
noWorkflow: a Tool for Collecting, Analyzing, and
Managing Provenance from Python Scripts

João Felipe Pimentel1 Leonardo Murta 1 Vanessa Braganholo1 Juliana Freire2

1Universidade Federal Fluminense 2New York University
{jpimentel,leomurta,vanessa}@ic.uff.br juliana.freire@nyu.edu

ABSTRACT
We present noWorkflow, an open-source tool that system-
atically and transparently collects provenance from Python
scripts, including data about the script execution and how
the script evolves over time. During the demo, we will show
how noWorkflow collects and manages provenance, as well as
how it supports the analysis of computational experiments.
We will also encourage attendees to use noWorkflow for their
own scripts.

1. INTRODUCTION
Provenance helps users to interpret and reason about the

results of computational processes [6]. For scientific exper-
iments, it captures all computational steps and data that
contribute to the output, thus enabling scientists to review
these steps, input and intermediate data, and assess the
quality of the derived results. For instance, if an experiment
leads inconclusive results, the provenance data may help un-
derstanding the reasons. Moreover, when running several
trials of a given experiment, scientists can cache interme-
diate data to avoid re-computing expensive operations [7].
Provenance also enables reproducibility by providing infor-
mation regarding not only the computational steps but also
the libraries and environment dependencies [3]. With such
information, users can match the libraries and environment
configurations to reduce external influences and reproduce
experiments under similar conditions. After reproducing an
experiment, provenance can be used to verify whether the
same steps are executed, or if there are differences between
the original run and the re-execution. Finally, scientists
can use provenance to manage the evolution of experiments:
they can create snapshots, restore specific versions of the
experiment, libraries, and input data. In experiments that
involve parameter exploration, scientists can create versions
with each set of parameters, and use provenance to keep
track of inputs and outputs [10].

Several approaches have been proposed to capture the
provenance of computational processes. Tools that track
provenance at the operating system level [8, 11] have two

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

major benefits: they are general and language independent,
and provenance can be automatically collected without re-
quiring user intervention. However, the captured informa-
tion can be hard to reason and to connect to the actual
semantics of the experiments. Workflow management sys-
tems (WFMS) require scientists to specify their experiment
as workflows [2, 19]. These tools support different levels
of abstraction and when workflows are properly designed,
the provenance closely matches experiment semantics. How-
ever, WFMS often require a steep learning curve and high
adoption costs [17]. Furthermore, they lack the flexibility of
general-purpose languages. For these reasons, many scien-
tists still use scripts [5].

Tools have also been developed to track provenance from
scripts [1, 9, 12, 18]. While some tools collect provenance au-
tomatically [12, 18], most focus on a single trial (i.e., a single
execution of an experiment). As a result, these tools do not
collect the information required to check for repeatability, do
not support data re-use, and they are unable to manage ex-
periment evolution. In addition to automatically collecting
provenance from the execution of Python scripts, noWork-
flow [12] addresses these limitations by tracking their history
and evolution [14]. Thus, users can analyze multiple trials,
compare them, and understand their history. In previous
work, noWorkflow was extended to collect provenance and
run analyses on interactive notebooks [16] and it was also
combined to YesWorkflow [9] to link prospective provenance
collected by YesWorkflow with retrospective provenance col-
lected by noWorkflow [13].

In our demonstration, we will use real experiments as well
as scripts provided by attendees and walk them through
the process of provenance collection, analysis, and manage-
ment supported by noWorkflow. We will show how prove-
nance can be collected at different levels of granularity and
showcase the different operations and visual representations
noWorkflow provides to help users query and visualize prove-
nance information.

2. OVERVIEW OF NOWORKFLOW
Collecting provenance of scripts is challenging. First, one

must select the appropriate level of granularity. While
coarse-grained provenance may hide important data, fine-
grained provenance may overwhelm users. Moreover, scripts
can encode control flow, cycles, and other structures that
make it difficult to identify which parts of the scripts con-
tributed to the generation of a given data product. Finally,
scripts run outside controlled environments. Thus, it is hard
to make assumptions based only on the results of scripts, as
the environment may interfere with the execution.

1841

Command line

Provenance Storage

Provenance Collection

Python's modules
(os, socket, platform,

modulefinder)

AST
Bytecode

EFINITIOND EPLOYMENTD
Profiling

Reflection
Tracing

XECUTIONE
P

R
O

V
E

N
A

N
C

E

stores

reads

IPython ext. Visualization tool

Objects,
%now_sql, ... now vis

 %now_run

now dataflow,
now list, ...now restore

now run

Provenance Analysis

Diff Analysis

Querying
SQL

Prolog
Provenance

Graphs

1 2 43History

SQLite

Content Database
.noworkflow directory

Figure 1: Architecture of noWorkflow.

noWorkflow addresses these challenges by collecting def-
inition, deployment, and execution provenance. Definition
provenance represents the structure of the script, includ-
ing function definitions, their arguments, function calls, and
other static data. Deployment provenance represents the ex-
ecution environment, including information about the oper-
ating system, environment variables, and libraries on which
the script depends. Finally, execution provenance represents
the execution log for the script [12].

noWorkflow supports different techniques for collecting
execution provenance at different levels of granularity. These
techniques deal with the existence of control flows and cycles
on scripts. Moreover, by collecting deployment provenance,
noWorkflow is able to detect environment changes that are
external to the script.

The architecture of noWorkflow has three key compo-
nents, as shown in Figure 1. The Provenance Collection
module collects provenance from scripts and stores it using
the Provenance Storage module. The Provenance Analy-
sis module reads data from the Provenance Storage and
presents it to users in different ways. Users can interact
with noWorkflow through three interfaces: command line,
an IPython extension that interacts with Jupyter Notebook,
and a web-based visualization tool. In addition to prove-
nance collection and analysis, noWorkflow also collects the
evolution history of experiments, allowing users to restore
old files and to manage their execution.

3. DEMONSTRATION
In our demonstration scenario, a user receives a request

from her collaborator to check if the precipitation in Rio
de Janeiro remains constant across years. To verify this
hypothesis, she collects data from a meteorological database
and writes a script to process the data and produce a image
for comparison. She starts the experiment with data from
2013 and 2014 and produces the script presented in Figure 2.

3.1 Provenance Collection
Running noWorkflow is as simple as running a Python

script: instead of invoking python experiment.py, she in-
vokes now run experiment.py. noWorkflow is able to run
the very same Python script and produce the same results
without modifications. However, instead of just running it,
noWorkflow first generates a sequential trial identification
number. Then, it collects the definition provenance and
deployment provenance, and when it executes the script,

1 import numpy as numpy
2 from p r e c i p i t a t i o n import read , sum by month
3 from p r e c i p i t a t i o n import c rea te barg raph
4
5 months = np . arange (12) + 1
6 d13 , d14 = read (”p13 . dat”) , read (”p14 . dat”)
7 prec13 = sum by month (d13 , months)
8 prec14 = sum by month (d14 , months)
9

10 c reate barg raph (”out . png” , months ,
11 [”2013” , ”2014”] , prec13 , prec14)

Figure 2: First script version.

it collects the execution provenance. As this is the first
trial, the trial number will be 1. She can now use this num-
ber to reference the collected data for this trial. noWork-
flow stores the collected provenance on disk in a directory
named .noworkflow inside the script directory. This direc-
tory contains both a relational database for structured data
and a content database for file-based data (see the Prove-
nance Storage module of Figure 1). noWorkflow copies all
accessed files, modules, and scripts to the content database
during the execution of the scripts, and names them after
the SHA1 hash codes of their content. These SHA1 hash
codes link the content stored in the databases and avoid the
duplicated storage of identical files.

noWorkflow collects the definition provenance by analyz-
ing the Abstract Syntax Tree (AST) and the Python byte-
code of the script [15]. It stores the script file and func-
tion definitions in the content database, and function names,
calls, parameters, and global variables in the relational data-
base. For this experiment, the content of ‘experiment.py’ is
stored in the content database, while its hash code together
with the function calls (i.e., arange, read, sum by month,
and create bargraph) are stored in the relational database.

noWorkflow collects two different types of deployment pro-
venance: environment and library dependencies. As part
of the environment, it collects operating system informa-
tion (e.g., Ubuntu 16.04), hostname, information about the
machine architecture (e.g., x86 64), Python version (e.g.,
3.5.2), and environment variables. This data is stored in the
relational database. noWorkflow also collects the transitive
closure of all library dependencies together with their ver-
sions. In our example, it collects ‘numpy’ in version 1.11.3,
‘precipitation.py’ in version 1.1.0 (as it was declared by a

VERSION variable), and ‘matplotlib’ in version 2.0.0,
among other internal modules. Note that ‘matplotlib’ was
imported by ‘precipitation.py’. noWorkflow stores the li-
braries in the content database, together with their names,
versions, and hash codes in the relational database.

For execution provenance, noWorkflow stores copies of in-
put and output files in the content database before and af-
ter reading or writing on them. Thus, it stores copies of
‘p13.dat’, ‘p14.dat’, and ‘out.png’ in the content database.
In addition to the accessed files, noWorkflow supports col-
lecting the execution flow at two different granularities. By
default, noWorkflow collects provenance at a coarse gran-
ularity. It defines a Python Profiler that collects function
activations (i.e., executed function calls), global variables,
parameters, and return values. To collect provenance at a
finer granularity, the user can issue the command now run

-e Tracker experiment.py. Besides function activations,
noWorkflow will also capture variable attributions, loop def-
initions, and other variable dependencies [15]. In this case, it
combines the Profiler with a Tracer to store variable values

1842

p13.dat 6 read 6 d13 7 sum_by
_month

5 months

7 prec13

p14.dat 6 read 6 d14
8 sum_by
_month

8 prec14

5 module.
arange

10 create_
bargraph out.png

Figure 3: Trial 1 dataflow.

for each line and variable dependencies. A Tracer is com-
monly used for developing debuggers in Python. However,
different from debuggers, noWorkflow stores the data values
to assist users in future analyses. noWorkflow stores all data
related to the execution flow in the relational database.

As a concrete example, consider line 5 of Figure 2. By
default, noWorkflow captures that np.arange(12) returns a
numpy array with values [0, 1, . . . , 10, 11]. At fine-granularity
mode, noWorkflow also collects the value of months as an ar-
ray with values [1, 2, . . . , 11, 12]. In both cases, noWorkflow
collects the time of the execution and the function activation
duration.

Provenance size may grow considerably if it is captured
at a fine granularity or even at a coarse granularity, if script
contains large loops. In order to avoid these problems, users
can (i) limit the maximum collection depth of noWorkflow
stack; (ii) write computational intensive functions in exter-
nal files, since noWorkflow only collects execution prove-
nance from main scripts, by default; or (iii) prepend an un-
derscore to variables and function names, indicating which
elements should not be collected.

3.2 Provenance Analysis
After collecting the provenance, noWorkflow offers multi-

ple commands for provenance analysis. The user can run now

show 1 to obtain more details from trial 1 (textually). Users
can also inspect individual modules, function definitions, en-
vironment variables, or function activations. This informa-
tion can be visualized using the command now dataflow 1

| dot -Tpng -o p1.png, which produces a dataflow graph,
as shown in Figure 3. In this figure, nodes with rounded
corners represent data, white nodes represent files, light
blue rectangles represent variables, and dark blue rectan-
gles nodes represent function calls.

Since all provenance data, with the exception of file con-
tent, is stored in a relational database, the user can query
the provenance using SQL. However, to enable complex,
transitive closure queries, for which the support in some
database systems is limited [4], noWorkflow also exports
the trial provenance as Prolog facts using the command now

export 1. Optionally, noWorkflow can export pre-defined
Prolog rules that define common provenance queries together
with the Prolog facts. For instance, the rule access

influence(1, File, ‘out.png’) indicates which files may
have influenced the generation of ‘out.png’ in trial 1. In this
case, the result is ‘p13.dat’ and ‘p14.dat’. For obtaining a
graphical representation of both SQL and Prolog schemas,
users can use the command now schema [sql,prolog].

After analyzing the experiment results, the user realizes
that there was a drought in 2014 and decides to check if
the precipitation remains constant when there is no drought.
Thus, she adapts the script to include data from 2012. After
running the experiment, she wants to compare the trials and
present the differences to her collaborator.

experiment.py
precipitation.py

precipitation.py

module.arange

read
sum_by_
month

sum_by_
month

create_
bargraph

(a)

experiment.py

precipitation.py

precipitation.py

module.arange

readsum_by_
month

sum_by_
month

sum_by_
month

create_
bargraph

(b)

Figure 4: (a) Trial 1 activation graph and (b) Diff
of trials 1 and 2.

For a textual trial comparison, she uses the command
now diff 1 2. Currently, this command just compares ba-
sic trial information (e.g., parameters, duration), modules,
and environment variables according to specified optional
parameters.

However, she also wants to compare the execution prove-
nance, so she uses the noWorkflow web visualization tool.
This tool can be activated by the command now vis and
further accessed on a web browser at http://localhost:5000.
The tool presents the history of trials as a graph and allows
users to select trial nodes to be visualized in more detail.
When the user selects a trial, noWorkflow loads basic trial
information, modules, environment variables, accessed files,
and an activation graph. By selecting a second trial, the
tool compares the first trial to the second one, presenting
an activation graph diff [14] and all textual diff information.
Different from the dataflow graph presented in Figure 3, ac-
tivation graphs also work for coarse-grained trials. Figure 4
presents the (a) activation graph of trial 1 and its (b) diff
to trial 2. In an activation graph, nodes represent activa-
tions and their colors represent their duration in a gradient
scale: red represents the slowest activations, and white, the
fastest ones. The script is an activation itself and it is in-
dicated by a straight arrow. In this case, ‘experiment.py’ is
the script. In the graph, black arrows represent the start of
activations, blue arrows represent a sequence of calls within
activations, and dashed arrows represent returns. Note that
Figure 4(b) has an extra sum by month node and an extra
read activation number in the loop edge.

3.3 Provenance Management
Now the user decides to change the script to add data from

2015. In the meantime, her collaborator realizes that there
are unusual rainy days in the first trial and requests her to
rerun the experiment without such days. Since she is using
noWorkflow, she can restore the code and data from trial 1
by issuing the command now restore 1 [14]. Since the user
has changed the code, this command creates a backup trial,
3, with the modified script as definition provenance, before
restoring the files from trial 1. By default, the command
restores the whole trial to the state before its execution, but
it supports optional arguments for restoring individual files,
including intermediate and output files. Thus, the restore
command is useful for trying alternatives on the experiment,
for repeating trials, and for looking at old versions of trials.
After restoring the trial, the user modifies the script and
executes it again without the unusual rainy days.

noWorklow keeps track of the trial derivation history and
allows users to visualize this history for understanding what
happened to the experiment until it reached the current
state. For visualizing the history, she can either run now

1843

1

2 3

4

Figure 5: Experiment history with trials as nodes.

history and obtain a textual representation, or load the
aforementioned visualization tool. Figure 5 presents the
trial history for this demonstration. Note that trial 4 is
based on trial 1 and trial 3 appears with a different color
that denotes it is a backup trial. If the derivation history is
not important, and the user just wants to list all trials with
their command lines and durations, she can run now list.

Different from standard version control systems, noWork-
flow versions are related to trial executions. This allows
users to keep the full history of their experiments, keep-
ing track of arguments, input data, output data, and other
provenance information.

4. CONCLUSION
In this demonstration paper, we present noWorkflow, a

tool that automatically collects provenance from Python
scripts, without requiring any modification to the script.
During the execution of scripts, noWorkflow collects im-
ported modules, environment variables, function calls, file
accesses, and, optionally, variables. While it does not collect
network activity or database accesses directly, it collects the
functions called for such accesses. noWorkflow also tracks
the evolution of experiments and allows users to navigate
over different versions. noWorkflow provides support for
different kinds of provenance analyses through a command
line interface, SQL and Prolog queries, and visualizations.
Finally, noWorkflow also supports interactive analyses on
Jupyter Notebooks.

noWorkflow is under active development. The system
is available as open source software at http://gems-uff.

github.io/noworkflow. Short videos showcasing the tool
are available at http://github.com/gems-uff/noworkflow/
wiki/Videos.

5. ACKNOWLEDGMENTS
We would like to thank CNPq, FAPERJ and the Moore-

Sloan Data Science Environment for their financial support
for this project. Juliana Freire is supported by the DARPA
Memex and D3M programs, and NSF awards ACI- 1640864,
CNS-1229185 and CNS-1405927.

6. REFERENCES
[1] C. Bochner, R. Gude, and A. Schreiber. A python

library for provenance recording and querying. In
IPAW, pages 229–240, 2008.

[2] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger,
C. T. Silva, and H. T. Vo. Managing the Evolution of
Dataflows with VisTrails. In ICDE, pages 71–71, 2006.

[3] F. Chirigati, D. Shasha, and J. Freire. Reprozip:
Using provenance to support computational
reproducibility. In TaPP, pages 977–980, 2013.

[4] S. Dar and R. Agrawal. Extending Sql with
generalized transitive closure. IEEE Transactions on
Knowledge and Data Engineering, 5(5):799–812, 1993.

[5] S. Dey, K. Belhajjame, D. Koop, M. Raul, and
B. Ludäscher. Linking prospective and retrospective
provenance in scripts. In TaPP, pages 1–7, 2015.

[6] J. Freire, D. Koop, E. Santos, and C. T. Silva.
Provenance for computational tasks: A survey.
Computing in Science & Engineering, 10(3):11–21,
2008.

[7] P. J. Guo and D. Engler. Using automatic persistent
memoization to facilitate data analysis scripting. In
ISSTA, pages 287–297, 2011.

[8] P. J. Guo and M. Seltzer. BUrrIto: Wrapping Your
Lab Notebook in Computational Infrastructure. In
TaPP, volume 12, pages 1–7, 2012.

[9] T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach,
K. Belhajjame, K. Bocinsky, Y. Cao, F. Chirigati,
S. Dey, J. Freire, et al. YesWorkflow: a user-oriented,
language-independent tool for recovering workflow
information from scripts. International Journal of
Digital Curation, 10(1):298–313, 2015.

[10] R. Meyer and K. Obermayer. pypet: A python Toolkit
for Data Management of Parameter Explorations.
Frontiers in Neuroinformatics, 10:1–16, 2016.

[11] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun,
and M. I. Seltzer. Provenance-Aware Storage Systems.
In USENIX ATC, pages 43–56, 2006.

[12] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and
J. Freire. noWorkflow: capturing and analyzing
provenance of scripts. In IPAW, pages 71–83, 2014.

[13] J. F. Pimentel, S. Dey, T. McPhillips, K. Belhajjame,
D. Koop, L. Murta, V. Braganholo, and B. Ludäscher.
Yin & Yang: demonstrating complementary
provenance from noWorkflow & YesWorkflow. In
IPAW, pages 161–165, 2016.

[14] J. F. Pimentel, J. Freire, V. Braganholo, and
L. Murta. Tracking and analyzing the evolution of
provenance from scripts. In IPAW, pages 16–28, 2016.

[15] J. F. Pimentel, J. Freire, L. Murta, and
V. Braganholo. Fine-grained provenance collection
over scripts through program slicing. In IPAW, pages
199–203, 2016.

[16] J. F. N. Pimentel, V. Braganholo, L. Murta, and
J. Freire. Collecting and analyzing provenance on
interactive notebooks: when IPython meets
noWorkflow. In TaPP, pages 1–6, 2015.

[17] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and
C. T. Silva. Querying and re-using workflows with
Vstrails. In SIGMOD, pages 1251–1254, 2008.

[18] M. Stamatogiannakis, P. Groth, and H. Bos. Looking
inside the black-box: capturing data provenance using
dynamic instrumentation. In IPAW, pages 155–167,
2014.

[19] M. Weske, G. Vossen, and C. B. Medeiros. Scientific
workflow management: WASA architecture and
applications. Citeseer, Universität Münster.
Angewandte Mathematik und Informatik, 1996.

1844

