
Interactive Navigation of Open Data Linkages

Erkang Zhu
University of Toronto
ekzhu@cs.toronto.edu

Ken Q. Pu
UOIT

ken.pu@uoit.ca

Fatemeh Nargesian
University of Toronto

fnargesian@cs.toronto.edu

Renée J. Miller
University of Toronto
miller@cs.toronto.edu

ABSTRACT
We developed Toronto Open Data Search to support
the ad hoc, interactive discovery of connections or linkages
between datasets. It can be used to efficiently navigate
through the open data cloud. Our system consists of three
parts: a user-interface provided by a Web application; a
scalable backend infrastructure that supports navigational
queries; and a dynamic repository of open data tables. Our
system uses LSH Ensemble, an efficient index structure, to
compute linkages (attributes in two datasets with high con-
tainment score) in real time at Internet scale. Our applica-
tion allows users to navigate along these linkages by joining
datasets.

LSH Ensemble is scalable, providing millisecond response
times for linkage discovery queries even over millions of data-
sets. Our system offers users a highly interactive experi-
ence making unrelated (and unlinked) dynamic collections
of datasets appear as a richly connected cloud of data that
can be navigated and combined easily in real time.

1. INTRODUCTION
Toronto Open Data Search (our system) supports the

ad hoc, real time discovery of connections or linkages be-
tween datasets. Consider a data scientist exploring a dataset
of interest. With a click of a button, our system will let her
search a massive repository datasets to find other datasets
that join with her dataset. Our system provides interactive
response time even if the scientist’s dataset is massive and
even if the repository is dynamic (new datasets can be added
and searched in real time).

Our demonstration will let VLDB participants browse an
open data repository by topic; select a dataset of interest;
perform basic data management operations on the dataset
(for example, projecting out attributes or selecting a join at-
tribute); and interactively find linkages with other datasets.
Once a linkage is selected, a user can navigate new datasets
using joins. Joined datasets can provide new insights for
data scientists who may want to share their insights with

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

collaborators. Our system provides sharable links to all dis-
covered multi-dataset resources. Our system is integrated
with existing data analysis tools to provide an efficient data
discovery and data analysis experience for users.

In Section 2, we overview the technical innovations that
enable us to compute linkages dynamically at interactive
speeds. In Section 3, we discuss the features and architec-
ture of our system. We conclude with some interesting case
studies that illustrate the features of our system and a dis-
cussion of the demonstration experience.

2. TECHNICAL OVERVIEW
With the rapidly growing volume of open data published

on the Web, the problem of searching and finding related
datasets has become an important research problem. When
available, metadata (attribute names) can be used to find
related datasets [2, 6]. Alternatively, if our goal is to be able
to join datasets, we can build a graph of linkages (pairs of
attributes with high overlap in values or high containment
score). Previous work on linkage discovery has shown how to
efficiently build a static linkage graph over large collections
of data sources (such as DBpedia and Freebase) [3].

In the light of the daily growth in available online data,
and the lack of consistent and reliable metadata, our interest
is to support ad hoc open data search. We do not assume
any domain knowledge of how attribute values can be trans-
formed or matched, nor the existence of common metadata
names. Instead we search in real time for attributes with
high containment score. We refer to this variation of data
search or linkage discovery as the domain search problem [8].

Our system uses LSH Ensemble [8] a distributed index
structure based on locality sensitive hashing (LSH) of min-
wise hash signatures of the attributes in open data datasets.
It is highly scalable and can support efficient search of the
open data cloud at Internet scale. Using the Web Data Com-
mons Web Table corpora [5], LSH Ensemble can discover
linkages between a user-defined dataset and over 200 mil-
lion Open Data relational attributes in under 3 seconds [8],
with most search response times in the sub-second range.

The remainder of this section will provide an overview of
the domain search problem and LSH Ensemble.

2.1 The Domain Search Problem
A domain dom(A) is simply a collection of values from

an attribute A of some relational dataset T . Given two
attributes A and B, we measure their relevance based on
the amount of overlap of their respective domains using the
set containment score, defined as:

1837

containment(A,B) =
|dom(A) ∩ dom(B)|

|dom(A)|
To support dataset extension, a user provides a dataset,

Tq, and an attribute, Aq, in the dataset. Our system finds
all attributes in the open data cloud that have high set con-
tainment score with Aq.

Definition 1 (Domain search problem). Given a re-
lational dataset Tq and one of its attributes Aq and a thresh-
old t∗ ∈ [0, 1]. Find a set of relevant attributes A among all
the datasets in the open data cloud such that for each A ∈ A:

containment(Aq, A) ≥ t∗

Given a query as a dataset and one of its attributes the
answer set to the domain search problem is a collection of
datasets and their attributes {(Ti, Ai) : 1 ≤ i ≤ k}. The
linkages (Aq, Ai) allow us to “navigate” the open data cloud
via the relational join (or outerjoin) operator:

S = Tq ./Aq=Ai Ti

The extended dataset S is an enriched version of Tq with
additional attributes from Ti. One can continue exploring
by using any attributes in S for the next domain search
query.

2.2 LSH Ensemble
The heart of our system is a highly scalable index struc-

ture, LSH Ensemble [8], that allows us to perform domain
search at Internet scale. In order to deal with millions of
datasets and arbitrarily large domains, we chose to index a
data sketch of the domains, rather than the actual data val-
ues in the domain. Our index structure uses minwise hash
signatures (minhash) [1, 4] as the data sketch.

It is well known that Jaccard similarity, defined as

Jaccard(A,B) =
|A ∩B|
|A ∪B|

between two sets A and B can be accurately estimated by
the minhash signatures of A and B. Furthermore, Jaccard-
based nearest neighbor queries of minhash signatures can be
efficiently evaluated using a locality sensitive hashing (LSH)
index of the minhash signatures [7]. LSH Ensemble uses
LSH to solve the domain search problem. But due to the
unique characteristics of open data, some important innova-
tions were needed.

Dynamic thresholding : Jaccard similarity is not a
suitable measure of relevance for attribute domains as it
is heavily biased to smaller attributes. The domain search
problem uses containment score which is better suited as
a measure of relevance in open data search [8]. LSH En-
semble uses the relationship between Jaccard similarity and
containment score to map the query threshold on contain-
ment score t∗ to a threshold on Jaccard similarity j∗.

Jaccard(A,B) ' containment(A,B)
u
|A| + 1− containment(A,B)

(1)

where u is the maximal cardinality on B.
It is worth noting that the dynamic thresholding is guar-

anteed to never introduce any false negatives. Thus, the
overall recall of the search system will not be affected by
dynamic thresholding.

LSH Ensemble

Dataset Store

Query

Result

DatasetJoin Plan

Cache

Fr
on

t E
nd

Ba
ck

 E
nd

Figure 1: Architecture Overview of the System

Data partitioning The distribution of domain sizes (set
cardinality) in open data follows a highly skewed Zipfian
distribution. This means that the maximal cardinality u in
Equation 1 is so large that the Jaccard threshold j∗ is too
small for a normal LSH index to have any pruning power.
Consequently, LSH alone does not adapt well to a highly
skewed cardinality distributions, causing the hash look-up
to degenerate to linear scan. LSH Ensemble overcomes the
problem by partitioning the minhash signatures of domains
into an ensemble of n individual LSH indices according to
the domain cardinality. Importantly, LSH Ensemble pro-
vides an optimal partitioning function that maximizes the
overall pruning power of the index and is thus optimal for
open data domain search [8].

3. THE SYSTEM
In this section, we introduce our system, Toronto Open

Data Search, which supports interactive navigation of Open
Data through data linkages found in real time using LSH
Ensemble. A demonstration of the system is already online
using datasets from the Canadian Open Data1.

3.1 System Overview
The system consists of three components: the front end,

the back end, and the dataset store (Figure 1).
The front end runs directly inside the user’s browser. It

keeps the current state of navigation for the user. Since
navigation is done by joining tables on linkages, a navigation
state is the sequence of relational joins that leads to the
current joined dataset that we call the join plan. The front
end gets the result of the join plan from the back end and
displays the result to the user.

Changes to the join plan can be made through adding
additional datasets joined along a selected linkage. This is
done by selecting an attribute A and issuing a query request
to the back end that returns a ranked list of all attributes
that link to A. The user can then pick a dataset from the
query result and add it to the current join plan, thereby
making a new step in the navigation.

The back end is responsible for evaluating the join plan
and executing queries using LSH Ensemble index. Its most
important characteristic is that it is functional or stateless.

1https://rjmillerlab.github.io/lshensembledemo/

1838

Figure 2: Viewing the dataset table

The back end it does not keep the user’s current navigation
state (join plan), which is solely the responsibility of the
front end, and always attempts to evaluate the join plan
completely. This allows the back end service to be deployed
distributively on many servers. Optionally, the back end
uses a memory cache to store the result of each join. This
permits optimization of the evaluation if queries go to the
same server and permits fast undo operators to recover a
previous join plan. The use of memory cache does not affect
the functional characteristic of the back end, since it can
always evaluate a join plan from scratch.

The dataset store is a distributed disk-based key-value
store responsible for retrieving datasets given their unique
identifiers. Every attribute also has a unique identifier. Min-
Hash signatures are computed for every attribute domain
whenever a dataset is loaded. When available, we display
metadata (free text descriptions of tables) to help users in
selecting linkages.

Because all components can be deployed in a distributed
environment, our system can scale out to handle massive
numbers of open data datasets.

3.2 Features and User Experience
In this section, we present the features of our system.

To begin, a user selects an example dataset to begin the
navigation. The front end provides a list of datasets together
with descriptions.

Once a dataset is selected, the front end displays the
dataset as a table, as shown in Figure 2. By inspecting
the data values, the user can gain direct insight into the
data, that the metadata itself (such as column names which
are not always present) cannot always provide.

Datasets from may contains many attributes. This can
hinder the user from inspecting the table effectively. We
provide a command line interface to allow the user to modify
the table view. One such example is the column highlight
command (hi), as shown in Figure 3. This command takes
a set of keywords and highlights all columns whose name
contains the keywords (using substring matching). Another
example is the column filter command (fi) that allows the
user to see only the columns selected.

To find linkages from an attribute, the user clicks the at-
tribute header. The front end displays the search result in a

Figure 3: Highlight columns

Figure 4: Searching for dataset linkages

list, as shown in Figure 4. The list displays the names of the
datasets and the attributes that are linked with the query
attribute, ranked by their containment scores. By clicking
any search result, the user can join the current dataset with
the selected dataset on the selected attribute.

After joining with a new dataset, the user can perform
further modification of the table view using hi or fi com-
mands. As shown in Figure 5, the current dataset now con-
tains attributes from two separate datasets, indicated us-
ing different colors in the headers. At this point, the user
have successfully made his/her first step in the navigation.
Further navigation steps follow a similar pattern, and the
current state of navigation is displayed on a side panel, as
shown in Figure 6.

Apart from navigation, our system also facilitates collab-
oration between different users through shareable URL and
dataset export. A join plan can be serialized as part of
a URL, so the user can choose to share the URL with a
collaborator enabling her to see the same dataset. The col-
laborator can continue to navigate from the shared state (by
joining new tables), while the original user may continue in-
dependently to explore the data in a different direction. The
concurrent navigation of multiple users allows us to gather
interesting usage data about the datasets that may be used
for query recommendation. Lastly, every dataset view has a
download option. This lets a user export the current view of
the datasets as a CSV file that can be used for further anal-
ysis by importing it into a visualization or machine learning
tool.

4. CASE STUDIES
We highlight the search functionality of Toronto Open

Data Search through two scenarios in which given a dataset,
our system can find joinable datasets in Canadian Open
Data containing interesting and relevant attributes.

Linkage between police and homicide: In the first
scenario, the data scientist is working with a dataset, called

1839

Figure 5: After joining with a new dataset

Figure 6: Side panel showing the current state of
navigation

Homicide survey. This dataset provides yearly data on
firearm-related homicides, including attributes that contain
the name and numerical values of the indicators such as Num-
ber of homicides and Percentage of homicides. Perform-
ing search on the year attribute of this dataset, our sys-
tem finds datasets that contain interesting attributes such
as Total number of officers per year and Population

per officer per year. Furthermore, searching on the at-
tribute name of indicators results in other homicide sur-
vey datasets, such as Number and percent of homicide vic-

tims, by sex and age group, that contain attributes with
more specific statistics. In the demonstration, we will high-
light some interesting trends between the number of homi-
cides and number of police officers that can only be identified
by linking several open datasets.

Multiple linkages from Canadian infrastructure to
tax: In the second scenario, a data scientist is working
with a dataset called Infrastructure Canada Project that
contains a list of infrastructure projects across Canada. This
dataset contains title, category, program, location and
other attributes of projects. Attribute location refers to
the region where the project takes place. Upon search for
linkages on attribute location, our system returns dataset
ITSA for All Returns that contains aggregated attributes
on financial and tax related indicators, such as total in-

come and total tax return of residents of each region. By
joining such dataset with Infrastructure Canada Project

dataset, the data scientist can investigate the correlation of
the financial status of the residents of different regions where
projects are located.

5. DEMONSTRATION PROPOSAL
We will demonstrate a fully functional implementation

of Toronto Open Data Search as a (mobile friendly)
Web application. We will show how Toronto Open Data
Search helps a data scientist to interact with and effectively
navigate data on the web.

Our demonstration shows the viability of computing link-
ages in real time over massive data. This is the first demon-
stration to show that instance-level linkages between at-
tributes can be done accurately at interactive (real time)
speeds. The demonstration will highlight the importance of
the interactive speed in supporting curiosity-driven explo-
ration of a large repositories of rich structure datasets.

We will show how our persistent URLs allow linked datasets
to be shared and imported into visualization tools (plot.ly
and others) to quickly plot new trends discovered through
linkages. Our demonstration will also allow linkages to be
filter by known metadata matching techniques (when at-
tribute names are available) [2]. Of course, such metadata
techniques need to be combined with our instance matching
to ensure joined datasets contain meaningful results for data
scientists.

Toronto Open Data Search is open source using LSH
Ensemble as a powerful tool to access open data on the Web.
This demonstration illustrates ways that LSH Ensemble can
be applied to create an interactive and engaging user expe-
rience not before possible. The system is fully implemented.
Live system, screencast video, and other information can be
found on the project page:
https://rjmillerlab.github.io/lshensembledemo/

6. ACKNOWLEDGMENT
This work is partially funded by NSERC and Bell Grad-

uate Scholarship.

7. REFERENCES
[1] A. Broder. On the resemblance and containment of

documents. In Compression and Complexity of
Sequences, pages 21–28, 1997.

[2] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee,
F. Wu, R. Xin, and C. Yu. Finding related tables. In
SIGMOD, pages 817–828, 2012.

[3] O. Hassanzadeh, K. Q. Pu, S. H. Yeganeh, R. J. Miller,
L. Popa, M. A. Hernández, and H. Ho. Discovering
linkage points over web data. PVLDB, 6(6):444–456,
2013.

[4] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In STOC, pages 604–613, 1998.

[5] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer. A
large public corpus of web tables containing time and
context metadata. In WWW, pages 75–76, 2016.

[6] O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel,
H. Paulheim, and C. Bizer. The mannheim search join
engine. In WWW, pages 159 – 166, 2015.

[7] A. Rajaraman and J. D. Ullman. Mining of Massive
Datasets. 2011.

[8] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller. LSH
ensemble: Internet-scale domain search. PVLDB,
9(12):1185–1196, 2016.

1840

https://rjmillerlab.github.io/lshensembledemo/

	Introduction
	Technical Overview
	The Domain Search Problem
	LSH Ensemble

	The System
	System Overview
	Features and User Experience

	Case Studies
	Demonstration Proposal
	Acknowledgment
	References

