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ABSTRACT
Community retrieval (CR) algorithms, which enable the extrac-
tion of subgraphs from large social networks (e.g., Facebook and
Twitter), have attracted tremendous interest. Various CR solutions,
such as k-core and CODICIL, have been proposed to obtain graph-
s whose vertices are closely related. In this paper, we propose the
C-Explorer system to assist users in extracting, visualizing, and an-
alyzing communities. C-Explorer provides online and interactive
CR facilities, allowing a user to view her interesting graphs, indi-
cate her required vertex q, and display the communities to which q
belongs. A seminal feature of C-Explorer is that it uses an attribut-
ed graph, whose vertices are associated with labels and keyword-
s, and looks for an attributed community (or AC), whose vertices
are structurally and semantically related. Moreover, C-Explorer
implements several state-of-the-art CR algorithms, as well as func-
tions for analyzing their effectiveness. We plan to make C-Explorer
an open-source web-based platform, and design API functions for
software developers to test their CR algorithms in our system.

1. INTRODUCTION
Gigantic social networks are prevalent in important and emerg-

ing applications such as Facebook, Twitter, and Meetup. In these
systems, a fundamental task is community retrieval (CR), a pro-
cess of extracting groups of social network users who have close
relationship. Communities, which reflect common interests and
behaviors among users, can be useful for many real applications
such as setting up social events [11, 4] and designing promotion s-
trategies [13]. Communities are also interesting to social scientists
and historians for analysis purposes [7]. Due to the importance of
finding communities, plenty of CR algorithms have been proposed
in recent years (e.g., [11, 1, 7, 4, 3, 6, 9, 10]).

In this paper, we propose Community Explorer (or C-Explorer),
a web-based system that enables CR in a simple, online, and in-
teractive manner. Figure 1 shows the user interface of C-Explorer
configured to run on the DBLP bibliographical network. On the
left panel, a user inputs the name of an author (e.g., “jim gray”) and
the minimum degree of each vertex in the community she wants to
have. The user can also indicate the labels or keywords related to
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Figure 1: Interface of C-Explorer.

her community. Once she clicks the “Search” button, the right pan-
el will quickly display a community of Jim Gray, which contain-
s researchers working on database system transactions. The user
can further click on one of the vertices (e.g., Michael Stonebraker),
after which the profile related to the Michael will be shown (Fig-
ure 2). The user can continue to examine Michael’s community.
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Figure 2: The profile of a community member.

Let us now discuss three key features of C-Explorer.
• Attributed graphs and communities. The CR solution em-
ployed by C-Explorer involves the use of the keyword information
associated with the vertices in the social network. As illustrated
in Figure 1, the keywords displayed in the left panel are extracted
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from Jim Gray’s articles in DBLP, and they are also used to define
the “theme” of the community (right panel), whose vertices contain
keywords related to the theme. We call a graph tagged with key-
words an attributed graph [13], and name the community computed
from the graph structure and keywords an attributed community, or
AC [4]. The problem of finding ACs over an attributed graph has
only been recently studied. Also, as shown in [4], ACs are ex-
perimentally better than communities generated by other solutions.
Moreover, we are also not aware of any other systems that provide
CS functionalities over attributed graphs.
• Support for other CR algorithms. Besides AC search algo-
rithms, C-Explorer supports state-of-the-art CR algorithms, includ-
ing Global [11], Local [1], and CODICIL [10]. A user can
also plug in her own CR solution on C-Explorer through a sim-
ple application programmer interface (API). The API has a list of
functions for further development. Furthermore, C-Explorer is an
open-source software, and so application developers can customize
C-Explorer to suit their needs.
• Analysis facilities. Our system provides a user-friendly facility
that enables online visualization of communities generated by dif-
ferent algorithms, as well as statistics about the communities creat-
ed (e.g., the number of vertices constituting the community, and the
average vertex degree). The measures quantifying the quality of the
communities can be displayed in charts. Moreover, the communi-
ties generated by different solutions can be viewed simultaneously.
These features allow users to perform a detailed comparison on the
communities output by different algorithms.

Why do we design C-Explorer in this way? Although many CR
algorithms have been proposed in the literature, it is not entirely
clear which one is better. In previous works, experimental com-
parison was often performed among several algorithms on a few
datasets. Our system enables a more extensive experimental evalu-
ation of CR solutions on a variety of datasets. Moreover, there lacks
tools for users to pick the right CR algorithm, analyze communities,
or use the solution in their own applications. As discussed above,
C-Explorer will incorporate an API that facilitates installation and
testing of new CR solutions, as well as invoking of CR solutions
in the application. Our system will be valuable to users who are
interested in performing CR tasks (e.g., database researchers, ap-
plication developers, social scientists).

The rest of the paper is organized as follows. In Section 2, we
discuss existing solutions and the novelty of C-Explorer. Section 3
describes the framework and detailed design of C-Explorer. In Sec-
tion 4 we explain how we are going to demonstrate C-Explorer.

2. RELATED WORK AND NOVELTY
Community retrieval. There are two classes of CR method-

s, namely community detection (CD) and community search (CS).
In general, CD algorithms aim to retrieve all communities for a
graph [9, 5, 10]. These solutions are not “query based”, i.e., they
are not customized for a query request (e.g., a user-specified query
vertex). Moreover, they may take a long time to find all the com-
munities for a large graph, and so they are not suitable for quick
or online retrieval of communities. To solve these problems, CS
solutions have been recently developed [11, 1, 7].

CS solutions are often query-based (e.g., a user specifies the ver-
tex for which the community is retrieved), and derive communities
in an “online” manner. To measure the structure cohesiveness of
a community, the minimum degree is often used [11, 1]. Sozio et
al. [11] proposed the first algorithm Global to find the k-ĉore
containing q. Cui et al. [1] proposed Local, which uses local ex-
pansion techniques to enhance the performance of Global. Oth-
er structure cohesiveness measures, including connectivity [6] and

k-truss [7], have also been considered for searching communities.
Recently, we have proposed a CS solution, called ACQ that pro-
duces communities on attributed graphs [4]. We use ACQ in the
engine of C-Explorer.

Although plenty of CR solutions have been developed, often they
were evaluated on few datasets. Due to the lack of a software tool
for researchers to perform a detailed analysis of communities, we
build C-Explorer, which contains an API for installing new CR
tools, as well as functions to compare different CR algorithms.

Graph query tools. In [12], Spillane et al. developed a system
G*, which stores graphs on a large number of servers and allows
users to easily express graph queries. In [2], Fan et al. presented
ExpFinder, a system for finding experts in social networks based
on graph pattern matching. In [8], a system called VIIQ was pre-
sented, which enables a user interface for interactive graph query
formulation. In [14], Yi et al. presented another system called Au-
toG, which is able to return the top-k graph query suggestions at
interactive time.

The above systems, designed for general graph queries, are not
customized for browsing of communities. However, it is not s-
traightforward to implement CR algorithms by simple graph queries.
We will develop C-Explorer to enable online exploration, and visu-
alization and analysis of communities.

3. SYSTEM OVERVIEW
Figure 3 illustrates the system framework of C-Explorer, which

adopts the browser-server model. The Browser side provides inter-
faces for users to submit queries, view the returned communities,
and observe the analysis results. To issue a query, a user enters the
name of query vertex and input its parameter values via the brows-
er. The query is sent to the server for processing, after which the
communities are displayed on the browser.

The Server side has two modules, namely i.e., Community Search
and Comparison Analysis, used for answering queries and perform-
ing comparison analysis online respectively. To facilitate efficient
community search, we build an index in the Indexing module. The
community exploration is based on the ACQ query [4], which we
will detail in Section 3.2.

The Comparison Analysis module performs similarity analysis
for the communities found by different methods. Furthermore, it
can report the statistics (e.g., the numbers of vertices and edges)
of communities retrieved by different CR algorithms. In addition,
our system allows other CR algorithms to be plugged in the Other
CR Algorithm module. We provide a list of Java API function-
s, so the public users can easily plug in their own algorithms, u-
pload their own graphs, and perform community exploration and
comparison analysis. More details about the API functions are dis-
cussed in Section 3.1. Currently, we have implemented two other
CS algorithms, i.e., Global [11] and Local [1], and one CD al-
gorithm CODICIL [10]. Note that Global [11] and Local [1]
are based on the concept of k-core. We remark that C-Explorer
employs modular design, which facilitates future extension.

3.1 API
Our system provides several Java interfaces, which consist of a

list of API functions. For public users, to plug in their own CR
methods, they just need to implement the functions in the inter-
faces with their own CR algorithms, and slightly modify the web-
page codes. Then they can visualize and analyze the communities
retrieved by different methods in C-Explorer. Figure 4 depicts five
typical functions in the main interface, which are illustrated as fol-
lows.
• upload: it uploads a local graph into the system.
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Figure 3: The framework of C-Explorer.

• search: it searches the communities of a query vertex with
some parameters using a specific CS algorithm.
• detect: it detects all the communities from an entire graph with
a given CD algorithm.
• analyze: it performs analysis (e.g., computing similarities of
vertices) on the communities with a specific metric.
• display: it computes the layout (i.e., locations of vertices and
edges) of a given community in a plane, which will be used for
visualization in the browser.

public interface CExplorer { 
   ... 
   public void upload(String filePath); 
   public List<Community> search(CSAlgorithm algo, Query query); 
   public List<Community> detect(CDAlgorithm algo); 
   public void analyze(Community community); 
   public void display(Community community); 
   ... 
} 

 

 

Figure 4: A list of API functions.

3.2 ACQ Query
Problem. We consider an undirected attributed graph G(V,E)

with vertex set V and edge set E. Each vertex v ∈ V is associated
with a set, W (v), of keywords, and its degree in G is denoted by
degG(v). The definition of ACQ Query [4] is as follows.

PROBLEM 1 (ACQ). Given a graph G(V,E), a positive in-
teger k, a vertex q ∈ V and a set of keywords S ⊆ W (q), return a
set G of graphs, such that ∀Gq ∈ G, the following properties hold:

• Connectivity. Gq ⊆ G is connected and contains q;
• Structure cohesiveness. ∀v ∈ Gq , degGq (v) ≥ k;
•Keyword cohesiveness. The size of L(Gq, S) is maximal, where

L(Gq, S) = ∩v∈Gq (W (v)∩ S) is the set of keywords shared in S
by all vertices of Gq .

Let us take the attributed graph in Figure 5(a) as an example,
where there are 10 vertices {A, B, · · · , J} and 11 edges. Each
vertex has at most three keywords. If q=A, k=2 and S={w, x, y},
then the output of the ACQ query is the subgraph of three vertices
{A, C, D}, and all the vertices share two keywords x and y.

In addition, we develop a variant of the ACQ query supporting
multiple query vertices. Specifically, given G(V,E), k, S, and
a set Q of query vertices, it returns a set G of graphs, such that
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Figure 5: An example graph and its CL-tree index [4].

∀Gq ∈ G, Gq is a connected subgraph containing Q, and satisfies
the structure and keyword cohesiveness in Problem 1.

A straightforward method to answer the ACQ query is first to
consider all the possible keyword combinations of S, and then re-
turn the subgraphs, which satisfy the minimum degree constrain-
t and have the most shared keywords. This method requires the
enumeration of all the subsets of S, which implies that it has a
complexity exponential to the size of S. Thus it is impractical, e-
specially when there are many keywords in S. To enable efficient
retrieval of ACs, we propose a CL-tree index [4].

CL-tree index. The CL-tree organizes all the k-cores and key-
words in a tree structure, where the k-core, Hk, is the largest sub-
graph of the graph G, such that for any vertex in Hk, its degree is
at least k (k ≥ 0). Note that Hk may not be connected. In Fig-
ure 5(a), each connected component of a k-core is depicted in an
ellipse. The CL-tree is built based on the key observation that k-
cores are nested, i.e., a (k+1)-core must be contained in a k-core.
Figure 5(b) depicts a CL-tree for the attributed graph in Figure 5(a).

In the CL-tree, each node 1 contains some vertices of the graph.
The subtree rooted at each node represents a connected component
of the k-core. For each keyword w that appears in a CL-tree node, a
list of IDs of vertices whose keyword sets contain w is stored. The
CL-tree allows us to locate a specific k-core and verify whether
a k-core contains a particular keyword or not efficiently. Thus, it
enables the ACs to be found efficiently. It is worth noting that, the
CL-tree can be built in linear space and time cost.

Query algorithms. Based on the CL-tree index, we propose
three efficient query algorithms. Considering the methods of ver-
ifying whether a keyword combination result in an AC or not, we
divide the query algorithms into incremental algorithms (from ex-
amining smaller candidate sets to larger ones) and decremental al-
gorithm (from examining larger candidate sets to smaller ones) [4].
The incremental algorithms are called Inc-S and Inc-T, while
the decremental algorithm is called Dec. Since Dec is generally
faster than Inc-S and Inc-T, we choose Dec for the system.

4. DEMONSTRATION
Setup and dataset. We implement all the CR methods in Ja-

va and design the website using JavaServer Pages (JSP) technique
with the Tomcat server. We use a graph sampled from the DBLP
bibliographical network. The graph contains 977,288 vertices and
3,432,273 edges. Each vertex denotes an author, and each edge is
a co-authorship relationship between two authors. For each author,
we use the 20 most frequent keywords in the titles of her publica-
tions as her keywords. We also extract the profiles of several hun-
dreds of renowned researchers in the database area from Wikipedia.

1We use “node” to mean “CL-tree node” in this paper.
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Figure 6: Comparison analysis.

Community exploration. In this scenario, users can perform
community exploration, as shown in Figure 1. First of all, users
should specify the name of the query author. Note that by clicking
the icon “+” on the right-hand side of the input box, users can input
more than one query author. After that, the system will display the
structure constraints, i.e., a list of degree constraints, and a set of
keywords of this author. Then, users can click the “Submit” button
to issue an ACQ query after selecting these parameters. Next, the
server receives the parameters and performs ACQ query to obtain
the communities. Finally, the communities will be returned instant-
ly and displayed in the browser. Moreover, to have a clearer view
on some vertices, users can zoom in or zoom out the figure of the
community by clicking the corresponding icons. In addition, users
can save the community into a .jpg file or print it directly.

Before further exploring the communities of a vertex, users can
simply click the portrait of the researcher. Then, the profile of
the author is shown in a new window. In Figure 2, the profile of
Michael Stonebraker is depicted. Users can then continue to ex-
plore Michael’s communities. Note that for the layout of vertices
of the community, we use the algorithms of the JUNG project 2.

Comparison analysis. Our system allows query users to com-
pare the communities retrieved by various CR algorithms, in terms
of community quality and statistics. For community quality, we
mainly evaluate the vertices’ similarities. In [4], we propose two
metrics: CPJ and CMF. The metric CPJ measures the average sim-
ilarity over all pairs of vertices, and the metric CMF measures the
average frequency of keywords in W (q) for all the vertices in the
community. In general, the higher values of CPJ and CMF imply
better cohesiveness of a community.

By analyzing the similarities of vertices in the communities and
showing their CMF and CPJ values, the user can easily compare
different CR methods. For statistics, the system can display the
numbers of returned communities, as well as their average numbers
of vertices, edges, and degrees. Also, the links for visualizing these
communities are given, and the user can view them simultaneously.

In Figure 6(a), the user can get into the analysis interface by
clicking the “Analysis” link on the top of left panel. Then, the user
can input the name of query author (e.g., Jim Gray), select the algo-
rithms, and input their parameters on the left panel. After clicking
the “Compare” button, the CPJ and CMF values of communities re-
trieved by different methods are depicted in bar graphs on the right
panel. Also, the statistics of these communities are reported in the

2http://jung.sourceforge.net/

table below. Moreover, the user can click the “view” links in the
table to visualize the communities in new windows. In Figure 6(b),
two communities found by ACQ and Local are presented, and
their differences can be easily observed.
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