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ABSTRACT

As the Internet-of-Vehicles (IoV) technology becomes an in-
creasingly important trend for future transportation, de-
signing large-scale IoV systems has become a critical task
that aims to process big data uploaded by fleet vehicles
and to provide data-driven services. The IoV data, espe-
cially high-frequency vehicle statuses (e.g., location, engine
parameters), are characterized as large volume with a low
density of value and low data quality. Such characteristics
pose challenges for developing real-time applications based
on such data. In this paper, we address the challenges in de-
signing a scalable IoV system by describing CarStream, an
industrial system of big data processing for chauffeured car
services. Connected with over 30,000 vehicles, CarStream
collects and processes multiple types of driving data includ-
ing vehicle status, driver activity, and passenger-trip infor-
mation. Multiple services are provided based on the col-
lected data. CarStream has been deployed and maintained
for three years in industrial usage, collecting over 40 ter-
abytes of driving data. This paper shares our experiences
on designing CarStream based on large-scale driving-data
streams, and the lessons learned from the process of address-
ing the challenges in designing and maintaining CarStream.

1. INTRODUCTION

In recent years, the Internet-of-Things (IoT) technology
has emerged as an important research and application area.
As a major branch of IoT, Internet-of-Vehicles (IoV) has
drawn great research and industry attention. Recently, the
cloud-based IoV has benefited from the fast development of
mobile networking and big data technologies. Different from
traditional vehicle networking technologies, which focus on
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vehicle-to-vehicle (V2V) communication and vehicular net-
works [28,36], in a typical cloud-based IoV scenario, the
vehicles are connected to the cloud data center and upload
vehicle statuses to the center through wireless communica-
tions. The cloud collects and analyzes the uploaded data
and sends the value-added information back to the vehicles.

Similar to other IoT applications, the vehicle data are usu-
ally organized in a manner of streaming. Although each ve-
hicle uploads a small stream of data, a big stream is merged
in the cloud due to both the high frequency and the large
fleet scale. Therefore, a core requirement in this cloud-based
IoV scenario is to process the stream of big vehicle data in
a timely fashion.

However, to satisfy such core requirement, there are three
main challenges in designing a large-scale industrial IoV sys-
tem to support various data-centric services. First, the sys-
tem needs to be highly scalable to deal with the big scale
of the data. Unlike other systems, the data in IoV are
mostly generated by machines instead of humans, and this
kind of data can be massive due to the high sampling fre-
quency. Second, the system needs to make a desirable trade-
off between the real-time and accuracy requirements of data-
centric services when processing large-scale data with low
quality and low density of value. Remarkable redundancy
exists in the data due to the high sampling frequency, which
causes the low density of data value. However, such data
should not be simply removed because it is challenging to
identify which data will never be used by any supported ser-
vice. Third, the system needs to be highly reliable to sup-
port safety-critical services such as emergency assistance.
Once a service is deployed, it needs to run continuously and
reliably along with the data keeping coming in. Unexpected
service outage may cause severe damage of property or even
life loss.

There can be multiple solutions for designing an IoV sys-
tem. For example, the traditional OLTP (Online Trans-
action Processing) architecture uses a mature and stable
database as a center to deploy services. In such architecture,
the system collects data uploaded by vehicles and stores
them into the database, and further provides services based
on the analytical ability of the database subsystem. This
solution is simple, mature, and can be highly reliable. How-
ever, it cannot scale well with the fleet size growing because



the database can easily become the bottleneck of the whole
system. The OLAP (Online Analytical Processing) architec-
ture is often used to deal with large-scale data, in which a
data-processing subsystem, rather than a data-storage sub-
system (such as a database subsystem), offers the core ana-
Iytical ability. In such a system, the computing pressure is
mainly on the data-processing subsystem, which often exe-
cutes complex queries. Designing an OLAP-style processing
subsystem for IoV scenarios often requires integrating multi-
ple platforms such as Storm [5] and Spark Streaming [4,38].

In this paper, we address the challenges in designing a
scalable, high-performance big data analytics system for oV
by describing CarStream, an industrial data-processing sys-
tem for chauffeured car services. CarStream has connected
over 30,000 vehicles in more than 60 cities, and it has multi-
ple data sources including vehicle status data (such as speed,
trajectories, engine Revolutions Per Minute (RPM), remain-
ing gasoline), driver activities (such as starting a service,
picking up a passenger), and passenger orders. CarStream
provides multiple real-time services based on these data.
In particular, we address the scalability issue by equipping
CarStream with the ability of distributed processing and
data storage. We then employ a stream-processing subsys-
tem to preprocess the data on the fly, so that the prob-
lems of low data quality and low density of value can be
addressed. Our solution achieves higher performance with
the cost of more storage space. We also further accelerate
the performance of CarStream by integrating an in-memory
caching subsystem. Finally, we design a three-layered mon-
itoring subsystem for CarStream to provide high reliability
and manageability. The monitoring subsystem provides a
comprehensive view of how the overall system runs, includ-
ing the cluster layer, the computing-platform layer, and the
application layer. This subsystem helps sense the health sta-
tus of CarStream in real-time, and it also provides valuable
information of the system to developers who are improving
the reliability and performance of the system continuously.

CarStream has been deployed and maintained for three
years in industrial usage, in which we keep improving and
upgrading the system, and deploy new applications. In this
process, we have learned various lessons, which are valuable
for both the academic and industrial communities, especially
those who are interested in designing a streaming system of
big data processing. In this paper, we share our experiences
including the system designs and the lessons learned in this
process.

In summary, this paper makes the following main contri-
butions:

e An industrial system of big data processing that inte-
grates multiple technologies to serve high performance
to IoV applications.

A three-layered monitoring subsystem for reliability
assurance of long/durable-running and safety-critical
stream-processing applications.

A set of lessons learned throughout the three-year pro-
cess of designing, maintaining, and evolving such in-
dustrial system of big data processing to support real-
world chauffeured car services.

The rest of this paper is organized as follows. Section 2 de-
scribes the background of CarStream, including the business
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background and the data. Section 3 describes the overall ar-
chitecture of CarStream. Section 4 discusses the implemen-
tation detail of CarStream, including the stream-processing
subsystem, the heterogeneous big-data management subsys-
tem, and the three-layered monitoring subsystem. Section 5
presents the lessons learned. Section 6 summarizes the re-
lated work and Section 7 concludes the paper.

2. BACKGROUND OF CARSTREAM

The concept of IoV is originated from IoT. There can
be multiple definitions of IoV. For example, traditional IoV
defines a vehicular network connected by vehicles through
the Radio Frequency Identification (RFID) technology. A
technology known as Vehicle to Vehicle (V2V) can further
share traffic and vehicle information through running vehi-
cles, providing a local-area solution for transportation safety
and efficiency. With the wide adoption of mobile Internet,
traditional IoV has evolved to a wide-area network deploy-
ment that combines in-vehicle network and inter-vehicle net-
work. In such IoV, the vehicle sensors are connected to the
Electronic Control Unit (ECU) through CAN-BUS, and a
cloud-centric vehicular network is constructed with vehicles
connected to the backend servers through the mobile net-
work. The backend servers act as a central intelligent unit
that collects, analyzes, stores the data uploaded by vehi-
cles, and further send the value-added information back to
vehicles.

By successfully fulfilling many requirements in the trans-
portation domain, IoV has been for years one of the most
popular applications in the IoT paradigm. But few large oV
deployments exist, due to the high deployment and mainte-
nance cost for individually owned cars. Private car services,
such as Uber [9] and Lyft [8], are successful Internet-driven
industrial examples. The underlying system supporting such
services can be regarded as a simplified version of IoV where
smartphones, instead of dedicated sensors, are used to con-
nect passengers, drivers, and vehicles. This technology has
given rise to a huge market targeted by many similar com-
panies established in recent years. To implement an IoV
platform, the basic functional requirements should at least
include vehicle-data collection, storage, analysis, and ser-
vices. Vehicles can upload driving data, including instant
locations and vehicle-engine statuses, to the backend servers.
The data can be used in both real-time and offline vehicle-
management applications.

In this paper, we discuss the design and implementa-
tion issues of a cloud-centric IoV system named CarStream.
CarStream is based on a real-world chauffeured car service
company in China, named UCAR. Such service is similar to
the Uber private-car service where the drivers take orders
from passengers through mobile phones and drive them to
their destinations. But the UCAR service also has several
unique characteristics: the fleet belongs to the company,
and drivers are employees of the company. This centralized
business model provides a good opportunity for deploying
an Onboard Diagnostic (OBD) connector, a data-sampling
device for vehicles. The OBD is connected to the in-vehicle
Controller Area Network bus (CAN-BUS). Under a defined
interval, the OBD collects vehicle parameter values such as
speed, engine RPM, and vehicle error code. The collected
data are transmitted back to the backend server through an
integrated wireless-communication module. With the help



Table 1: Functionalities and applications provided in CarStream.

| Type [ Name [ Note
Outlier Detection Detect outlier data from vehicle-data streams.
Data Data Cleaning Filter outlier data or repeated data.
quality Data Quality Inspection Analyze data quality from multiple dimensions and generate reports periodi-
cally.
Data Filling Fill the missing data or replace the wrong data in the streams with various
techniques.
Electronic Fence Based on user-defined virtual fence (on map) and vehicle location, detect the
activities of fence entering and leaving.
Fleet Vehicle Tracking Track vehicle status including location, speed, engine parameter, error, and
Manage- warning in real-time. Provide fast feedback to drivers and the control depart-
ment ment.
Fleet Distribution Fast index and visualize the dynamic fleet distribution in the space dimension;
support the vehicle scheduling.
Gasoline Anomaly Detec- | Detect abnormal gas consumption in case of stealing or leaking.
tion
Fleet Operation Report Produce statistics of the driving data; offer a regular report on the running
status of the fleet, such as daily mileage, gas consumption, valid mileage.
Driving Behavior Analysis | Evaluate driving skills in terms of safe and skillful driving.
Driving Event Detection Detect driving events, such as sudden braking, from data stream.
. . Driver Profit Assessment Calculate the profitable mileage and gasoline consumption of a certain trip by
Decision . . .
Making _ using h1sto1t1(:al .data. . I
Order Prediction Based on historical order data, predict the order distribution in the future so
that cars can be dispatched in advance.
Dynamic Pricing Design a flexible price model based on the real-time passenger demand to
achieve maximum profit, e.g., increasing the price for peak hour.
System Monitoring Provide a comprehensive view for the system-health status.
Other Multi Stream Fusion Merge multiple streams such as the driving events and the GPS locations to
extract correlated patterns.
Trajectory Compression Losslessly compress huge historical trajectory data.

of such near real-time vehicle data, we can monitor the driv-
ing behavior in a fine granularity and react in a timely man-
ner to ensure the safety and quality of the trip services. The
data also provide a direct view of vehicle status, being valu-
able in real-time fleet scheduling and long-time operational
management.

Besides the OBD connector, each driver also uses a mo-

bile phone to conduct business-related operations such as
taking orders, navigation, changing service status. There-
fore, the mobile phone generates a separate data stream,
namely business data, and uploads the data to the server in
a different channel.

CarStream is designed to process those vehicle data and
business data as a back-end service. In general, CarStream
collects, stores, and analyzes the uploaded data in terms
of vehicle and driver management. So far, a major part of
the fleet, over 30,000 vehicles, are connected to CarStream.
Those vehicles are distributed among 60 different cities in
China. Each vehicle uploads a data packet to the server ev-
ery 1 to 3 seconds when the vehicle is running. Thus, the
backend system needs to process nearly 1 billion data in-
stances per day. The scale of the fleet had expanded from
the initial 1500 to 30,000 within a few months; this busi-
ness expansion poses a horizontal scalability request to the
underlying platform.

Figure 1 illustrates the multiple data that are collected
and processed in CarStream during a typical day. After
running for 3 years, totally 40 TB vehicle data are col-
lected by CarStream. The data can be roughly classified
into four types: vehicle status, passenger order, driver ac-
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Figure 1: The data processed in CarStream.

tivity, and trajectory data, as shown in Figure 1. The data
in CarStream are not only large in volume but also compre-
hensive.

However, underneath the abundant data are a series of
data-quality problems that need to be addressed. For exam-
ple, a full set of the vehicle-data parameters contain more
than 70 items, but because the vehicles are designed by mul-
tiple manufacturers, different subsets of the whole parameter
set may be collected from different vehicles. Some vehicles
have gear parameter data while others do not. Meanwhile,
the running of the vehicle always causes vibration, which in
turn affects the correctness of sensor readings such as the
remaining gasoline level. Other data-quality problems that
CarStream faces include disorder and delay, which may be
caused by multiple factors such as distributed processing
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Figure 2: The data amount changes with time.

and network problems. Per the statistics of our dataset,
nearly 10% data are disordered or delayed. Such problems
may have a significant influence on different aspects of the
system, especially on the processing accuracy.

A special characteristic of the data stream in CarStream
is that the data stream is subjected to the traffic pattern:
the data amount uploaded in peak hours can be as much
as 80 times larger than that are in off-peak hours. For this
reason, CarStream also needs to deal with burst streams.
Figure 2 illustrates the data amount of 24 hours in three
days, and clearly shows a traffic-like pattern with morning
and evening peak hours.

Based on the data, CarStream provides multiple function-
alities and applications to facilitate the fleet management
for chauffeured car service. As shown in Table 1, the ap-
plications have a dependency on each other. Data filling,
for example, relies on data cleaning, which in turn has a
dependency on outlier detection. The application of fleet
operation report has a strong dependency on the function-
alities of data cleaning and outlier detection because most of
the gasoline data are very inaccurate due to the influence of
vehicle vibration. Multi stream fusion is another application
that other applications depend on. Because the data are col-
lected from multiple sources with different frequencies, the
fusion (or matching) becomes a common requirement. For
example, an interesting application in CarStream is to de-
tect abnormal gasoline consumptions. In this application,
we need to merge the data stream of driver activities with
the data stream of vehicle statuses so that we can learn
whether the gasoline consumption is reasonable. Sudden
drops of the level of remaining gasoline are detected by the
system, but a further analysis of the data suggests that most
of these phenomena are caused by the influence of parking
position. However, such phenomena can also be caused by
gasoline stealing, which was not expected by fleet managers.

The applications in CarStream also differ on the perfor-
mance requirements, as we can infer from Table 1. Some ap-
plications may have high-performance requirements as they
are time-critical or safety-critical missions. The various ap-
plication requirements increase the complexity in designing
an integrated system that fits all of the listed applications.

3. OVERALL ARCHITECTURE

Based on the aforementioned challenges and the require-
ments, we design CarStream, a high-performance big data
analytics system for IoV. In this section, we present the
overview of CarStream and its comparison with other pos-
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sible solutions. As illustrated in Figure 4, CarStream is an
integrated system with multiple layers involved. The com-
ponents that are marked by the dotted line are the core
parts of CarStream and therefore are discussed in detail in
this paper.

There can be multiple design choices for fulfilling IoV re-
quirements. The traditional OLTP /OLAP solutions adopt a
database-centric design. In such architecture, the uploaded
driving data are normally stored in a relational database;
the services are implemented based on the queries of the
database. Such solution is simple, mature, and easy to de-
ploy and maintain, qualifying such solution to be an option
for ToV scenarios with a small-scale fleet. However, for large-
scale scenarios, the database-centric architecture would suf-
fer from the poor throughput of data reading and writing.
Since the relational database is designed to fulfill the com-
mon requirements of transactional processing; it is hard to
tailor the database platform in a fine-grained manner, drop-
ping the unnecessary indexing and transactional protection,
which consequently cause bad system performance.

Nowadays, as applications related to streaming data be-
come popular, many stream-processing architectures have
been proposed. The architecture comprising distributed buffer-
ing, stream processing, and big data storage is widely adopted.
Such solution can satisfy many IoV scenarios. However,
it is not sufficient to deploy the stream processing alone.
The comprehensive and evolving application requirements,
as well as the varying data characteristics, require both on-
line and offline processing ability. A good design to well
connect different loosely coupled components is a key to the
success of the system.

3.1 Data Bus Layer

The data bus layer provides a data-exchange hub for sys-
tem modules to connect different computing tasks. This
layer is implemented with a distributed messaging platform
with fault-tolerant, high performance, and horizontally scal-
able ability. This layer also aims at providing a buffer for
adjusting the stream volume of downstream data-processing
procedures. By eliminating the time-varying spike of data
streams, the downstream processing subsystems can take
a routine pace to deal with the streams, without worrying
about the system capacity being exceeded.

3.2 Processing Layer

The processing layer includes two parts: the online stream-
processing subsystem and the offline batch-processing sub-
system. The stream processing subsystem is designed to
provide a preprocessing functionality to the streams in a
way that the query pressure of the database can be reduced.
Without preprocessing, the applications based on the raw
data would bring huge read pressure to the database. Since
the large volume of raw data will be continuously stored,
the writing burden cannot be reduced. The system would
suffer from the read and write operations simultaneously if
they both apply to a single target. An extracted subset of
the raw data can be generated and maintained for further
query by preprocessing. The result of preprocessing is incre-
mentally updated in a data-driven manner. Such solution
satisfies many IoV applications that depend more on the ex-
tracted data subset rather than the whole dataset. In this
manner, the read and write pressure of the database can be
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separated, leading to a more friendly architecture to scale
to a larger data volume and more applications.

The batch-processing subsystem is employed to satisfy the
complex analysis requirements that involve more historical
data. Moreover, considering that the low quality of the raw
data may affect the accuracy of stream processing, the result
of batch processing can also play a role as an auxiliary mea-
surement to evaluate the quality of the stream-processing
result. Combining both the stream processing and batch
processing, CarStream can satisfy the needs of a wide range
of workloads and use cases, in which low-latency reads and
frequent updates of data are required.

3.3 Data Management Layer

The data management layer adopts a heterogeneous struc-
ture constructed with multiple databases. In CarStream,
both NOSQL and SQL databases are adopted to achieve
high performance. The design decision is based on a com-
prehensive analysis of the loV applications. We store the
data in different storage systems per the access requirements
of the applications.

More specifically, the most frequently accessed data are
stored in the in-memory caching subsystem so that the data
can be accessed and updated frequently. By using an in-
memory key-value data structure, the in-memory caching
subsystem can achieve a milliseconds latency and a high
throughput in data updating and exchanging. Choices of
in-memory caching can be multiple, such as Memcached [25]
and Redis [19]. These platforms are originally designed for
caching objects of a web server to reduce the pressure of
the database. The in-memory caching employed here acts
as the fast media of data update and exchange for applica-
tions. On one hand, the processing subsystem keeps updat-
ing the current result into the caching; on the other hand,

the web servers keep fetching the processing results from the
caching. An application example here is vehicle tracking, in
which the stream processing subsystem updates the statuses
of the vehicles, while the users check these statuses simulta-
neously through the web browser. Then, the structured and
preprocessed data, which can be some smaller data streams
than the volume of raw data, are stored in RDBMS and
being accessed with SQL. By leveraging the mature object-
relation mapping frameworks, it is much easier for RDBMS
to be integrated to build web user interfaces. Finally, all the
data generated in CarStream are archived in the distributed
NOSQL big data storage subsystem, which supports only
the non-realtime offline data processing. This architecture
increases the system complexity, but it also accommodates
the various requirements of different applications and can
reduce the risk of data loss in a single-system failure.

3.4 System Monitoring

System monitoring is a unified name for a three-layered
monitoring subsystem of CarStream. We monitor the sys-
tem from three different layers: infrastructure, computing
platform, and application. It is necessary to monitor each
of the layers. The infrastructure monitoring is used to view
either live or archived statistics covering metrics such as the
average CPU load and the network utilization of the cluster.
The monitoring infrastructure provides not only a real-time
health view of the hardware but also a guidance for adjust-
ing the system deployment in terms of load balancing and
resource utilization. For the computing platform layer, we
monitor the platforms such as the stream-processing subsys-
tem, the batch-processing subsystem, and the databases to
track the running status of the platform software. Specifi-
cally, the applications in CarStream are monitored because
the monitoring information collected for the applications can
directly reflect the health status of the provided services.
Monitoring the application layer can provide useful infor-
mation for service-failure prevention or recovery.

4. IMPLEMENTATION PARADIGM

The overall structure of CarStream and the connections
between different modules are illustrated in Figure 3. In this
section, we discuss the detailed implementation of CarStream
from three main parts: the processing subsystem, streaming
data management subsystem, and the three-layered moni-
toring subsystem. We show how to combine different tech-
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Table 2: Application requirements of CarStream.

[ Requirement | Detail

Scalability

With the increase of the fleet scale, we
need to be able to improve the ability of
the processing platform. We also need to
be able to add additional capacity to our
data-storage subsystem.

Low Latency

After data are uploaded by a vehicle, they
must be processed immediately. The pro-
cessed result should be provided with low
latency.

High On one hand, the system needs to be able
Through- to receive and store all the uploaded data.
put On the other hand, the system needs to be
able to provide a fast query for multiple
users.
High Relia- | CarStream needs to provide a highly reli-
bility able data-analytics system to users, includ-
ing drivers, fleet managers, and passengers,
to ensure the dependability of the services.
High Avail- | CarStream needs to provide sustainable
ability services that are robust enough to tolerate

various unstable environmental conditions.

nologies to accomplish a high-performance data-analytics
system for IoV. For each part, we present the problems in
the implementation along with the insights of solving these
problems.

The requirements of applications in CarStream are sum-
marized in Table 2.

4.1 Processing Subsystem

As introduced in the preceding sections, the data pro-
cessed in CarStream are uploaded by vehicles. With the
continuous vehicle running, the data stream formed by data
packets comes continuously. Thousands of small streams
are merged into a big stream in the cloud. Such data are
naturally distributed; therefore, a natural solution to pro-
cess the data is using a distributed platform for stream pro-
cessing. There can be multiple technological solutions for
data-stream processing, such as Storm [5], JStorm, Flink [1],
Spark Streaming [4, 38], Flume [2], Samza [3], and S4 [32].

Apache Storm [5] is a distributed real-time computating
platform for processing a large volume of high-velocity data.
Based on the master-worker paradigm, Storm uses topology
to construct its computing tasks. Storm is a fast, scalable,
fault-tolerant, and reliable platform; it is easy to set up and
operate. JStorm is a Java version of Storm while Storm is
implemented with Clojure, making it inconvenient for big-
data developers who are mostly familiar with Java or C++.
Compared with Storm, JStorm is more stable and power-
ful. Apache Flink [1] is an open-source stream process-
ing framework for distributed, high-performance, always-
available, and accurate data streaming applications. Spark
Streaming [4,38] is an extension of the core Spark API; such
extension enables scalable, high-throughput, fault-tolerant
stream processing of live data streams. In Spark Streaming,
data can be processed using complex algorithms expressed
with high-level functionalities. Apache Flume [2] is a dis-
tributed, dependable, and available service for efficiently col-
lecting, aggregating, and moving a large volume of log data
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or streaming event data. Targeting at processing log-like
data, Flume also provides a simple extensible data model
for online analytics applications. Apache Samza [3] is a
relatively new framework for distributed stream processing.
It uses Apache Kafka for messaging, and Apache Hadoop
YARN to provide fault tolerance, processor isolation, secu-
rity, and resource management. S4 [32] is a general-purpose,
distributed, scalable, fault-tolerant, pluggable platform that
allows programmers to easily develop applications for pro-
cessing continuous unbounded streams of data. There are
also some other stream processing platforms such as Ama-
zon Kinesis, which runs on Amazon Web Service (AWS),
and IBM InfoSphere Streams.

The preceding platforms share some common character-
istics in that they are all scalable and high performance,
and can process millions of data instances per second. They
all provide basic reliability guarantee and support multiple
programming languages. It is not easy to generally assess
the pros and cons of each system. However, for the given re-
quirements, if the decision has been narrowed down to choos-
ing between those platforms, the choice usually depends on
the following considerations:

e System Cost. Cost is an important factor in selecting
a technology since small enterprises or research groups
might not be able to afford to pay for services that are
not free.

e Development Cost. Development cost includes the
human cost of deploying the infrastructure platforms
and developing the applications. It would be easier to
develop a comprehensive data-analytics system if the
selected platforms have good support to be integrated
together. Meanwhile, the deployment could also be
part of the human cost as sometimes it is easy to sink
days or weeks of the development time into making
open-source platforms to be a scale-ready, production
environment.

e Upgrade Cost. Business requirements change over
time, and the corresponding applications also need to
change accordingly. In an earlier stage of a production
system, such evolution is especially frequent. Devel-
opers often suffer from such circumstance; however,
the problem can hardly be attributed to the process-
ing system if the platforms support an easy upgrade
of the applications in a way that developers can easily
reuse the existing work, so that the upgrade can be
less painful.

e Language Paradigm. This consideration includes
two aspects. The first is what language developers
want to use to develop their applications. The second
is what language the infrastructure is developed with.
Developers prefer to choose the language that they are
familiar with to develop their applications. Once they
want to improve the infrastructure platforms, it would
be more convenient if the platform is developed with
the language that developers are familiar with.

e Processing Model. Different platforms support dif-
ferent processing models. For example, Storm uses
topology to organize its steps of processing the data
streams. The processing model decides which platform
fits best in implementing the applications.
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After a considerable investigation and experimental ex-
ploration, we adopt JStorm as the basic stream-processing
platform in CarStream. The main reason is that, besides
the basic high-performance, distributed, fault-tolerant char-
acteristics of stream processing, JStorm also uses topology
as the computing task model; this characteristic is especially
suitable for implementing the aforementioned IoV applica-
tions. As discussed earlier, most IoV applications either
have a dependency on each other or share similar function-
alities. An example of such dependency is shown in Figure
5. It is common to develop and deploy an independent com-
puting task for each application. But sometimes we might
need to merge different tasks to improve resource utilization
and development efficiency. With topology as the program-
ming model, developers can integrate multiple applications
by merging similar processing tasks or split a huge task into
smaller (and thus more reusable) function modules. Smaza
provides another solution by using KAFKA, a distributed
messaging platform, as a data hub. Each task outputs its
processing results to KAFKA, and such results can be fur-
ther used by other tasks.

Another reason of using JStorm is that both its imple-
mentation and supported programming language are Java,
a language that most big data developers are familiar with.
Therefore, when it is necessary to modify the platform dur-
ing the development, it is easier to modify JStorm than
other platforms such as Storm, which is implemented with
Clojure. CarStream also employs Hadoop as the offline pro-
cessing subsystem. Applications in IoV require not only
real-time stream processing but also large-scale batch pro-
cessing. However, such requirement is not the only reason
why batch processing is used here. The data-quality issue
is another reason. According to our empirical study of the
data, nearly 10% data are disordered or delayed, and less
than 0.1% data are substantially delayed, or even lost. Al-
though such data occupy a minor part of the whole dataset,
they still affect the stream processing significantly in terms
of accuracy and system performance. Consider multi-stream
matching as an example. The basic requirement is matching
stream A with stream B. In this task, if some data of stream
B are delayed or lost, then the data in stream A may not
find their matches. As a result, the program has to wait or
at least buffer more data instances for stream A in case the
delayed data in stream B might come later. This solution is
common, but sometimes it can be risky because increasing
the buffer length may cause memory issues. In our imple-
mentation, we detect the data-quality issue and split the bad
part of the data for offline processing. Online stream pro-
cessing deals with only the good part of the data. Offline
processing runs with a given interval when most data are
ready. When an application launches a request, both online
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and offline processed results are queried. This combination
of online with offline is widely used in CarStream to achieve
real-time performance for most data, and CarStream tries
its best to offer a better result than performing online pro-
cessing only.

The data bus layer in CarStream is implemented with
KAFKA, one of the most powerful distributed messaging
platforms. KAFKA can be easily integrated with most stream
processing platforms and hence is widely used as industrial
solutions. In fact, there are also many other similar plat-
forms that can be used as the data bus, such as MetaQ),
RocketMQ, ActiveMQ, and RabbitMQ.

4.2 Streaming Data Management Subsystem

CarStream needs to manage terabytes of driving data and
further to provide services based on the data analytics. The
stream is formed by a great number of data instances, each
of which takes a hundred bytes. CarStream collects nearly a
billion of data instances every day. The value density of such
data is very low, as few useful information can be extracted,
due to the high sampling frequency. Moreover, the data
value decreases fast with time because most of the applica-
tions, especially the time-critical applications, in IoV care
more about the newly generated data. Though, the histori-
cal data cannot be simply compressed or discarded because
the data might still be useful for certain applications.

We try to address the issue of data storage in IoV from
two aspects. The first aspect is data separation. We iden-
tify those applications that have high real-time requirements
so that we can further identify the corresponding hot data
(such as the vehicle current status). We then separate the
hot data with the cold data and try to put them into dif-
ferent storage platforms with different performance. The
second aspect is preprocessing. Big dataset scan for the
database is painful, but the data appending (write) can be
fast. Therefore, we try to extract a small dataset with a
higher density of value by using stream processing. We then
separate this part of data with the raw data. In this manner,
the storage subsystem can provide high throughput for data
write, and high performance for the queries that are based
on the small processed data. Furthermore, we put some hot
data in in-memory cache to achieve a real-time data access.

To construct a data management subsystem, we adopted
three different storage platforms in CarStream, including
in-memory caching, relational database, and NOSQL big
data storage. There are multiple selections for each kind of
storage platform. Many NOSQL databases, such as Cassan-
dra, HBase, and MongoDB, can be adopted. In practice,
we use HBase as the archive storage platform for the raw
data. HBase can easily integrate with Hadoop to achieve
big data batch processing ability. HBase provides a high-
performance key-value storage, which perfectly fits the re-
quirements of storing the raw vehicle data. The raw data
include vehicle status, vehicle trajectories, driver activities
related data, and user-order related data. Those data use
ID (vehicle ID, user ID, driver ID) and timestamp as the
index key. In the technical decision making procedure, we
conducted experiments on managing raw driving data with
RDBMS such as Mysql and Postgresql. In the test, we use
< ID,timestamp > as the index. The result shows that
the relational databases have to maintain huge index files
to index the big dataset. In another word, the data access
performance of RDBMS does not scale with data volume.



However, as a distributed key-value storage, HBase has the
scalability with data volume.

Postgresql database is used to store relational data, and
some of the processed data, to facilitate the queries from the
web server. Compared with other relational databases such
as MySQL, DB2, Sybase, the Postgresql has more compre-
hensive extended spatial functions. This feature is especially
important because IoV applications have many location re-
lated processing requirements. Even though such require-
ments are mostly satisfied by the processing subsystem, the
database still needs to provide several spatial related query
abilities. Postgresql has a spatial database extension named
PostGIS, which offers many spatial related functions that
are rarely found in other competing spatial databases.

In-memory caching plays a key role in accelerating the
real-time applications in CarStream. Memcached and Re-
dis are popular in-memory caching platforms; they both
provide high-performance key-value storage. Memcached
provides extremely high performance on key-value based
caching; therefore, the earlier version of CarStream adopts
Memcached to be the data buffering and high-performance
data storage media. Later we found that Memcached has
limitation in its functionalities and supported data types.
As a comparison, Redis supports more data types and data
accessing functionalities; Redis also provides data persis-
tence in case of memory data lost. We then switched to
Redis to seek for more support on multiple data types. A
typical application example of using in-memory caching to
improve performance is real-time vehicle tracking. In such
application, the vehicle uploads data to the server, and the
data are further processed by the stream processing subsys-
tem; the processed results are updated to Redis for further
use. Both the data producer (processing subsystem) and
consumer (web server) can achieve high performance with
this solution.

4.3 Three-Layered Monitoring

Monitoring how the system runs is an essential method to
provide highly dependable services [26]. By monitoring the
system, maintainers can take corresponding actions timely
when something goes wrong. CarStream can be roughly
separated into three layers, the infrastructure layer, which
includes the cluster and the operating system; the comput-
ing platform layer, which includes the processing platforms
such as Hadoop, Storm; and the application layer that is
formed by the applications. To assure high dependability,
each of the three layers needs to be monitored.

Typically, for infrastructure layer, developers often use
cluster monitoring tools such as Nagios [29], Ganglia [6],
or Zabbix [10] to monitor the memory, network, I/O, and
CPU load of the servers. Such monitoring tools also provide
a useful dashboard to help to visualize the monitoring. The
processing subsystem is formed by multiple processing plat-
forms, which usually provide monitor tools to track how the
platform works. It is also an option to use the third-party
tools to monitor these platforms [23]. The monitoring of
infrastructure layer and computing platform layer provide
useful information for assuring service dependability. In-
frastructure monitoring has become one of the basic system
deployment and maintenance requirements. In CarStream,
we monitor the infrastructure with Ganglia. Compared with
other monitor tools, Ganglia provides powerful functions to
monitor the cluster performance from a comprehensive view,
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Figure 6: A user interface illustration of the three-layered
monitoring subsystem.

it also enables users to define their own monitor items. Gan-
glia collects cluster information with very low cost. Through
the dashboard provided by Ganglia, developers can obtain
an overall view of the whole cluster. For computing platform
monitoring, our monitoring subsystem simply integrates the
monitoring APIs provided by each platform.

However, our maintenance experience on CarStream sug-
gests that application monitoring is also essential. The ap-
plications in IoV run permanently with the streaming data
continuously come. Meanwhile, the applications are always
evolving with business changes. The evolving requires abun-
dant information of the old versions of applications includ-
ing how each application runs. For example, Is the paral-
lelism enough for a specific application? How the application
works on handling the burst stream spikes? Which task is
the bottleneck in the processing topology (which task caused
the congestion)? The answers to these questions are highly
related to the monitoring of the application layer. From this
perspective, the monitoring of application layer is as impor-
tant as the monitoring of the infrastructure layer and the
computing platform layer. Therefore, we empowered appli-
cation layer monitoring into the monitoring subsystem of
CarStream. In practice, we embedded into each application
a module to monitor the parameters that can reflect the
performance and the health status of the applications; such
parameters include the buffer queue length, the streaming
speed, heartbeat, etc. Those parameters are gathered into
a shared in-memory database and further being analyzed
in near real-time by a center monitor server. Moreover, we
employ anomaly detection algorithms on these collected pa-
rameters to predict the potential system failures. The mon-
itoring server sends an alert message to maintainers when
an abnormal is detected.

With the help of this monitoring subsystem, the reaction
time to system problems in CarStream can be reduced from
hours to seconds. Figure 6 illustrates the three-layered mon-
itoring subsystem from a user interface perspective. The
abundant application-running information that have been
collected are further used in improving the alert accuracy of
the monitoring. For example, we update the alerting thresh-
olds to more proper ones based on the analysis of historical
monitoring information; therefore, the spam alert messages,
which are the pain point of maintainers, can be significantly
reduced. The daily number of alert messages of CarStream
is reduced from tens to just a few routine notifications.
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4.4 Performance Evaluation

The performance of each platform used in CarStream is
evaluated by researchers and the platforms are proving to
be high performance. Here, to answer the question that
whether the integrated system still scales with data volume
and have high performance, we conduct an end-to-end per-
formance evaluation of the entire stream-processing proce-
dure from the data receiving to the data query. The pro-
cessing subsystem is deployed on a virtualized cluster with
25 servers, each server has 16GB memory, a 2-core 2.0 GHz
CPU, 2*10 Gbps Emulex NIC. A dedicated server, which
has 2*Intel XEON E5-2630v3, 64GB memory, 2*¥120G SSD
and 102TB HDD, is allocated to deploy the database. The
HBase and HDFS are deployed in a non-virtualized envi-
ronment with three 12-node clusters. The total capacity of
HDFS is above 600TB. We test the system from the follow-
ing aspects.

Throughput. CarStream can easily handle the data
stream uploaded by 30,000 vehicles. We further simulate a
high data workload by injecting the historical dataset back
into the system with high frequency. With the same de-
ployment, the total processing throughput of CarStream
has reached 240,000 data instances per second (each data
instance is around 100KB).

End-to-end delay. This test shows whether the system
can satisfy the low-delay requirement of time-critical appli-
cations. We use real-time vehicle tracking as the test appli-
cation. In this application, the data are uploaded from the
vehicles and go through a series of platforms including the
buffering platform, stream processing platform, in-memory
caching platform, and then finally being queried by the web
server. For the end-to-end delay, we compare the times-
tamps between the data being generated and the data being
processed. The result, as illustrated in Figure 7, shows that
the average delay is less than 2 seconds; such delay is ac-
ceptable in this scenario. We also monitor the length of the
queue inside of the computing tasks; such queue length may
also reflect the processing delay in an indirect way. The
result is shown in Figure 8. It can be inferred from the eval-
uation result that the buffering subsystem performs well on
buffering the workload of peak hours; the buffering slightly
increases the processing delay, but the processing subsystem
can catch up on dealing with the workload quickly.

Processing scalability. Scalability is a critical issue for
CarStream as the fleet scale increases over time. We test
the processing scalability of CarStream by increasing the de-
ployment scale of the buffering and processing subsystems.
In this test, we use the electronic fence as the foundation
application. We deploy the processing subsystem on one
server and increase the number of servers gradually. By
injecting a large volume of data into the system, we eval-
uate the relationship between the throughput and the sys-
tem scale. The evaluation result, as illustrated in Figure
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Figure 8: The fluctuation of buffered queue length of stream
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Figure 9: The scalability evaluation of CarStream.
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9, shows a near linear scalability of the processing subsys-
tem. This performance can be attributed to two reasons, the
distributed design of the processing platform, and the nat-
urally distributed characteristic of the vehicle data. As the
fleet scales up, we can always partition the data into small
streams and deploy high-performance processing tasks ac-
cordingly.

5. LESSONS LEARNED

Lesson Learned 1: Application-level monitoring is
necessary for achieving high reliability.

Infrastructure monitoring and computing-platform moni-
toring are the most commonly adopted techniques for as-
suring system reliability. Doing so can allow us to take
timely reactions when a problem occurs. We can also use
the monitoring information to help to utilize system re-
sources by adjusting the deployment. However, we learn
through the maintaining of CarStream that infrastructure-
level and platform-level monitoring are insufficient to pro-
vide highly dependable services, especially in safety-critical
scenarios. Our insight is that, it is necessary to monitor
the application-level because application monitoring pro-
vides direct information to answer key questions such as
which processing step is the bottleneck? or what caused the
cutoff of the data stream? By monitoring the key parame-
ters in an application, such as local buffer length, processing
delay, and processing rate, we can have a deeper understand-
ing of the application’s runtime behavior. These parameters
can be collected and analyzed on the fly, helping operators
to take actions for service failure prevention or recovery.

Lesson Learned 2: Low data quality widely exists
in IoV. A fixing model extracted from historical data
patterns can be helpful.

According to our experience, oV applications usually face
a severe issue of low data quality, such as data loss, data
disorder, data delay, insufficient data, and wrong data, etc.
There are multiple causes of those problems. For exam-
ple, the data disorder can be attributed to the distributed
processing mode of the system. Because the data are pro-
cessed concurrently so that later data are possible to be
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Table 3: Common data-quality issues in IoV scenarios.

| Category| Problem | Consequence [ Cause | Solution ]

Lack of | Data Loss No result/ Network failure Redundant deployment. Interpolation
data Inaccurate result | Software fault by data patterns.

Insufficient Inaccurate result | Physical limitation (ve- | Interpolation by data patterns.

Data hicle limitation)

. Wrong result/ DlStrlbl.lted nature of | Delay and wait. Dropplng.out—(.)f-date

Disorder Inaccurate result | _Processing platform data. Order guarantee design (in app
Wrong Network transition layer). Fixing with prediction.
data Store and forward de-

sign of data nodes
. Hardware malfunction Outlier detection. Data cleaning.
Wrong/Outlier | Wrong result Inaccurate sensors Fixine with data patterns
Data Other physical reasons & P '

processed earlier than the earlier-arrived data, resulting in
a disordered sequence. The disorder can also be caused by
the parallel transmission of the network or the defect of the
processing in the application layer. Similarly, the problem
of wrong/outlier data can be attributed to multiple factors
such as hardware malfunction, the sensor jitter, or other
physical reasons (e.g., vehicle vibration). In IoV scenarios,
these problems usually need to be addressed in real time.
A general list of the problems and the corresponding causes
are summarized in Table 3.

There can be multiple solutions to these problems. Let
us take dealing with data disorder as an example. A basic
solution is delay-and-wait: the processing is pended until all
the data instances within the sliding window are ready. This
solution compromises real-time performance to achieve the
accuracy. Another solution is providing sequence guarantee
in the application when designing the system. For example,
the data of each vehicle are processed by the same processing
node. Hence, the processing is paralleled for the fleet but is
sequential for any specific vehicle. This solution also has its
own limitation: it sacrifices the flexibility and scalability of
the processing subsystem.

In CarStream, we employ a data-driven solution to ad-
dress the data-quality problem. In particular, we make use
of the patterns in the data and drive a fixing model to rep-
resent the data patterns, and then we use the fixing model
online to improve the data quality. Our empirical study on
the data reveals clear patterns from the data; such data na-
ture is largely due to the regularity in driving. For example,
the trajectory generated along a road follows the trend of
that road, and drivers would maintain the vehicle in a stable
status when driving on a highway. During the acceleration
stage, most drivers would take a steady acceleration. The
model extraction takes some time but the online running
can be fast and efficiency. Note that such solution is only
applicable to the problem of local data quality where a small
part of the stream is missing or disordered.

Lesson Learned 3: In large-scale scenarios, the
linked-queue-based sliding-window processing may
cause a performance issue.

In stream-processing applications, the sliding window is
one of the most commonly used functionalities. Typically,
the sliding window is implemented with a linked queue. A
new data is appended to the queue when the data comes.
Meanwhile, when the queue has reached the maximum length,
the oldest data will be removed. The enqueue and dequeue
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operations have high performance when the dataset is rel-
atively small. However, when it comes to large-scale data
streams, such linked-queue-based solution may suffer from
poor performance due to the frequent memory-management
(allocate and free) operations.

To improve the performance, we suggest using a Round-
Robin Queue (RRQ) to implement the sliding window. The
RRQ reuses memory to improve the performance of process-
ing. Compared with the linked-queue-based solution, the
runtime of processing the same quantity of data with RRQ
can be reduced by 80%.

Lesson Learned 4: A single storage is usually insuf-
ficient; a heterogeneous storage architecture is nec-
essary for managing large-scale vehicle data.

As a typical big data processing scenario, IoV needs to
manage a huge quantity of vehicle data. In this scenario,
data management faces severe challenges: the data volume
is huge, and the applications are of variety such that differ-
ent data-access requirements need to be satisfied. For ex-
ample, decision-making-related applications require a large
throughput of the data access, while time-critical applica-
tions require higher data-access performance. Based on our
experience, there might not be a one-for-all storage platform
that satisfies the requirements of all the applications, and a
heterogeneous storage architecture is usually necessary for
maximizing the system performance.

We summarize two tips on how to improve the database
performance from an architecture perspective.

e Separate hot data with archived (cold) data; use in-
memory caching as the exchange media for the hot
data.

e Avoid scanning a big dataset by extracting a small
dataset with preprocessing.

Lesson Learned 5: Single platform may not be suf-
ficient for multiple requirements in IoV.

Simplicity is an important principle in system design: the
benefit of a simple design includes ease of maintenance, up-
grade, and use. For general computing system, high per-
formance often comes with simplicity of design. However,
for IoV system, which has multiple complex application re-
quirements, simple design may not be sufficient to fulfill the
requirements of each application. It’s also hard for a mono-
lithic system design to be flexible enough to keep up with the
changing of service requirements. In CarStream, we adopt a



multi-platform design for the IoV applications. We carefully
evaluate the requirement of each application and choose the
best platform to deploy the application. Designing in such
manner indeed increases the system complexity and redun-
dancy, but by using a robust data bus, processing of multiply
data flows can be loosely coupled and fulfill the requirements
of IoV together.

6. RELATED WORK

IoV has become an increasingly important area in both
industry and academia. IoV is, in fact, an integrated tech-
nology including big data processing, distributed systems,
big data management, wireless communication, vehicle de-
sign technology, human behavior analysis, etc. For a cloud-
based IoV, big data processing and management are espe-
cially critical.

Various high-performance platforms for big data process-
ing have been proposed. Some examples are Storm [5],
Spark [4], Samza [3], S4 [32], Flume [2], and Flink [1]. How-
ever, it is still difficult to smoothly integrate different tech-
nologies to develop a system for complex scenarios in IoV.
Companies providing private car services, such as Uber [9]
and Lyft [8], develop complex systems for data processing,
by integrating online processing, offline processing, and big
data management, to achieve an ecosystem for serving in-
telligent transportations.

As a key technology of IoV, system design for stream
processing [31, 33, 34] is a challenging task. Cherniack et
al. [21] discuss the architectural challenges in designing two
large-scale distributed systems (Aurora and Medusa [11])
for stream processing; the paper explores complementary
solutions to tackle the challenges. At Google, a dataflow
model [13] is designed to process unbounded, out-of-ordered
data streams. Google also provide CloudloT [7], a data-
processing solution that targeting at IoT scenario. CloudloT
ailms at providing a unified programming model for both
batch and streaming data sources from IoT. Twitter has
been using Storm to process streaming data for years. Kulka-
rni et al. [30] discuss the limitations of Storm in processing
the increasing volume of data at Twitter, and they design
and implement Heron, a new streaming data processing en-
gine to replace Storm. For online and offline integrated pro-
cessing, Twitter also propose Summingbird [18], a frame-
work that integrates batch processing and online stream
processing. Kinesis [16] is an industrial solution provided
by Amazon as a big data processing platform that runs
on Amazon Web Service (AWS). Kinesis provides power-
ful functionalities for users to load and process streaming
data of IoT or other scenarios.

Chen et al. [20] discuss multiple design decisions made in
the real-time data processing system of Facebook and their
effects on ease of use, performance, fault tolerance, scalabil-
ity, and correctness. Borthakur et al. [17] propose Facebook
Messages, a real-time user-facing application built on the
Apache Hadoop platform. Arasu at al. [15] propose an on-
line stream query system named STREAM. STREAM uses
Continuous Query Language (CQL), a query language that
is similar to SQL, to query the continuous streaming data.
Multiple-stream fusion is an important problem in various
stream-processing scenarios such as those in IoV [37]. Anan-
thanarayanan et al. [14] propose Photon, a fault-tolerant and
scalable system for joining continuous data streams. Gedik
et al. [27] investigate the problem of scalable execution of
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windowed stream join operators on multi-core processors,
and specifically on the cell processor. The management and
analysis of big spatial data are important foundational abili-
ties for IoV. Fernandes et al. [24] recently present TrafficDB,
a shared-memory data store, designed for traffic-aware ser-
vices. Cudre-Mauroux et al. [22] propose TrajStore, a dy-
namic storage system optimized for efficiently retrieving all
data in a spatio-temporal region. Hadoop-GIS [12] and Lo-
cationSpark [35] are two high-performance platforms, which
are based on Hadoop and Spark, respectively, designed for
large-scale spatial data processing.

7. CONCLUSION

In this paper, we have described our experience on ad-
dressing the challenges in designing CarStream, an indus-
trial system of big data processing for IoV, and the expe-
rience of constructing multiple data-driven applications for
chauffeured car services based on this system. CarStream
provides high-dependability assurance for safety-critical ser-
vices in IoV by including a three-layered monitoring subsys-
tem. The monitoring subsystem covers from the application
layer down to the infrastructure layer. CarStream further
leverages in-memory caching and stream processing to ad-
dress the issues of real-time processing, large-scale data, low
data quality, and low density of value. CarStream manages
the large volume of driving data with a heterogeneous data-
storage subsystem. We have also shared our lessons learned
in maintaining and evolving CarStream to satisfy the chang-
ing application requirements in IoV. So far, our system can
handle tens of thousands of vehicles. In our future work, we
plan to evolve CarStream into a system with micro-service
architecture to better maintain the system and to develop
new applications when the fleet scales up.
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