
Matrix Profile IV: Using Weakly Labeled Time Series to 
Predict Outcomes 

 
Chin-Chia Michael Yeh 

UC Riverside 

myeh003@ucr.edu 

 

 
Nickolas Kavantzas 

Oracle Corporation 

nickolas.kavantzas@oracle.com 

 
Eamonn Keogh   

UC Riverside 

eamonn@cs.ucr.edu 

 
 

 
ABSTRACT 
In academic settings over the last decade, there has been significant 
progress in time series classification. However, much of this work 
makes assumptions that are simply unrealistic for deployed 
industrial applications. Examples of these unrealistic assumptions 
include the following: assuming that data subsequences have a 
single fixed-length, are precisely extracted from the data, and are 
correctly labeled according to their membership in a set of equal-
size classes. In real-world industrial settings, these patterns can be 
of different lengths, the class annotations may only belong to a 
general region of the data, may contain errors, and finally, the class 
distribution is typically highly skewed. Can we learn from such 
weakly labeled data? In this work, we introduce SDTS, a scalable 
algorithm that can learn in such challenging settings. We 
demonstrate the utility of our ideas by learning from diverse 
datasets with millions of datapoints. As we shall demonstrate, our 
domain-agnostic parameter-free algorithm can be competitive with 
domain-specific algorithms used in neuroscience and entomology, 
even when those algorithms have been tuned by domain experts to 
incorporate domain knowledge.  

1. INTRODUCTION 
Much of the considerable progress in time series classification in 
recent years has ignored many of the pragmatic issues facing 
practitioners. To make progress, the community has typically 
manually contrived data to fit into the “flat file” format used in the 
machine learning community (i.e. ARFF format) [32]. The ready 
availability of such resources, including the UCR Time Series 
Archive [1] and the more general UCI Archive [13], has been a 
boon to researchers; however, it has isolated the academic 
community from the intricacies of time series classification as it 
presents itself in many industrial settings. To help the reader 
appreciate how the task-at-hand typically manifests itself in many 
industrial and medical settings, consider the two-dimensional time 
series shown in Figure 1. We will define this “learning from weakly 
labeled data” problem more formally in Section 3. 

Figure 1: A two-dimensional time series. (top) A real-valued 
fNIRS time series from a patient. (bottom) A Boolean time series 
representing the detection of movement by the patient.   

One dimension is a real-valued, functional Near-Infrared 
Spectroscopy (fNIRS) time series, and the other is a Boolean time 
series, which can be viewed as an “annotation” to the former. In a 
more general context, a ‘1’ in this time series may represent a rare 
desirable or undesirable state. Here, it represents an undesirable 
patient movement that introduces artifacts into the recordings [26].  

The weakly labeled time series learning task-at-hand reduces to the 
following:  

Suppose that we are given such training data ahead of time, but 
in the future, the Boolean time series will become unavailable 
(perhaps for some technical or privacy issue). Can we 
reconstruct the Boolean time series given just the real-valued 
signal?  

In some domains, this task can be trivial. For example, suppose the 
real-valued time series is Patient Temperature (PT), and 
the Boolean time series is HasFever (HF). Then a simple 
threshold rule, If PT > 100.4° F then HF ←TRUE, would work, and 
we could robustly learn this rule even from a small dataset.  

However, note that no such threshold-based rule would work for 
the example in Figure 1, where the height of the real-valued time 
series is unrelated to the Boolean value. Nevertheless, this toy 
problem does seem solvable based on alterative features. For 
example, the local variance of the time series seems to be higher at 
the relevant locations. However, in many datasets the variance, 
and/or other statistical features are also a poor indicator of the 
Boolean variable. In this work, we proposed to use shape features. 
As the zoom-in of the relevant sections demonstrates, shown in 
Figure 2, the local shape features may offer clues to the Boolean 
class labels. 
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Figure 2: A zoom-in of where Figure 1 indicated the positive 
class for the Boolean time series (red). The approximately 
repeated shapes in the fNIRS time series (highlighted in yellow) 
are suggestive of a mechanism to solve the task-at-hand. 

Similar problems where both time series are Boolean (or 
categorical) have been addressed in the literature [5]; however, the 
real-valued/Boolean task-at-hand here is significantly more 
difficult for the following reasons [25]: 

 Noisy Labels: The Boolean annotation may be noisy. That is to 
say, it may have some false positives and/or false negatives. In 
our running example, an electrical spike in the recording device 
may give use an Acceleration-Detected = TRUE even 
if there was no actual movement by the patient. 

 Label Slop: As hinted at in Figure 2, the Boolean labels may 
only be approximately aligned with the real-value patterns. This 
problem is common in manufacturing. It may be that the 
Boolean time series is some measure of quality 
(acceptable/unacceptable) that can only be measured after some 
time lag, for example by a once-a-shift stoichiometry test [9]. 
Therefore, a failed test can only be loosely associated with the 
entire last eight-hour period.  

 Class Skew: In our running example, the Acceleration-
Detected variable was TRUE about a quarter of the time. 
However, more generally, the minority Boolean class may be 
vanishingly rare. Again, this is typically true by definition. In 
medicine and industry, we often want to learn to detect events 
that we hope are vanishingly rare, such as epileptic fits or 
catastrophic overpressurization [12]. Thus, we expect that for a 
huge fraction of the time, a classifier will report “class 
unknown.” 

 Scale: We would like to (indeed, because of class skew and the 
rarity of targeted events, need to), be able to learn from very 
large datasets, with at least tens of millions of data points. 

 Multi-Scale Polymorphic Patterns: Most research assumes 
that time series patterns are of fixed length [1]. However, there 
is no reason to expect this to be true in real world applications. 
For example, suppose the Boolean label TRUE denotes an 
unacceptable yield quality in a chemical process. This might 
have been caused by a flow-rate that is increasing too 
quickly, is oscillating as it increases, or is increasing in discrete 
steps due to a sticky valve etc. [22].  Not only do these single 
class root-cause patterns look different (they are polymorphic), 
they can be of very different lengths.  

As the reader, will now appreciate, the data in the UCR and UCI 
archives are a poor proxy for learning from weakly labeled data on 
all the points above. While existing research on time classification 
tells us much about appropriate distance measures [1], the 
importance of data normalization etc., to the best of our knowledge, 
there is currently no system that tackle the challenges above.  

                                                                 
1 One of the current authors created or edited about one third of the datasets 

in the archive, and thus has some insights into this question. There are a 
handful of datasets that are polymorphic. For example, for Gun-Point, 
both classes are performed by two actors of very different heights and 
holstering styles. However, we believe that at least 90% of the datasets 
are not polymorphic. 

We note that beyond high classification accuracy, our solution to 
this problem also has a very desirable side-effect. The classification 
dictionaries we learn can (at least in principle) sometimes tell us 
something unexpected about the data/domain. For example, that the 
Asian citrus psyllid insect has two modes of eating (Section 5.2) 
and humans react more strongly to images of faces than to images 
of houses (Section 5.3). We suspect this secondary use of our 
algorithm may actually be more important in many domains.  

The rest of this paper is organized as follows. In Section 2 we 
discuss related work. Section 3 introduces the necessary definitions 
and notations. We introduce our algorithm, SDTS (Scalable 
Dictionary learning for Time Series) in Section 4 and provide a 
rigorous empirical evaluation in Section 5. Finally, in Section 6, we 
discuss limitations of our work, and offer directions for future 
work. 

2. BACKGROUND AND RELATED WORK 
The general literature on time series classification is vast; we refer 
the reader to [29] and the references therein. In the last decade, the 
majority of such research efforts consider only data from the UCR 
archive [1]. While this diverse set of datasets has been a useful 
resource to compare distance measures [29] and classification 
algorithms [1], it tends to mask the practical issues of real-world 
deployments. The format of the UCR Archive is the antitheses of 
our assumptions, which are enumerated in the last section. In all 
eighty-five datasets, the ground-truth labels are all correct, there is 
no label slop, the classes are highly balanced, and the sizes are 
relatively small (i.e., the training sets have an average of just 454 
exemplars). It is unclear if the datasets are polymorphic1, but each 
dataset only has patterns of a single fixed length.  

The most limiting assumption of the literature is that the universe 
consists of K well defined classes, and everything belongs to one 
such class. However, as our assumptions presage, we assume the 
universe consists of K-1 well defined classes, but there is an other 
class that is ill-defined and unstructured, and moreover, the vast 
majority of objects are belong to the class other. As a result of 
these mismatched assumptions, to the best of our knowledge, there 
is no technique in the literature [1][29] we can apply to this 
problem. 

There are a handful of research efforts that have noted the label slop 
problem in a slightly different context. The first work that 
specifically addresses the problem is [23]. They have cast the 
problem to the multi-instance learning framework by treating 
consecutive data points with uniform labels as bags. Instances are 
generated by first applying a sliding window within each bag, then 
conventional time series features are extracted within each sliding 
window. They use a multi-instance support vector machine to learn 
the correspondence between instances and labels. Recently, Guan 
et al. [7] has proposed a multi-instance learning graphical model 
based on Auto-Regressive Hidden Markov Model (ARHMM), 
which addresses the same problem. They improve upon [23] by 
explicitly modeling the temporal dynamics of time series using 
ARHMM. 
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There is a large body of work on prognostics and precursor search 
[10], some of which have goals that are similar to ours (see also 
Section 5.5). However, virtually all such work is highly domain 
specific. For example, [10] only considers a particular type of 
aviation evasive maneuvers, and [3] only investigates a single type 
of earthquake. Likewise, there is a vast body of work devoted just 
to the case when the time series comes from rotating machinery. 
The ability to inform/constrain an algorithm with first-principle 
models from aerodynamics, geology, or dynamics is clearly useful. 
However, it is contrary to our desire to have a parameter-free, 
domain-agnostic exploratory tool, that can work “out-of-the-box.” 

The core subroutine of our algorithm is subsequence similarity 
search [20], which we need to perform perhaps millions of times, 
in a (main memory) dataset that may also be millions of data points 
in length. This single fact may explain why we are the first to 
develop our rather straightforward algorithm. Until recently, the 
state-of-the-art for the similarity search task was the classic sliding-
window similarity search, which must extract every subsequence, 
z-normalize it, then compute the distance [20]. While this can be 
accelerated in several ways (omitting the square root step of 
Euclidean distance, early abandoning etc. [20]), it is still 𝑂(𝑛𝑚), 
with 𝑛  the query length and 𝑚  the dataset length. Note that it 
generally cannot be accelerated by caching the z-normalize 
subsequences, as this increases the memory footprint by a factor of 
𝑛, and 𝑛 may be in the thousands.   

The MASS algorithm recently introduced by Mueen and colleagues 
has reduced the time needed for subsequence similarity search to 
𝑂(𝑛𝑙𝑜𝑔𝑛) [14]. Moreover, here the big O notation masks an at-
least one order of magnitude additional difference. Unlike classic 
similarity search, the MASS algorithm has an extremely low 
constant factor. Moreover, it exploits FFT computation, which is 
the typically the most optimized algorithm in any software platform 
and is often accelerated by co-processors or other hardware 
optimizations. The practical implication of this is difficult to 
overstate. For example, in Section 5.3 we learn a model in 41 
minutes, but this would have taken us at least many hours, perhaps 
days, if the state-of-the-art that that existed prior to MASS was used 
instead. 

3. DEFINITIONS AND NOTATION 
We begin by defining the data type of interest, time series: 

Definition 1: A time series 𝑇 ∈ ℝ௡  is a sequence of real-valued 
numbers 𝑡௜ ∈ ℝ ∶ 𝑇 =  [𝑡ଵ, 𝑡ଶ, . . . , 𝑡௡] where 𝑛 is the length of 𝑇. 

We are not interested in the global properties of a time series, but 
in the local regions known as subsequences: 

Definition 2: A subsequence 𝑇௜,௠ ∈ ℝ௠  of a 𝑇  is a continuous 
subset of the values from 𝑇 of length 𝑚 starting from position 𝑖. 
Formally, 𝑇௜,௠  = [𝑡௜ , 𝑡௜ାଵ, … , 𝑡௜ା୫ିଵ]. 

The particular local property we seek to capture is repeating shapes, 
or time series motifs. In the general case, the most efficient way to 
locate time series motif is to compute the recently introduced 
matrix profile [33][34]. 

Definition 3: A matrix profile 𝑃 ∈ ℝ௡ି௠ାଵ of a time series 𝑇 is a 
meta time series that stores the z-normalized Euclidean distance 
between each subsequence and its nearest neighbor (within the all 
subsequence set of 𝑇), where 𝑛  is the length of 𝑇  and 𝑚  is the 
given subsequence length. 

The time complexity to compute 𝑃  is 𝑂(𝑛ଶ)  [34]. This maybe 
seems unscalable, but the following facts mitigate this. First, note 
that the time complexity is independent of m, the length of the 
subsequences. It is the dependence on m (the classic curse of 
dimensionality) that is the main limiting factor for other time series 
data mining algorithms [29].  

Secondly, the matrix profile can be computed with an anytime 
algorithm, and in most domains, in just 𝑂(𝑛𝑐) steps the algorithm 
converges to what would be the final solution (where 𝑐 is a small 
constant) [33]. Finally, the matrix profile can be computed with 
GPUs, cloud computing, and other high-performance computing 
environments that make scaling to at least tens of millions of data 
points trivial. 

Figure 3 shows the matrix profile of 𝑇ଵ. While the motif pair (red) 
is visually similar to the background random walk (black), the 
matrix profile still clearly reveals the locations of the motif pair. 

Figure 3: Matrix profile of 𝑻𝟏 . The two lowest points on 𝑷 
correspond to the locations of embedded motif pair. 

We are interested in the case which the real-valued time series 𝑇 is 
accompanied by a Boolean time series. 

Definition 4: Given a time series 𝑇, a Boolean time series 𝐵 ∈
{0,1} which annotated 𝑇 is a sequence of binary values 𝑏௜ ∈ {0,1} ∶
𝐵 =  [𝑏ଵ, 𝑏ଶ, . . . , 𝑏௡] where 𝑛 is the length of 𝐵 and the length of 𝑇. 

Note that in some domains, the Boolean time series may be 
produced natively, for example by a quality control technician 
annotating the yield quality as accept/reject [9], or by an 
attending physician annotating a patient’s record as 
tamponade/normal [18]. However, in other domains it may be 
the case that the analysist could convert a real-valued time series 
into a Boolean time series with a simple thresholding rule. In fact, 
as shown in Figure 4, this was how we produced the annotation for 
our running example.   

 

Figure 4: bottom-to-top) We took the acceleration from a fNIRS 
sensor and used it to produce a new time series containing the 
smoothed absolute value of acceleration. By thresholding this 
new vector, we produced the Boolean vector B that annotates 
the raw fNIRS (see Figure 1). 

  

0 50 100 150 200 250 300 350 400 450 500 550

T 1
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In many industrial domains the conversion may be even easier. For 
example, for a distillation column that is supposed to be able to 
produce at least 50 liters of material per second [12][22], we could 
convert the real-valued flow rate to a Boolean measure of quality 
by the trivial formula: Blow-yield =  flow-rate < 49. 

Note that for consistency with the literature, we refer to the TRUE 
labels as positive, and the FALSE labels as negative, without any 
reference to the desirability of the state. For example, chemical-
leak or EEG-seizure may be positive. Here positive just means 
the (typically rare) state we are attempting to predict.  

Definition 5: The weakly labeled time series problem is the task of 
generating the binary time series 𝐵′ of a given real-valued time 
series 𝑇′ using knowledge (e.g., rules) acquired from the previously 
seen binary time series 𝐵 and real-valued time series 𝑇. 

Due to the class imbalance (and binary) nature of the problem, we 
use 𝐹ఉ-score instead of accuracy as the measure of success [19]. 
We can set 𝛽 based on the relative importance of precision versus 
recall in the domain of interest. For example, 𝛽 can be set to 2 in 
cases where false alarms can be tolerated, while a failed alarm is 
more critical. 

Finally, we define the simple data structure that will allow us solve 
the problem-at-hand. We propose to solve the weakly labeled time 
series problem by automatically learning a dictionary.  

Definition 6: A 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦  is a set of shapes 𝑺  (possibly of 
different lengths), each with an associated threshold 𝐻. When used 
to monitor a new streaming time series 𝑇’, 𝐵′ is set to TRUE iff the 
current subsequence is within ℎ௜ of 𝑆௜ (ℎ௜ is 𝑖th member of 𝐻 and 
𝑆௜ is 𝑖th member of  𝑺), else it remains FALSE. 

In the next section, we will show how we can automatically learn 
such dictionaries from the data.  

4. THE SDTS ALGORITHM 
With all the definitions and notation specified, we are finally 
prepared to explain our algorithm. Since the weakly labeled time 
series problem is a learning/predicting type of task, we first 
introduce the dictionary learning algorithm in Section 4.1, and 
subsequently show how to predict with the learnt dictionary in 
Section 4.2. 

4.1 Learning the Dictionary 
Having defined the dictionary in the previous section, and 
motivated the use of the 𝐹ఉ-score to evaluate it, how can we find 
the best dictionary for a given dataset? Even if we confine the 
patterns in the dictionary to come from the data itself, and limit the 
maximum dictionary size, say to just five entries, the number of 
possible dictionaries exceeds a trillion for a modestly sized dataset. 
As outlined in Algorithm 1, we propose to use an optimized greedy 
search to construct the dictionary.  

In line 1, each segment that is marked positive in time series 𝑇 is 
extracted and concatenated to form another time series 𝑇’. This 
shorter time series 𝑇’ will allow us to limit the search space for 
shape features to place in our dictionary. Since the objective of the 
algorithm is to find a set of shape features used to predict positive 
segments, all possible shape feature candidates (according to 𝐵) are 
contained in 𝑇’. Our reason for concatenating all of the positive 
time series snippets into a single time series is more than a 
bookkeeping device; it allows us to extract the maximum speed-up 

from the STOMP algorithm [34]. Figure 5 shows how the shorter 
time series 𝑇’ is produced. 

Figure 5: Positive segments are extracted and concatenated to 
form a shorter time series 𝑻’ for matrix profile computation. 
We link positive segments together in our algorithm; the space 
between each segment is added for visual clarity. Recall that 
‘positive’ just means Boolean TRUE, not necessary desirable. 

In line 2, the matrix profile 𝑃 of 𝑇’ is computed (recall Definition 
3). Because 𝑇’ is generated by concatenating different segments of 
𝑇, the discontinuity in time creates subsequences that do not exist 
in 𝑇  (similarly to the pseudo word ‘clean’ formed in the 
concatenation of Oracleanomaly). To avoid considering such 
nonexistent subsequences as a shape candidate, subsequences that 
cross discontinuity are ignored when computing 𝑃 , and their 
corresponding values in 𝑃 are set to infinity. In line 3, a set of shape 
candidates 𝑪 are selected based on their matrix profile values. For 
each positive segment in 𝑇’, the subseqence with lowest matrix 
profile value is extracted and added to 𝑪 , because subsequences 
with lower matrix profile values are repeated with greater fidelity 
than others (by definition). Note: if there are a total of 𝑏 positive 
segments, the size of 𝑪 is also 𝑏. Figure 6 shows how the member 
of 𝑪 is selected using 𝑃. 

 

Figure 6: Candidate set 𝑪  is selected from the shorter time 
series 𝑻’ based on the matrix profile 𝑷. The subsequences with 
smaller values in 𝑷 are selected and are added to 𝑪. 

From lines 4 through 6, each shape feature 𝐶 in 𝑪 is individually 
evaluated by finding the threshold that optimizes the 𝐹ఉ-score when 
used to perform a prediction on 𝑇. Both the discovered threshold 
and corresponding 𝐹ఉ -score are stored in 𝐻஼  and 𝐹  respectively. 
The threshold is found efficiently by using the golden section 
search algorithm [30]. Although the thresholds found here are 
refined later in line 8 through 23, when the combination of shape 
features are considered, an initial set of thresholds is required as the 
initial condition for the coordinate ascent golden section  
search [30]. 

annotation, B

time 
series, T
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concatenateshorter time 
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In lines 8 through 23, the final shape features are selected using 
greedy search. Each shape candidate 𝐶 in 𝑪 is tested by performing 
a prediction on 𝑻  when used in conjunction with previously 
selected candidates in 𝑺 . It is important that we evaluate the 
candidate in the context of previously added patterns; otherwise, 
the dictionary may fill up with redundant patterns that are only 
slight variants of each other. 

When testing a given candidate 𝐶 , first we refine the threshold 
setting for each shape feature by using the golden section search 
algorithm in a coordinate ascent fashion; as using multiple shape 
feature may require less strict thresholds. In the inner loop (line s10 
through 17), each candidate 𝐶  is tested independently with the 
previously selected shape feature, and the best one is stored in 𝑺𝒃𝒔𝒇. 
From lines 18 through 22, if 𝑺𝒃𝒔𝒇 improves the 𝐹ఉ-score, 𝑺𝒃𝒔𝒇 is 
added to 𝑺. Otherwise, the greedy search is terminated. To ensure 
that the candidates are tested on a sufficient amount of validation 
data, the number of shape features is limited to half of the number 
of candidates. Finally, the selected shape feature 𝑺 and associated 
threshold 𝐻 are returned in line 24.  

Algorithm 1: Dictionary Learning Algorithm.  

Procedure train(𝑇, 𝐵, 𝑚) 
Input: time series 𝑇, annotation 𝐵, and subsequence length 𝑚 
Output: dictionary (set of shape features 𝑺 and thresholds 𝐻). 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

𝑇’ ← extractPositiveSegment(𝑇, 𝐵) 
𝑃 ← computeMP(𝑇’, 𝑚)                               // see Definition 3 
𝑪 ← extractShapeCandi(𝑇’, 𝑃, 𝑚) 
for each 𝐶 in 𝑪 
    𝐻஼, 𝐹 ← findThresholdEvalF(𝐶, 𝑇, 𝐵) 
end for 
𝑓 ← −∞, 𝑺 ← ∅, 𝐻 ← ∅ 
for 𝑖 from 0 to |𝑪|/2 
    𝑓௕௦௙  ← −∞, , 𝑺𝒃𝒔𝒇 ← ∅, 𝐻௕௦௙ ← ∅ 
    for each (𝐶, ℎ) in (𝑪, 𝐻஼) 
        𝑺𝒏𝒆𝒘 ← 𝑺 ∪  𝐶 
        𝐻௡௘௪ ← 𝐻 ∪  ℎ  
        𝐻௡௘௪, 𝑓௡௘௪ ← refineThresholdEvalF(𝑺𝒏𝒆𝒘, 𝐻௡௘௪, 𝑇, 𝐵) 
        if 𝑓௡௘௪  >  𝑓௕௦௙ 
            𝑓௕௦௙ ← 𝑓௡௘௪, 𝑺𝒃𝒔𝒇 ← 𝑺𝒏𝒆𝒘, 𝐻௕௦௙ ← 𝐻௡௘௪ 
        end if 
    end for 
    if 𝑓௕௦௙  >  𝑓 
        𝑓 ← 𝑓௕௦௙, 𝑺 ← 𝑺𝒃𝒔𝒇, 𝐻 ← 𝐻௕௦௙ 
    else 
        break 

    end if 

end for 
return 𝑺, 𝐻 

 

To extend SDTS to allow dictionary elements of various lengths, 
we simply compute multiple matrix profiles using different settings 
of 𝑚  in line 2 and combine extracted candidate from each 
individual matrix profile in line 3. Note that while Euclidean 
distances of different lengths time series are not commensurate, the 
𝐹ఉ -scores derived from different lengths time series pattern are 
commensurate. 

Users can simply provide a set of 𝑚  to SDTS, and SDTS will 
automatically select shape features with the appropriate lengths. 
SDTS is not particularly sensitive to the setting of 𝑚 , as we 
demonstrate in Figure 7. Given this, users can simply provide a 
coarse grid around the natural scale of the time series event. For 
example, if the user vaguely suspects that one hour is about the 
natural scale of the (sampled once a minute) data, the user can pass 
in a set of values for m such as [55, 60, 65] to bracket their intuition. 

The results of this search will almost certainly be as good as a 
search over increments of one second or finer. 

Figure 7: The performance of SDTS is relevantly insensitive to 
the settings of 𝒎. For an embedded pattern of length 275 (see 
section 5.1), the F1-score is about 0.6 for the large range of 𝒎 
greater than 50 and less than 300. 

Beyond speed-up, there is an additional reason why the coarser 
search may be more desirable. We hope that our discovered rules 
will be examined (and perhaps edited) by the domain experts. Such 
experts are likely to feel more comfortable dealing with rules such 
as “If you see this one hour-long valley in the temp reading…”, than 
the spuriously precise “If you see this fifty-nine minute, thirty-seven 
second-long valley…” [11]. 

4.2 Using the Learned Dictionary 
Having learned the dictionary, applying it is straightforward; 
however, in Algorithm 2, we outline the details of its application 
for completeness. 

In line 1, the predicted annotation 𝐵’ is initialized as a zero vector 
of the same size as the input time series 𝑇′. From line 2 to line 9, 
we test each shape feature in the dictionary on 𝑇′. First, we compute 
the z-normalized Euclidean distance between a shape feature and 
each subsequences of the same length by using the MASS 
algorithm [14]. Next, from line 4 to line 8, we check each value in 
the distance vector 𝐷, and flag the subsequence as positive if its 
value is below the associated threshold ℎ . Lastly, the predicted 
annotation 𝐵’ is returned in line 10. The time complexity of the 
prediction algorithm is 𝑂(|𝑺| 𝑛′ 𝑙𝑜𝑔 𝑛′)  as we perform MASS 
algorithm |𝑺|  times, and each MASS call takes 𝑂(𝑛′ 𝑙𝑜𝑔 𝑛′) , 
where 𝑛′ is the length of 𝑇’.  

Algorithm 2: Prediction Algorithm.  

Procedure predict(𝑇′, 𝑺, 𝐻) 
Input: time series 𝑇′  and dictionary (set of shape features 𝑺  and 
thresholds 𝐻). 
Output: 𝐵’ predicted annotation 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

𝐵′ ← vector of zeros 
for each (𝑆, ℎ) in (𝑺, 𝐻) 
    𝐷 ← MASS(𝑆, 𝑇′)                                // see [14] 
    for 𝑖 from 0 to length(𝐷)-1 
        if 𝐷[𝑖] < ℎ 
            𝐵’[𝑖] ← 1 
        end if 
    end for 
end for 
return 𝐵’  

 

The extension of the prediction algorithm to streaming time series 
monitoring is trivial. In line 3, instead of computing the z-
normalized Euclidean distance between a shape feature to all 
subsequence in 𝑇’, we simply compute the z-normalized Euclidean 
distance between the shape feature and the newly observed 
subsequence, and check the newly computed distance with the 
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associated threshold.  Naïvely, this operation takes 𝑂(𝑚) each time 
the algorithm ingests a new point (where 𝑚 is the length of shape 
feature). However, since the goal is to determine whether the 
resulting distance is below the threshold, techniques such as early 
abandoning and lower bounding [20] can be applied to speed up the 
computation. To concretely ground the computational demands, 
even if the dictionary contained one hundred shape features, each 
of length 1,000, it would be trivial to process a stream arriving at 
500Hz, using off- the-shelf hardware.   

5. EXPERIMENTAL EVALUATION  
We begin by stating our experimental philosophy. We have 
designed all experiments in a manner such that they are easily 
reproducible. To this end, we have built a Web page [24] that 
contains all datasets and code used in this work, together with 
spreadsheets which contain the raw numbers. 

Throughout the experiment section, we report the 𝐹ଵ-score as the 
single number measurement of success. We also report the wall 
clock time required, running on a desktop computer with Intel Core 
i7‑6700K 4 GHz Quad‑Core Processor. It is difficult to overstate 
the utility of the MASS algorithm in accelerating our learning 
algorithm. Where appropriate below, we will report the time taken 
if we eschew MASS, and resort to the second fastest known 
algorithm for Euclidean search [20].  Such times are necessarily 
estimated. 

We begin our experiments with a synthetic dataset. Such tests are 
less compelling than the four diverse real-world case studies that 
follow it. However, the synthetic dataset allows us to “stress test” 
our algorithm, by varying the factors that make the task-at-hand 
challenging. 

5.1 Stress Testing on a Synthetic Dataset 
The TRACE dataset [21] is a synthetic dataset designed to model 
industrial processes that are “..characterized by long periods of 
steady-state operation, intercalated by occasional shorter periods 
of a more dynamic nature in correspondence of either normal 
events, such as minor disturbances, planned interruptions or 
transitions to different operation states, or abnormal events, such 
as major disturbances, actuator failures, instrumentation failures, 
etc.”. These are all data characteristics that have been echoed back 
to Oracle by its IOT customers in the manufacturing and the oil-
and-gas industries [17]. Testing on such synthetic data offers us the 
possibility of studying how the properties of the data and the 
domain affect our ability to learn. 

We begin by performing a single experiment on a particular 
instantiation of the problem space; then, having calibrated our 
expectations, we vary each factor of the problem space one-by-one, 
while holding everything else constant to see how much that factor 
matters. The factors in question are: 

 Occurrence of positive events: Varying this factor is similar 
to varying skewness between classes (and number of training 
example) in traditional binary classification. 

 Fraction of false positive labels: Some segments without 
repeated shape features are marked as positive. Varying this 
factor allows us to examine the algorithm’s robustness against 
noisy labels. 

 Fraction of false negative labels: Some sections of the raw 
time series with conserved shape features are marked as 
negative. Similarly to the last factor, varying this factor allows 
us to examine the algorithm’s robustness against noisy labels. 

 Amount of label slop: This factor is unique to weakly labeled 
time series classification, and is measured by the fraction of 
each positive segment being irrelevant time series (i.e., time 
series other than embedded shape feature). Varying this factor 
allows us to examine the algorithm’s ability to work against 
imprecise labels in time. 

The default setup is as follows: 100 occurrences of positive events, 
0 false positives, 0 false negative, and 0.7 label slop. 

We have summarized the 𝐹ଵ -score, precision, and recall versus 
various settings in each factor in Figure 8, Figure 9, Figure 10, and 
Figure 11. Note that in each plot, only a single factor is varied while 
all the other factors are kept fixed. The synthetic data was generated 
by embedding TRACE patterns to random walk. Each set of 
experiments was repeated 16 times (with random walks generated 
by different seed), and the reported performances averaged 16 
trials. Since the random walk for each set of experiments was 
generated independently, the performance of the default setups in 
each figure is slightly different, but within each plot, the numbers 
are commensurate as we vary the factors.   

As shown in Figure 8, increasing the number of positive events 
benefits SDTS, since the number of shape feature candidates is 
directly proportional to the occurrence of positive events, and 
SDTS benefits from larger set of candidates to search over. 

 

Figure 8: The performance of SDTS versus various settings of 
positive events occurrence. SDTS’s performance suffers 
slightly when the number of positive events decreases. 

Moreover, increasing the number of positive events can mitigate 
the issues associated with class imbalance. Since the length of 
training data is fixed, increasing the ratio of positive events reduces 
the preponderance of negative events; thus nudging the positive to 
negative ratio is closer to 1. 

In contrast, SDTS’s 𝐹ଵ-score, precision, and recall all suffer from 
the increase of false positives (i.e. mislabeled data) in the training 
data as demonstrated in Figure 9. 

 

Figure 9: The performance of SDTS versus various settings of 
false positive fraction. Unsurprisingly, the performance 
decreases as the false positive fraction increases, but the 
degradation is slow and graceful. 
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It is unsurprising that the performance of the system degrades with 
increasing false positive labels. However, the performance of 
SDTS offers graceful degradation and does not fall dramatically, 
even when the fraction of false positive is as high as 0.5. 

As shown in Figure 12, SDTS’s 𝐹ଵ-score and recall suffer from the 
increase of false negatives. Yet, the precision is maintained at a 
relatively high value compared to the other two performance 
metrics. 

 

Figure 10: The performance of SDTS versus various settings of 
false negative fraction. Interestingly, the precision increases 
when the false negative fraction increases. 

One possible explanation is that the false negatives force the 
dictionary learning algorithm to learn a tighter threshold, because 
the algorithm is trying to separate a captured (true) shape feature 
from an embedded shape feature (which is very similar to the 
captured shape feature) in negative segment. Similar to Figure 9, 
the 𝐹ଵ -score of SDTS does not drastically decrease until the 
fraction of false negative is 0.7. 

The experiment shown in Figure 11 suggests that SDTS’s 
performance is only slightly impaired by large amounts of label 
slop. One possible reason is that SDTS is shift invariant. In other 
words, as long as the embedded shape feature is within the positive 
segment, SDTS would find the shape feature even if the ratio 
between noise and signal (the shape feature) is as large as 0.9. 

 

Figure 11: The performance of SDTS versus various settings of 
label slop amount. SDTS is not sensitive to increasing amounts 
of label slop. 

5.2 Case Study I: Insect EPG 
Insects that feed by ingesting plant fluids cause devastating damage 
to agriculture worldwide, primarily by transmitting pathogens of 
plants. As a concrete example, the Asian citrus psyllid (Diaphorina 
citri) shown in Figure 12.top a is vector of the pathogen causing 
citrus greening disease, and has already caused billions of dollars 
of damage to Florida’s citrus industry in the last decade and is 
poised to do this same in California. 

Figure 12: top-to-bottom) The Asian citrus psyllid can be 
connected to an EPG (Electrical Penetration Graph) 
apparatus, and have its behavior recorded. As the three minute, 
and three hour snippets show, this behavior is suggestive of 
structure, but nosily and complex. 

As shown in Figure 12, the feeding processes required for 
successful pathogen transmission by psyllids can be recorded by 
monitoring voltage changes across an insect-food source feeding 
circuit. However, as [31] notes “The output from such monitoring 
has traditionally been examined manually, a slow and onerous 
process.” While we do not wish to makes any claims of 
entomological significance, it is natural to ask if our ideas can be 
applied to such datasets. 

We obtained a dataset recently made publicly available by the 
United States Department of Agriculture. While this dataset has 
been labelled by domain experts, as we show in Figure 13, it 
contains significant label slop, and is thus an ideal dataset to test 
SDTS robustness to that issue.  

Figure 13: An original annotation of a transition from stylet 
passage to non-probing behavior [31]. Although we do not 
have access to the original data, it is virtually certain that this 
is an example of label slop (see Section 1). 

We learn the model from one EPG recoding section of an insect 
feeding on Corrizo (a rootstock for citrus) and verify the learned 
model on another EPG recoding of feeding on the same citrus 
variation. While both experiments consider the same species, the 
Asian citrus psyllid, and the individual insects where different, thus 
we are testing the generalization ability of our algorithm. 

To demonstrate our algorithm’s ability to capture shape features 
from multiple classes, we treat both phloem ingestion and xylem 
ingestion as the positive class. SDTS is able to achieve a 𝐹ଵ-score 
of 0.78, a precision of 1.00, and a recall of 0.64. Figure 14 shows 
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the prediction result with the ground truth label. We can see that 
SDTS is capable of learning a model that gives no false positives 
despite some false negative. 

 

Figure 14: The annotation predicted by SDTS versus the 
ground truth annotation. The prediction of SDTS is not perfect, 
but it has no false positives. 

Beyond the high accuracy achieved, we wonder if the dictionary 
learned is itself useful and/intuitive. We showed the model to Dr. 
Gregory Walker (Figure 15), who has not involved in collecting the 
data, but who has decades of experience in manually exploring EPG 
data. He noted “(the first two waveforms) represent ingestion from 
two different apoplastic compartments such as xylem versus other 
extracellular space.” [28], which confirms that the two patterns are 
indeed polymorphic variants of a single behavior. 

 
Figure 15: The first two patterns in the learned EPG model 
show that a single class can be highly polymorphic.     

5.3 Case Study II: Neuroscience 
The connection between visual perception of objects and neural 
activity in the visual cortical areas is a fundamental problem in 
neuroscience [15]. Recent work has shown that that electrical 
potential from the temporal lobe in humans contains sufficient 
information for spontaneous and near-instantaneous identification 
of a subject’s perceptual state [15]. However, such efforts require 
an extraordinary amount of domain knowledge, data preprocessing, 
and algorithm tuning. Here, we will attempt to duplicate some 
fraction of the recent achievements, with our completely domain 
agnostic algorithm. To be clear, we are not claiming any medical 
significance or utility in this section. We are merely showing that, 
in a real-word, noisy, complex and massive electrocorticographic 
(ECoG) dataset (see Figure 16) created out of our control, we can 
robustly learn models that capture true structure in the data and 
allow (much) better-than-random guessing predictions on unseen 
data. 

 

Figure 16: A small snippet of the electrocorticographic data 
used in our face discrimination experiment. The positive class 
is when the patient can see a face, and the negative class is 
when the patient is seeing either a house or nothing. 

The ECoG data we consider was collected from an epileptic patient. 
Electrodes were placed directly on the patient’s occipital lobe (the 
visual processing center for the mammalian brain). Fifty images of 
faces and fifty images of houses were shown to the patient in a 
random order, with 0.4-second pauses in-between. While fifty 
1,000 Hz traces where recorded from various parts of the brain, for 
simplicity we consider only a single trace. Our task is to examine 
the traces to find patterns that indicate that the patient is seeing a 
face. 

As noted on [15] “face-selective (time series patterns) may have 
wide structural variation, with ‘peaks’ and ‘troughs’ that are very 
different in shape, latency, and duration,” making this a 
challenging task. It particular, we see this uncertainty in latency and 
duration as label slop. 

We performed our experiment on subject 2. We partitioned the 
original time series into three sections (each section corresponding 
to different experiment runs) and performed three-fold cross 
validation similarly to [15]. To confirm that SDTS performs better 
than the default rate (random guessing in proportion to the prior 
probability of events), we repeated the experiment on the same data 
using a permutation test [16]. We generated the permuted labels by 
randomly shuffling the temporal location of the positive segments. 
In other words, a positive segment may or may not correspond to 
face in the false label. The experimental results suggest that 
SDTS is significantly better than random guessing (𝐹ଵ-score of 0.47 
vs. 0.21). This is a huge difference, and it is unsurprising that a two-
sample t-test confirms the difference at a 5% level. 

The time it takes SDTS to learn a model from the ECoG dataset 
was 41 minutes. If we replace MASS with the standard Euclidean 
distance subsequence-search technique, a sliding window that 
exacts the subsequences, z-normalizes them, and then compares the 
distance, this time grows to a few days. Interestingly, (as also noted 
in [20]), we found the time needed to z-normalize the subsequences 
dominates the time required for this operation.   

5.4 Case Study III: Traffic Loop Sensor 
To demonstrate that SDTS does not produce an unnecessarily 
complex dictionary for simple problems, we have applied SDTS on 
the much-studied Dodgers loop sensor dataset [4][8]. This dataset 
records the number of vehicles on the 101 North freeway off-ramp 
near Dodgers Stadium in Los Angeles for 25 weeks. The research 
community has performed a wide variety of time series data 
miming experiments on the dataset. The particular experiment we 
performed was weekend detection. In other words, in the 
accompany annotation of the training data, all the weekends were 
marked as positive while the weekdays were marked as negative. 
While this is a contrived problem, it is not trivial. As Figure 17 
suggests, the data is noisy. Moreover, there are dropouts (random 
occasions when the sensor was offline), and several weekday 
holidays that might act as pseudo weekends. The data exhibits 
“bursts” when the Dodgers played a home game, which could be 
any day of the week. Finally, as the data spans a half year, and we 
learn from only the first twelve weeks, there is the possibly of 
concept drift as the seasons change.  

Nevertheless, as Figure 17 shows, in general, a typical weekday 
traffic pattern does look different than typical weekend traffic, 
suggesting a simple model should suffice for accurately 
distinguishing the weekend from a weekday. 
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Figure 17: The major differences between weekend (red/bold) 
and weekday (blue/fine) patterns are the morning and evening 
rush hour ‘bumps’. 

To perform such an experiment, we trained the SDTS model on the 
first half of data. Then, we used the learned model on the second 
half. The result model is surprisingly simple. The model only 
contains one shape feature, corresponding to traffic density in the 
morning (more precisely, midnight to noon) of a Saturday. The 
captured feature is relevant as it can be used to differentiate a 
(relatively) quiet weekend morning from a busy weekday morning. 
Figure 18 shows the captured shape feature and how different it is 
from the traffic data from a weekday. 

 

Figure 18: The capture shape feature is corresponding to 
weekend morning traffic. 

Despite the learned model being sample, it can accurately detect 
weekend from the traffic data. Figure 19 shows how similar the 
predicted annotation is to the ground truth. 

 

Figure 19: The ground-truth vs. prediction of the SDTS model.  
Of 13 weekends, the learned model perfectly annotates 9 of 
them. The other 4 weekends are slightly mislabeled in terms of 
their temporal locations (Falsely skipping the Saturday or 
mistakenly labeling Friday as a weekend day). 

This is a good place to revisit one of our assumptions. Recall that 
we are searching for subsequences in the z-normalized space 
(Definition 3). Here, it might be imagined that we should not 
normalize the data, as the absolute values offer clues, with higher 
traffic volumes on weekdays. If this is really desired, it is trivial to 
achieve, as the MASS algorithm, and the Matrix Profile that is built 
upon it, can trivially be converted to an amplitude/offset sensitive 
algorithm by simply commenting-out some lines of code [14]. 
However, we claim that this is unlikely to ever be appropriate. 
Recall that in our motivating example shown in Figure 1, the shape 
was informative, but the change in offset (in this domain, 
“wandering baseline”) was not. We argue that this is generally true, 
even in this apparent counterexample. For example, the absolute 

volume of cars could change due to nearby road maintenance, or 
even because of changes in the price of fuel; however, the overall 
shapes will remain near constant. In [20], the authors make a more 
detailed argument that virtually every task, in almost every dataset 
requires the normalization of subsequences. 

5.5 Predicting the Future: A Tentative Case Study 
As the experiments in the previous sections suggest, the ability of 
SDTS to predict the current state of the world can be useful in many 
domains. However, in many situations it is clearly more desirable 
and actionable to predict the future state of the world. Such shape 
features are called sometimes called “precursors” or “precursors 
signatures” (although the literature is inconsistent in its 
nomenclature [3][10]).  

As Figure 20 suggests, it is trivial to generalize SDTS to allow the 
discovery of precursors. 

Figure 20: top) A visual reminder of the original setup for the 
weakly labeled classification problem (recall Figure 1). bottom) 
Generalizing the problem to a precursor setting simply 
requires compensating for the lag between the binary time 
series 𝑩 and real-valued time series 𝑻. 

All we need do to generalize from our typical consideration of “co-
cursors” to precursors, is create a lag between the binary time series 
𝐵 and real-valued time series 𝑇 (conversely, it may sometimes be 
more natural to speak of the lead time between 𝑇 and 𝐵). As a 
practical matter, we can achieve this by simply removing the first 
𝐿 data points of 𝐵, where L is the length of the desired lag.  

We may have some ideas of a reasonable value for 𝐿 based on the 
domain. For example, for a small distillation column a lag of five 
minutes might be ambitious, but for a large distillation column, the 
inertia of the system may allow a lag of a few hours [9]. As it 
happens, this discussion of a domain dependent constraints may be 
moot. We will always want as much lead time as possible, and our 
proposed algorithm is fast enough to test expanding values of 𝐿 
until the scoring function is unable to find predictive patterns.  

To test this idea, we have adapted a real dataset. This contrived 
experiment is not as interesting as the propriety real-world 
customer problem that inspired this work, but has the advantage 
that we can share all the data with the community. 

As shown in Figure 21.right, the Sony AIBO is a small quadruped 
robot that comes equipped with a tri-axial accelerometer and a 
(very) low-resolution camera. This accelerometer measures data at 
a rate of 125 Hz. In Figure 21.left, we show two snippets of 
telemetry from the accelerometer’s z-axis (the direction pointing 
skyward) as the robot walks on two different surfaces. As the reader 
will appreciate, the differences in gait due to the surface makes are 
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non-obvious, even after careful visual inspection, and seem 
swamped by natural viability and noise.  

 

Figure 21:  left) Two three-second snippets extracted from a 
Sony AIBO robot dog (right). The snippets show about three 
gait cycles. 

The onboard camera and limited processing power do not lend 
themselves to complex image processing, but we can simply ‘snap’ 
a targeted color to the positive class. Finally, if we task our dog to 
walk backwards across the lab, we will produce a dataset that 
exactly models the setup in Figure 20.bottom, with series 𝑇 being 
the accelerometer value, and 𝐵  being cement=TRUE extracted 
from the video feed. The exact amount of lag depends on the angle 
of the robot’s head. Again, while we acknowledge that this toy 
experiment is highly contrived, it is non-trivial, and is an excellent 
proxy for real-word problems in prognostics for manufacturing and 
transport.  

Our dataset was created by interleaving the z-axis accelerometer 
time series of Sony AIBO surface recognition dataset [27]. The 
original dataset consists of accelerometer time series, 
corresponding to the robot walking on different surfaces (i.e., 
carpet, field, and cement) [27]. The goal of our experiment is to 
show that SDTS is capable of discovering precursors for an event 
of interest. Among the three classes provided by the Sony AIBO 
dataset [27], we picked “walking on cement” as the targeted event 
of interest. 

We begin by splitting each of the time series into disjoint training 
and test splits. Then, we apply the following three steps 
independently to the training and test data.  

1. carpet and field are concatenated together to make the 
problem more challenging.  

2. cement is sliced into segments of various lengths.  

3. The segments of cement are embedded into the carpet-
field time series at multiple randomly selected locations. 

Figure 22.top illustrate how the time series from various classes are 
put together. Note that the duration of the positive events, and the 
amount of interstitial time between them, are random and highly 
variable.  

In order to generate the accompanying annotation for precursor 
discovery training data, we flag a small chunk (about 2 seconds in 
time) of the annotation time series as positive at the beginning of 
each cement regions. To make the situation conform to our 
assumptions, the positive segments for each cement regions has a 
lag relative to the actual starting point of cement, because our 
robot experiences a slight change in gait (due to walking on a 
different material), before visually confirming the change of 
surface.  Figure 22.bottom shows an example of such annotation. 

 
Figure 22: top) A representation of the surface walked upon by 
the robot. bottom) The annotation used to train SDTS for 
precursors of walking on “cement” has a slight lag, due to the 
delay between the robot experiencing the real-value stimulus, 
and seeing the positive label.  

With the annotation for training data prepared in this fashion, we 
can simply apply the SDTS algorithm without any modification, to 
discover the precursor(s) for “walking on cement.”  Figure 23 
shows the predicted annotation against the ground truth. The 
corresponding 𝐹ଵ -score is 0.63. There are a handful of false 
negatives, but all regions predicted as positive are indeed just prior 
to the robot seeing cement. 

 
Figure 23: top) The surface walked on by the robot the ground 
truth for our predictions. bottom) The predictions made by our 
precursor model, found using SDTS. 

In essence, this experiment shows that in principle, we can use 
SDTS to gain a little “lead-time” to predict upcoming events. 

6. DISCUSSION AND CONCLUSIONS 
Of the four case studies we considered, we believe that only Traffic 
Loop Sensor would be solvable by “eye”, by the average person. 
The Insect EPG dataset appears to be at least partially solvable by 
humans, but only fully solvable by expert entomologists with 
decades of experience examining such data [28]. For both the Robot 
Gait and Neuroscience datasets, our algorithm offers truly 
superhuman performance. Even if we “cheat” by examining 
various sources of extra information, the differences discovered by 
our algorithm are too subtle for us to appreciate, much less 
duplicate or improve upon with human-coded rules. 

In conclusion, we have introduced SDTS, a parameter-free domain 
agnostic algorithm for learning from weakly supervised datasets. 
We have made all code and data freely available to the community, 
to confirm, extend, and exploit our work [24].  

Future work includes consideration of the multidimensional time 
series case, and allowing humans to interactively edit the learned 
models. We are also interested in the “cold-start” problem [6]. 
Could a model learned on one domain be used on similar domain, 
at least until enough data has been observed to allow relearning the 
model? In the industrial domain, this problem can arise if the 
production run for one object finishes, and a new production run 
for a similar device begins.   

annotation

surface material: carpet or field, cement

prediction

surface material: carpet or field, cement

1811



7. ACKNOWLEDGMENTS 
Our thanks go out to all the donors of datasets and domain experts 
who offered advice. This research was funded by gifts from Oracle 
and NSF awards 1510741 and 1544969. 

8. REFERENCES 
[1] Bagnall, A., Lines, J., Hills, J., Bostrom, A. Time-Series 

Classification with COTE: The Collective of Transformation-
Based Ensembles. IEEE Trans. Knowl. Data Eng. 27(9): 
2522-2535. 2015. 

[2] Chen et al., The UCR time series classification archive. 
http://www.cs.ucr.edu/~eamonn/time_series_data/. 

[3] Cheong, S. A. Extracting Earthquake Precursor Signatures 
Through Time Series Clustering, contributed talk, Western 
Pacific Geophysics Meeting, 23 June 2010, Taipei, Taiwan. 

[4] Freeway Performance Measurement System (PeMS). 
http://pems.eecs.berkeley.edu/. 

[5] Fung, P. and Church, K. K-vec: A New Approach for Aligning 
Parallel Texts. In Proceedings of COLING 94. pp. 1096–1102. 
Kyoto, Japan.1994. 

[6] Gao, M., Tian, R., Wen, J., Xiong, Q., Ling, B., Yang, L. Item 
Anomaly Detection Based on Dynamic Partition for Time 
Series in Recommender Systems. PLoS ONE 10(8). 2015. 

[7] Guan, X., Raich, R. and Wong, W. K. Efficient Multi-Instance 
Learning for Activity Recognition from Time Series Data 
Using an Auto-Regressive Hidden Markov Model. In 
Proceedings of the 33rd International Conference on Machine 
Learning. pp. 2330-2339. 2016. 

[8] Ihler, A., Hutchins, J. and Smyth, P. Adaptive event detection 
with time-varying Poisson processes. Proceedings of the 12th 
ACM SIGKDD Conference. 2006. 

[9] Jain, P. L. Quality Control & Total Quality Management. Tata 
Mcgraw Hill Publishing Co Ltd. 2001. 

[10] Janakiraman, V. M., Matthews, B. L., Oza. N. C. Discovery 
of Precursors to Adverse Events using Time Series Data. SDM 
2016: 639-647. 

[11] Johansson, U., Niklasson, L., Köning, R. Accuracy vs. 
comprehensibility in data mining models. Proceedings of the 
Seventh International Conference on Information Fusion. 
Stockholm, Sweden. 2004. pp. 295–300. 

[12] Large Property Damage Losses in the Hydrocarbon Industry: 
The 100 Largest Losses 1974–2013, Marsh, 2004. 

[13] Lichman, M. UCI Machine Learning Repository. Irvine, CA: 
University of California, School of Information and Computer 
Science. 2013. 

[14] Mueen, A. et al. MASS: The Fastest Similarity Search 
Algorithm for Time Series Subsequences under Euclidean 
Distance. 2015. 
www.cs.unm.edu/~mueen/FastestSimilaritySearch.html 

[15] Miller, K. J., Schalk, G., Hermes, D., Ojemann, J. G. and Rao, 
R. P. N. Spontaneous Decoding of the Timing and Content of 
Human Object Perception from Cortical Surface Recordings 
Reveals Complementary Information in the Event-Related 
Potential and Broadband Spectral Change. PLOS 
Computational Biology, 12. 2016. 

[16] Ojala M. and Garriga, G. C. Permutation tests for studying 
classifier performance, J Mach Learn Res. 2010, vol. 11. 

[17] Oracle Corporation. Driving Real-Time Insight: The 
Convergence of Big Data and the Internet of Things. White 
paper. 2016. 

[18] Ozturk et al. Evaluation of non-surgical causes of cardiac 
tamponade in children at a cardiac surgery center. Pediatr Int 
2014; 6:13–18. 

[19] Powers, D. M W. Evaluation: From Precision, Recall and F-
Measure to ROC. Informedness, Markedness & Correlation. 
Journal of Machine Learning Technologies. 2 (1): 37–63. 
2011. 

[20] Rakthanmanon T. et. al. Searching and mining trillions of time 
series subsequences under dynamic time warping. KDD 2012: 
262-270. 

[21] Roverso, D., Multivariate temporal classification by 
windowed wavelet decomposition and recurrent neural 
networks, in 3rd ANS Int’l Topical Meeting on Nuclear Plant 
Instrumentation, Control and Human-Machine Interface, vol. 
20, Washington, DC, USA, 2000. 

[22] Sanders, E. Chemical Process Safety. Learning from Case 
Histories, 3rd ed., Elsevier , Oxford 2005. 

[23] Stikic, M., Larlus, D., Ebert, S. and Schiele, B. Weakly 
supervised recognition of daily life activities with wearable 
sensors. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 33(12), pp.2521-2537. 2011. 

[24] Supporting website: 
http://www.cs.ucr.edu/~myeh003/weaklyLabeled/ 

[25] Sweeney, K. T., Ayaz, H., Ward, T. E., Izzetoglu, M., 
McLoone, S.F., Onaral, B. A. Methodology for Validating 
Artifact Removal Techniques for Physiological Signals. IEEE 
Trans Info Tech Biomed 16(5):918-926; 2012. 

[26] Sweeney, K.., McLoone, S., Ward, T. The use of ensemble 
empirical mode decomposition with canonical correlation 
analysis as a novel artifact removal technique. IEEE 
transactions on biomedical engineering 60.1 (2013): 97-105. 

[27] Vail, D. and Veloso, M. Learning from accelerometer data on 
a legged robot. In Proceedings of the 5th IFAC/EURON 
Symposium on Intelligent Autonomous Vehicles. 2004. 

[28] Walker, G., Personal Correspondence. February 7, 2017. 
[29] Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, 

P., Keogh, E. J. Experimental comparison of representation 
methods and distance measures for time series data. Data Min. 
Knowl. Discov. 26(2): 275-309. 2013. 

[30] Wikipedia contributors. Golden-section search. Wikipedia, 
The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 
26 Jan. 2017. Web. 6 Feb. 2017. 

[31] Willett, D. S., George, J., Willett, N. S., Stelinski, L. L., 
Lapointe, S. L. Machine Learning for Characterization of 
Insect Vector Feeding. PLoS Comput Biol 12(11). 2016. 

[32] Witten, I. H., Frank, E., Trigg, L., Hall, M., Holmes, G., 
Cunningham, S. J. Weka: Practical Machine Learning Tools 
and Techniques with Java Implementations. Proceedings of 
the ICONIP99 Workshop on Emerging Knowledge 
Engineering and Connectionist-Based Information Systems. 
pp. 192–196. 1999. 

[33] Yeh, C.-C. M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., 
Dau, H. A., Silva, D., F., Mueen, A., and Keogh, E. 2016. 
Matrix Profile I: All Pairs Similarity Joins for Time Series: A 
Unifying View that Includes Motifs, Discords and Shapelets. 
IEEE ICDM 2016. 

[34] Zhu, Y., Zimmerman, Z., Senobari, N., S., Yeh, C.-C. M., 
Funning, G., Mueen, A., Brisk, P., and Keogh, E. 2016. Matrix 
Profile II: Exploiting a Novel Algorithm and GPUs to break 
the one Hundred Million Barrier for Time Series Motifs and 
Joins. IEEE ICDM 2016. 

 

1812


