
in reality. In particular, each table usually contains thou-
sands of tuples5, but most of the WeChat applications often
touch only one or two tuples within one-time access. As a
consequence, tables thrashing between disk/SSD and mem-
ory along with read/write operations can degrade system
performance significantly. To address this issue, PaxosStore
adopts the differential update technique [33, 15, 9] to reduce
the overhead of table update. To this end, each table is split
into two meta tables: a read-optimized main-table which
manages the majority data of table, and a write-friendly
delta-table which manages table changes (e.g., update, in-
sertion and deletion) that have been made recently. As a
consequence, table access is through the view of the main-
table with all corresponding differences from the delta-table
combined on-the-fly. Furthermore, in order to keep the delta-
table small (i.e., to retain the write-friendly property), its
containing changes are periodically merged into the main-
table [33].

3. FAULT TOLERANCE AND AVAILABIL

ITY
Hardware failure and network outage are the two main

sources of failure in WeChat production. In particular, with
PaxosStore deployed at the scale of thousands of nodes, the
failure rate of storage nodes is 0.0007 per day on average,
and planned and unplanned network outages happen every
few months.

4Here “physical” refers to the actual storage in the storage
layer. This is to distinguish it from “semantic” data struc-
ture in the programming model. Note that, in PaxosStore,
different semantic data structures may be backed by the
same physical data structure in terms of implementation.
5In WeChat applications, tables are generally created as per
user account.

3.1 Faulttolerant Scheme
As a globally available mobile app, WeChat relies on Pax-

osStore to support its wide accessibility of service with low
latency. In WeChat production, PaxosStore is deployed
across multiple datacenters scattered over the world. Data-
centers are grouped into disjointed sets, each of which con-
sists of three distant datacenters that cover a geographi-
cal region of WeChat service. PaxosStore employs consis-
tent hashing [32] for inter-region data placement. For intra-
region deployment (e.g., in a megalopolis), each of the three
datacenters maintains one replica of every data object hashed
to the region. This infers the replication factor of Paxos-
Store equals 3 under such deployment setting6. Inside a
datacenter, PaxosStore nodes are partitioned into uniform-
size mini-clusters. We define the size of a mini-cluster to be
C. Each mini-cluster in a datacenter is uniquely correlated
to two remote mini-clusters separately hosted by the other
two datacenters. Figure 7 illustrates a sample mini-cluster
group of PaxosStore, where each mini-cluster (denoted by
a dashed box) comprises two nodes (i.e., C = 2). With
such correlation of mini-clusters, PaxosStore enforces data
of one node to be replicated to the two remote mini-clusters
with uniform distribution within each mini-cluster. In other
words, replicas of a data object are distributed over three
distant mini-clusters with node combination randomly cho-
sen under the constraint of the mini-cluster grouping. For
example, in Figure 7, replicas of a data object r could be
placed at nodes NA, NB and NC , while replicas of another
data object r′ belonging to the same mini-cluster group may
be placed at nodes NA, NE and NF . As a consequence, data
hosted by NA are replicated to NB and NE (resp. NC and
NF) evenly, i.e., each of NB and NE (resp. NC and NF)
stores statistically half of the data replicas mirrored to NA.
Similar scheme also applies to other nodes in the same mini-
cluster group.

The above strategy of data replication based on mini-
cluster grouping is to mitigate the burden of instant soaring
workload due to load distribution upon node failure. When a
node fails, its workload in anticipation has to be distributed
over the 2C nodes in the related remote mini-clusters, each
of which takes over about 1/2C of the extra workload. For
example, if NA fails in Figure 7, its workload (i.e., serving
query requests) will be handed over to NB , NC , NE and
NF with each taking about 25% of the load. By doing so,
occurrence of failure tends not to subsequently saturate or
even overload the load receiver for the sake of fault toler-
ance in PaxosStore. Obviously, effectiveness of the above
strategy is affected by the configuration of the mini-cluster
size apart from the replication factor. Although larger C

benefits higher tolerance of load surge, it also degrades the
effectiveness of performing batched network communication,
where a node’s outgoing data with common destination node
are periodically sent in a batch manner. Hence, the choice
of appropriate C is dependent on the trade-off between the
tolerance of load surge and the overhead of inter-node com-
munication.

Under the aforementioned deployment scheme, consistent
read/write operations with fault-tolerant guarantee follow
the Paxos-based mechanism as described in Section 2. By

6Data replication in PaxosStore is constrained within the
region. Network latency between intra-region datacenters is
1 ∼ 3 ms on average.

1735

default, for each data object r, we enforce a constraint such
that all the read/write requests for r are routed to a pre-
specified replica (e.g., at node NA) for processing and only
transferred to another replica (e.g., at NB) if a fault or fail-
ure is detected at NA. Comparing with routing request to
arbitrary replica at random, this strategy can greatly reduce
the write-write conflicts due to contention7.

3.2 Data Recovery
Unlike traditional DBMS synchronously checkpointing the

holistic storage snapshot, checkpointing in PaxosStore is
fine-grained. In fact, checkpointing in PaxosStore is implicit,
as data recovery is based on data version contained in the
PaxosLog or the data image in the persistent storage. To
elaborate, let us suppose a data record r is replicated to
three nodes NA, NB and NC with the corresponding r repli-
cas denoted by rA, rB and rC respectively. Now suppose
node NA fails and later resumes, and r is updated (maybe
multiple times) during the recovery of NA. Note that the
update of r can still be completed in spite of the failure of
NA, because the majority of r replicas (in NB and NC) stay
alive. As a consequence, the version of rA lags behind that
of rB and rC , i.e., rA considered to be obsolete.

In PaxosStore, version of data replica (i.e., the maximal
entry ID of PaxosLog entry that has been applied to the
physical storage) represents a checkpoint. Let ν(r) be the
version of data r. In the above example, suppose ν(rA) = i
and ν(r) = ν(rB) = ν(rC) = j with i < j. Figure 8 demon-
strates the options of data recovery approaches in Paxos-
Store. First, if the PaxosLog of rB (or rC) contains the log
entries of versions from i + 1 to j, then these delta log en-
tries will be sent to NA to synchronize rA up-to-date (i.e.,
to version j). Second, if the above log entries are discarded
in both rB and rC , then rA has to refer to the r image in
NB or NC for its recovery. In particular, for data objects
whose elements are append-only8, we extract the delta up-
dates from rB (or rC) with respect to rA, and send them to
NA to supplement rA, making rA up-to-date. Third, if the
incremental PaxosLog entries are absent and meanwhile no
append-only property of data object can be exploited, then
the whole data image of rB (or rC) will be sent to NA to
replace the obsolete rA. For the special case of key-value
storage, we only need to send the PaxosLog entry of version
j and ignore those log entries of version less than j. This is
because, for key-value data, each PaxosLog entry contains
the entire value of the data object. This further corroborates
the optimization of concise PaxosLog for key-value storage
as described in Section 2.2.2.

The above fine-grained checkpointing scheme further en-
ables autonomous data recovery in case of data replica loss
due to node failure. Specifically, the recovery of data replica
is actualized by the consistent read/write semantics. After a

7For some applications where data are read-frequent and the
access locality is clearly known upfront, we allow each cor-
responding WeChat backend server prioritizes PaxosStore
nodes within the same datacenter for its read accesses to
PaxosStore, and alternatively redirects the read requests
to remote datacenters in case of failure occurring at the
local datacenter. This could save the bandwidth of inter-
datacenter communication to some extent, but may increase
the chance of potential read-write conflict.
8Data insertion is by appending data element to the head of
data object. And the obsolete data elements may be garbage
collected from the tail of data object.

Recover through

PaxosLog

Recover through

delta updates of data image

Recover through

whole data image

Recovery

starts

Incremental

PaxosLog entries

exist?

No

Yes Data object is

append only?

Yes

No

Recovery time decreases

Figure 8: Data recovery approaches in PaxosStore.

failed node is restored to its state before the crash, data repli-
cas contained in the node may be obsolete or even missing.
PaxosStore does not immediately recover the invalid data
replicas upon node recovery, but recover them when the cor-
responding data are subsequently accessed. For each data
access in PaxosStore, the Paxos-based distributed storage
protocol guarantees all the active replicas of a data record
are synchronized to the latest version upon the read/write
operation. We term such recovery strategy lazy recovery.
Let us consider again the aforementioned example with data
r instantiated as three replicas rA, rB and rC where rA is
corrupted at the time of NA just resumed. According to
the lazy recovery, PaxosStore does not recover rA until the
next access to r. In other words, rA will be automatically
recovered to the latest version upon the first access to r after
NA has revived. Lazy recovery guarantees all the replicas
belonging to the same data record are always synchronized
to the up-to-date version as long as the data record can be
successfully read or written. Meanwhile, it amortizes the re-
covery overhead to individual data accesses, leading to the
avoidance of system downtime during data recovery and thus
benefiting high availability of the system.

3.3 Optimizations
Failover Reads. When an abnormal read due to obso-

lete or lost data replica is detected (i.e., for rA), PaxosStore
will trigger an immediate recovery for rA with a time τ dead-
line where τ is configurable in tuning (e.g., shorter than the
promise of specific response time with respect to the appli-
cation). If the recovery completes within τ , the healed rA

is used to respond to the read request. Otherwise, the read
request will be forwarded and handed over by another data
replica (i.e., rB); meanwhile, the recovery of rA continues in
an asynchronous process.

Preventing Duplicated Processing. Duplicated pro-
cessing may occur in subtle cases, most of which are due to
message loss or network delay. Taking a data record r repli-
cated to three nodes NA, NB and NC for example, consider
the following events happening in order:

E1. The client issues a write request of r, which is routed
to NA for processing.

1736

E2. Upon receiving the write request, NA launches a Paxos
procedure for updating r, and send back the response
to the client immediately after the update of r is cho-
sen (i.e., successful completion of the Paxos procedure).
Unfortunately, the response message is delayed in net-
work.

E3. As the client obtains no response within timeout, it
reissues the request by sending it to NB .

E4. As requested, NB runs another Paxos procedure to up-
date r and then informs the client upon the update
completion.

E5. The client eventually receives both response messages
from NA and NB . Meanwhile, r in the storage was
updated twice accordingly.

For non-idempotent operations (e.g., insertion and dele-
tion), duplicated processing could ruin the data. As can
be seen from the above example, the duplicated process-
ing is caused by the unexpected network delay (in E2) and
the consequent false positive of resending the request (in
E3). To address this problem, PaxosStore employs a simple
but practical approach to prevent duplicated processing. It
uses the request ID (as shown in Figure 3 and described in
Section 2.2.2) to filter out duplicated requests at the stor-
age side. The request ID is generated by the client and sent
together with the write request, and checked by the Paxos-
Store node to detect potential duplication of actual request
handling. To elaborate, let us consider again the above ex-
ample. In E4, when NB receives the client’s request, it scans
the P axosLog of rB to check whether the request ID exists
among the entries. If the request ID is found, this implies
another node (e.g., NA) already completed the Paxos-based
update with respect to the received request. Therefore, NB

will not trigger another Paxos procedure but directly reply
to the client. Otherwise, NB can confirm no previous Paxos
procedure has ever been done for this request, and conse-
quentially runs a Paxos procedure to handle the update. As
the request IDs are materialized to the PaxosLog and the
PaxosLog entries are shared among replicas with strong con-
sensus, duplicated processing can be effectively eliminated
by the above strategy.

For optimization, each PaxosStore node buffers the re-
cent request IDs upon completion of every Paxos proce-
dure to avoid frequently scanning PaxosLog entries. The
FIFO (first-in, first-out) based eviction policy of the buffer-
ing should guarantee that the buffered request IDs stay longer
than the failover time. To fulfill such requirement in prac-
tice, it is advised to optimistically configure the buffering
duration as long as the cost of memory space for buffering
is affordable. For example, in WeChat production, we ob-
served the failover time (including the failure detection time)
is less than 1 second for over 90% of the failure cases and
5 seconds as maximum occurring in rare cases, and empiri-
cally configured the minimum buffering duration as 5 min-
utes.

4. IMPLEMENTATION
The implementation of PaxosStore in WeChat produc-

tion involves many composite procedures that cooperate to
perform diverse functionality. Towards high performance,
the composite procedures are often carried out by the asyn-
chronous threads. However, these asynchronous threads in-
troduce tremendous amount of asynchronous states, which

greatly complex the system in terms of engineering. Al-
though we may alternatively implement the composite pro-
cedures in the synchronous manner to get rid of the above
complexity, system performance would be degraded by or-
ders of magnitude comparing with the asynchronous imple-
mentation. In order to ease the development of compos-
ite procedure with efficiency, the implementation of Paxos-
Store highly exploits the coroutine framework to program
the asynchronous procedures in the synchronous paradigm.
To this end, we have developed a fine-tuned coroutine library,
namely libco, and made it open source9. The coroutine-
based asynchronous programming not only saves the engi-
neering effort, but also helps to ensure the correctness of
asynchronous logic, improving both the productivity and
quality of the PaxosStore development.

Note that coroutine is only suitable for asynchronous pro-
cedure that contains single branch of asynchronous execu-
tion, i.e., the asynchronous invocation being deterministic.
Most of the asynchronous procedures in PaxosStore belong
to this category, such as the invocations for consensus ser-
vice, data materialization, and batched read/write opera-
tions. However, the Paxos implementation as described in
Section 2.2.1 contains multiple branches of asynchronous ex-
ecution. Therefore, it has to be programmed in an explicit
asynchronous way. Except that, most of the other routines
in the storage protocol stack and fault-tolerant scheme of
PaxosStore (e.g., applying PaxosLog to the physical stor-
age, and exploiting PaxosLog for data recovery) still lever-
age coroutine to simplify their implementation.

For inter-node communication, each server sends network
packets in a batch manner, which can greatly save the net-
work bandwidth (especially for the inter-datacenter network).
Moreover, each server maintains multiple TCP sockets paired
with the remote servers belonging to the same mini-cluster
group. Each TCP socket takes turns to function for emitting
the batched packets. By doing so, the workload of batched
packet processing (e.g., serialization/deserialization) can be
distributed over multiple threads, each of which corresponds
to a distinct TCP socket. In WeChat production, we empir-
ically configure the batch interval as 0.5 ms and the number
of TCP sockets per server as 4.

5. EVALUATION
PaxosStore has been fully deployed in WeChat production

for more than two years, and it has proven to be considerably
more reliable than our previous generation system based on
the quorum protocol [7]. During this period, PaxosStore has
survived assorted outages of datacenters and different levels
of load surge, with no significant impact on the end-to-end la-
tency. In this section, we first provide detailed performance
evaluation corresponding to the design and optimizations of
PaxosStore presented in this paper. And then we conduct
case studies of PaxosStore in WeChat production.

5.1 Experimental Setup
We run experiments on PaxosStore with its in-production

deployment across three datacenters. Each node in the dat-
acenter is equipped with an Intel Xeon E5-2620 v3 @ 2.4
GHz CPU, 32 GB DDR3 memory, and 1.5 TB SSD con-
figured in RAID-10. All nodes within the same datacenter

9https://github.com/Tencent/libco

1737

https://github.com/Tencent/libco

 0

 2

 4

 6

 8

 10

 12

0 20 40 60 80 100

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Percentage of Write Operations (%)

Pre-preparing Enabled

Pre-preparing Disabled

Figure 9: Overall read/write performance of Pax-
osStore and effectiveness of the pre-preparing opti-
mization.

are connected by 1 Gigabit Ethernet. The inter-datacenter
network latency is around 1 ms.

Experiments are run with synthetic workloads. Specifi-
cally, different mixture of read and write requests are issued
on 10 million tables in the form of point queries. The size of
time window for pessimistic prevention of write-write con-
tention between data replicas is set to 5 ms, the same con-
figuration adopted in WeChat production.

5.2 Latency
PaxosStore can afford to process tens of billions of queries

per minute in real WeChat business. This is achieved by
its design of supporting fast Paxos procedure as well as
various optimizations. We measure the mean latency in a
real deployment of PaxosStore and the results are shown in
Figure 9. We run different workloads by varying the per-
centage of write operations for multiple testing instances, in
each of which system is saturated by the workload to simu-
late the peak-hour scenario. In particular, we compare the
performance with respect to the pre-preparing optimization
which is enabled in PaxosStore by default. Figure 9 shows
that PaxosStore can generally support consistent read/write
with latency less than 10 ms, even under the extreme work-
load with 100% write operations. In WeChat business, most
of the applications specify the acceptable latency incurred
by the storage is 20 ms, and obviously PaxosStore can suf-
ficiently satisfy such relaxed requirement. Moreover, the
pre-preparing optimization effects latency decreasing. This
is due to the intention design of bypassing the prepare phase
and directly starting the accept phase in the Paxos proce-
dure whenever possible (e.g, data accesses being clustered).
In practice, PaxosStore implicitly prioritizes data replicas in
terms of accesses so that read/write operations of any given
data object are clustered to a stated replica most of the time,
making the pre-preparing optimization pretty helpful.

For WeChat applications, PaxosLog is generally instanti-
ated on the granule of user, as data accesses are based on
the user ID most of the time. As a consequence, read-write
contention in WeChat production is rare. This makes the
read operation very efficient in the overwhelming majority of
cases, since the trial Paxos procedure for read-write conflict
resolution turns out to be trivial under such circumstances.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5

L
o
a
d
 I
n
c
re

m
e
n
t
(%

)

 20

 40

 60

 80

 100

 1 2 3 4 5

#
 o

f
K

 P
a
c
k
e
ts

 p
e
r

S
e
c
.

Size of Mini-cluster

Figure 10: Scaling the size of mini-cluster.

5.3 Fault Tolerance
PaxosStore is designed for high-availability storage service.

Its fault-tolerant scheme as described in Section 3.1 not only
takes into account cross-datacenter data replication, but also
makes the system affordable to instant load surge due to load
distribution when node failure occurs. Specifically, proper
choice of the size C of mini-cluster is essential for tuning
the trade-off between the tolerance of load surge and the
overhead of inter-node communication. Figure 10 illustrates
the impact of different configurations of C for single-node
load increment and amount of outgoing network packets.
Note that the amount of outgoing network packets of a node
is proportional to the overhead of network communication
with batched networking enabled. By default, in WeChat
production, each PaxosStore node is deployed to run with
30% ∼ 60% saturation in normal expectation. As can be
seen, setting C = 1 leads to single-node workload increases
by more than 40% when a related node fails. Such single-
node load increment is high but expected, since workload of
the failed node is evenly distributed over the other two nodes
within the mini-cluster group. Increasing C can effectively
alleviate the impact of load surge caused by node failure.
Figure 10 shows that the percentage of single-node load in-
crement decreases to 15% and 12% when C is configured to
2 and 3 respectively. This is because workload of the failed
node is distributed over 4 (resp. 6) nodes of the remote mini-
clusters under the setting of C = 2 (resp. C = 3). Further
increasing C can have even smoother load surge, but the de-
crease becomes marginal. On the other hand, the overhead
of network communication increases along with the incre-
ment of C. For example, the amount of outgoing network
packets doubles when C changing from 2 to 4. This is due to
the fact that larger size of mini-cluster results in lower op-
portunities and effectiveness of performing batched network
communication. Based on the above results, we generally
configure C = 2 for PaxosStore in WeChat production.

5.4 Failure Recovery
Figure 11 reports a history of failure recovery of a Paxos-

Store node. The real-time performance, i.e., runtime through-
put and counts of failed operations, are measured under the

1738

 0

 4

 8

 12

 16

13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15

T
h
ro

u
g
h
p
u
t

(#
 o

f
K

 Q
u
e
ri
e
s
 P

e
r

S
e
c
.)

 0

 200

 400

 600

 800

 1000

 1200

13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15

#
 o

f
F

a
ile

d
 O

p
e
ra

ti
o
n
s

P
e
r

S
e
c
.

Timestamp

Figure 11: Monitoring failure recovery of a PaxosStore node
in WeChat production.

 20

 25

 30

 35

 40

 45

 50

19:20

19:40

20:00

20:20

20:40

21:00

21:20

21:40

22:00

22:20

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Timestamp

Immediate Applying

Batched Applying

Figure 12: Effectiveness of PaxosLog-
entry batched applying.

real workload in WeChat production, where the read/write
ratio is 15 : 1 on average. As can be seen, the normal
throughput is around 14.8 thousand queries per second when
the node is stably running. Failure happens at 14:20, and
the failed node is later restarted at 15:27. Note that, during
the downtime of the failed node, other nodes in the related
mini-cluster group function normally to process the incom-
ing queries. After the failed node resumed, some of its data
turn out to be obsolete. According to the lazy recovery tech-
nique in PaxosStore, those obsolete data are synchronized to
the latest version when they are first accessed after revival
of the failed node. The detection of data being obsolete as
well as the subsequent replica synchronization are at the ex-
pense of failing some data operations. As can be seen from
Figure 11, the number of failed operations rises rapidly in
the first 3 minutes after the system is restored, and then
starts to drop to normal. Accordingly, the node is restored
to 95% of its normal throughput within 3 minutes. Such
fast recovery in PaxosStore benefits from the fine-grained
data recovery technique as presented in Section 3.2, whose
effectiveness has been sufficiently validated in WeChat pro-
duction.

5.5 Effectiveness of PaxosLogEntry Batched
Applying

The strategy of PaxosLog-entry batched applying, as de-
scribed in Section 2.2.3, is enabled during rush hours in the
real operational maintenance of PaxosStore. Figure 12 pro-
files the CPU utilization of one node during the rush hours10.
In particular, when the strategy of PaxosLog-entry batched
applying is turned off, all the PaxosLog entries will be ap-
plied to the physical storage immediately after they are cho-
sen along the Paxos procedures. We name such situation as
the immediate applying of PaxosLog entries. On the other
hand, when PaxosLog-entry batched applying is enabled, log
entries belonging to the same PaxosLog are applied to the
storage in a batch manner. We configure the batch size
as 10 in WeChat production. In the experiment with results
shown in Figure 12, we monitor two individual nodes belong-
ing to separated mini-cluster groups, with one node adopting
the immediate applying of PaxosLog entries and the other

10Empirically, the rush hours last from 20:30 to 22:00 in a
day

node enabling the strategy of PaxosLog-entry batched ap-
plying during the period between 20:20 and 22:20. All the
data accesses are supported by the main/delta table engine.
As can be seen from the results, the strategy of PaxosLog-
entry batched applying can effectively reduce CPU utiliza-
tion by about 10% comparing with the immediate applying
approach during the rush hours.

Like every batching-based optimization, the strategy of
PaxosLog-entry batched applying inevitably introduces in-
consistency with respect to the physical storage, since the
chosen PaxosLog entries are applied to the physical stor-
age with some delay. But in reality, such potential issue re-
garding data consistency exerts little impact on real applica-
tions. The reasons behind are twofold. First, the strategy of
PaxosLog-entry batched applying is only enabled for the un-
specified nodes in terms of primary read/write processing (as
described in Section 2.2.3). Second, as long as the PaxosLog
entries are not yet applied to the physical storage, they are
retained in the PaxosLog and will not be garbage collected.
Therefore, enabling the strategy of PaxosLog-entry batched
applying is compatible to the mechanism of data recovery
of PaxosStore as described in Section 3.2, since recovering
from PaxosLog serves as the most preferential option during
data recovery.

Benefit brought by PaxosLog-entry batched applying be-
comes marginal when the workload deviates from being write-
frequent, e.g., during the normal hours. Moreover, always
enabling the PaxosLog-entry batched applying may accu-
mulate PaxosLog entries to an unexpected amount, which
could eventually result in space overflow. This is because the
chosen log entries of individual PaxosLogs (e.g., as per user
specific) form the fixed-size batches slowly along with infre-
quent data updates. As a consequence, tremendous such
“partially-formed” log entry batches could fail the garbage
collection, since the related log entries are not applied to
the physical storage with respect to the constraint enforced
by the strategy of PaxosLog-entry batched applying. Hence,
for a comprehensive consideration in WeChat production,
we only enable PaxosLog-entry batched applying during the
daily rush hours and turn it off by default.

5.6 PaxosStore for WeChat Business
PaxosStore has been deployed in WeChat production for

more than two years, providing storage services for the core

1739

businesses of WeChat backend including user account man-
agement, user relationship management (i.e., contacts), in-
stant messaging, social networking, and online payment. In
particular, instant messaging and social networking are the
two main applications that dominate the usage of Paxos-
Store. Both applications rely on the key-value storage with
one PaxosLog corresponding to a distinct user account. The
amount of user accounts stored in PaxosStore is of billions.

5.6.1 Serving Instant Messaging

Content of WeChat instant messaging is temporarily stored
in PaxosStore for message queuing. Once the content is de-
livered to user, it will soon be deleted by the server. Each
PaxosStore server also periodically discards the contents in
the message queue despite their delivery status. In other
words, user’s instant messaging contents is never perma-
nently stored in PaxosStore or the WeChat backend, pre-
serving user privacy.

The message queue of instant messaging content is stored
by the LSM-tree-based storage engine. The data key of
each message is represented by a sequence number which is
strictly monotonically increasing. With such monotonically
increasing property of data key, we perform early termina-
tion for traversing the LSM-tree to reduce the search cost of
processing the open-end queries. Moreover, the monotoni-
cally increasing property entitles data recovery from partial
updates of data images. Therefore, PaxosLogs for instant
messaging can be more frequently garbage collected to yield
storage space, while the performance of data recovery re-
mains efficient.

5.6.2 Serving Social Networking

Another popular functionality in WeChat is the Moments

(also known as Friends’ Circle in its Chinese translation),
the social networking platform of WeChat. User contents
in the moments are logically organized as timelines per user
stored by the key-value storage with indexes maintained by
a set. The data key of each Moments post is partially con-
structed by the timestamps, and is augmented by adding
certain prefixes to construct data keys for the related com-
ments as well as reposts. Since the data of Moments are
very huge but their accesses appear clear hot/cold distribu-
tion according to the timelines, we leverage the hierarchy of
storage media to support fast data access, where hot data
are stored in SSD and cold data are sunk to the archive
storage (e.g., disks).

6. RELATED WORK
The Paxos algorithm [19] for distributed consensus [22, 10,

12] has been proven in the theory of distributed systems [18].
Apart from the theoretical study of Paxos [8, 29, 23], many
research efforts have been devoted to the study of practical
Paxos implementation [24, 5, 17, 34] and Paxos variants [21,
20, 25, 27, 28], leading to diverse options for the development
of Paxos-based high-availability systems such as [4], [16], [2],
[11], [6], [1] and [14].

The essence of improved Paxos implementeation in Pax-
osStore is inspired by MegaStore [2]. MegaStore by design
targets supporting low-latency reads through the coordina-
tion of reading data value from the closest replica. However,
such coordination inversely complicates the read/write pro-
cessing, since the capability of performing low-latency reads
highly depends on the availability of the coordinator. Unlike

MegaStore, read/write processing in PaxosStore is based on
the remote procedure call (RPC) without centralized coor-
dination. Each cluster of datacenters running PaxosStore
is deployed at the urban scale, and the network latency be-
tween datacenters is typically in the range of 1 ∼ 3 ms.
This facilitates PaxosStore to support decentralized strong-
consistency data access through RPC without incurring sig-
nificant performance penalty.

As a Paxos-based storage system, PaxosStore is similar
to the Raft [27] based systems such as etcd11. PaxosStore
mainly differentiates itself by adopting a leaseless storage
protocol design. For the lease-based consensus protocol such
as Raft, the elected master nodes with time-based leases are
presumed to be active during their granted lease periods, in
spite of their potential runtime failure. Once master failure
occurs, it will inevitably incur a period of master switching
time, during which the system service will be in the un-
available state. In contrast, the leaseless Paxos implemen-
tation of PaxosStore benefits fast failover without incurring
system service downtime. PaxosStore by deployment antic-
ipates the major availability of data replicas in real-world
applications. Hence, for high system availability along with
fault-tolerance, PaxosStore implements the leaseless Paxos
protocol and further extends it to construct the storage pro-
tocol stack to support strong-consistency read/write with
efficiency.

7. CONCLUSION
In this paper, we described PaxosStore, a high-availability

storage system that can withstand tens of millions of con-
sistent read/write operations per second. The storage pro-
tocol in PaxosStore is based on the Paxos algorithm for
distributed consensus and further endowed with practical
optimizations including PaxosLog-as-value and concise Pax-
osLog structure for key-value storage. The fault-tolerant
scheme based on fine-grained data checkpointing enables
PaxosStore to support fast data recovery upon failure with-
out incurring system downtime. PaxosStore has been im-
plemented and deployed in WeChat production, providing
storage support for WeChat integrated services such as in-
stant messaging and social networking.

Lessons Learned. In the development of PaxosStore,
we have summarized several design principles and lessons
below.

• Instead of supporting storage diversity through a com-
promised single storage engine, it is advised to design
the storage layer supporting multiple storage engines
constructed for different storage models. This benefits
ease of targeted performance tuning with respect to the
dynamics of operational maintenance.

• Apart from faults and failure, system overload is also
a critical factor that affects system availability. Espe-
cially, the potential avalanche effect caused by overload
must be paid enough attention to when designing the
system fault-tolerant scheme. A concrete example is
the use of mini-cluster group in PaxosStore.

• The design of PaxosStore makes heavy use of the event-
driven mechanism based on message passing, which could
involve a large amount of asynchronous state machine
transitions in terms of the logical implementation. In

11https://coreos.com/etcd/

1740

https://coreos.com/etcd/

the engineering practice of building PaxosStore, we de-
veloped a framework based on coroutine and socket
hook to facilitate programming asynchronous procedures
in a pseudo-synchronous style. This helps eliminate the
error-prone function callbacks and simplify the imple-
mentation of asynchronous logics.

Acknowledgments

We would like to thank the anonymous reviewers and shep-
herd of the paper for their insightful feedback that helped
improve the paper.

8. REFERENCES
[1] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta,

H. Jiang, T. Qiu, et al. Photon: Fault-tolerant and
scalable joining of continuous data streams. In Proc.

of SIGMOD, 2013.

[2] J. Baker, C. Bond, J. C. Corbett, J. Furman,
A. Khorlin, J. Larson, et al. Megastore: Providing
scalable, highly available storage for interactive
services. In Proc. of CIDR, 2011.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database

Systems. Addison-Wesley Longman Publishing Co.,
Inc., 1987.

[4] M. Burrows. The chubby lock service for
loosely-coupled distributed systems. In Proc. of OSDI,
2006.

[5] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: An engineering perspective. In Proc. of

PODC, 2007.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, et al. Spanner: Google’s
globally-distributed database. In Proc. of OSDI, 2012.

[7] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. Hq replication: A hybrid quorum protocol
for byzantine fault tolerance. In Proc. of OSDI, 2006.

[8] R. De Prisco, B. Lampson, and N. Lynch. Revisiting
the paxos algorithm. In Proc. of WDAG, 1997.

[9] F. Färber, N. May, W. Lehner, P. Große, I. Müller,
H. Rauhe, et al. The sap hana database–an
architecture overview. IEEE Data Engineering

Bulletin, 35(1):28–33, 2012.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. JACM, 32(2):374–382, 1985.

[11] L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in scatter. In
Proc. of SOSP, 2011.

[12] J. Gray and L. Lamport. Consensus on transaction
commit. TODS, 31(1):133–160, 2006.

[13] A. Gupta and J. Shute. High-availability at massive
scale: Building google’s data infrastructure for ads. In
Proc. of BIRTE, 2015.

[14] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan,
K. Lai, et al. Mesa: Geo-replicated, near real-time,

scalable data warehousing. PVLDB, 7(12):1259–1270,
2014.

[15] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos,
and P. Boncz. Positional update handling in column
stores. In Proc. of SIGMOD, 2010.

[16] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In Proc. of USENIX ATC, 2010.

[17] J. Kirsch and Y. Amir. Paxos for system builders: An
overview. In Proc. of LADIS, 2008.

[18] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. CACM, 21(7):558–565, 1978.

[19] L. Lamport. The part-time parliament. TOCS,
16(2):133–169, 1998.

[20] L. Lamport. Fast paxos. Distributed Computing,
19(2):79–103, 2006.

[21] L. Lamport and M. Massa. Cheap paxos. In Proc. of

DSN, 2004.

[22] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. TOPLAS, 4(3):382–401, 1982.

[23] B. Lampson. The abcd’s of paxos. In Proc. of PODC,
2001.

[24] B. W. Lampson. How to build a highly available
system using consensus. In Proc. of WDAG, 1996.

[25] I. Moraru, D. G. Andersen, and M. Kaminsky. Paxos
quorum leases: Fast reads without sacrificing writes.
In Proc. of SoCC, 2014.

[26] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Informatica,
33(4):351–385, 1996.

[27] D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In Proc. of

USENIX ATC, 2014.

[28] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and
A. Krishnamurthy. Designing distributed systems
using approximate synchrony in data center networks.
In Proc. of NSDI, 2015.

[29] R. D. Prisco, B. Lampson, and N. Lynch. Revisiting
the paxos algorithm. TCS, 243(1-2):35–91, 2000.

[30] R. Sears and R. Ramakrishnan. blsm: A general
purpose log structured merge tree. In Proc. of

SIGMOD, 2012.

[31] J. Sheehy and D. Smith. Bitcask: a log-structured
hash table for fast key/value data. White paper,
Basho Technologies, 2010.

[32] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proc. of

SIGCOMM, 2001.

[33] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, et al. C-store: A
column-oriented dbms. In Proc. of VLDB, 2005.

[34] R. Van Renesse and D. Altinbuken. Paxos made
moderately complex. CSUR, 47(3):42:1–42:36, 2015.

1741

	Introduction
	Design
	Overall Architecture
	Consensus Layer
	Paxos
	PaxosLog
	Consistent Read/Write

	Storage Layer

	Fault Tolerance and Availability
	Fault-tolerant Scheme
	Data Recovery
	Optimizations

	Implementation
	Evaluation
	Experimental Setup
	Latency
	Fault Tolerance
	Failure Recovery
	Effectiveness of PaxosLog-Entry Batched Applying
	PaxosStore for WeChat Business
	Serving Instant Messaging
	Serving Social Networking

	Related Work
	Conclusion
	References

