
Flower: A Data Analytics Flow Elasticity Manager ∗

Alireza Khoshkbarforoushha 1,2 , Rajiv Ranjan 3, Qing Wang 1, Carsten Friedrich 2

1 The Australian National University, Canberra, Australia
2 Data61 CSIRO, Canberra, Australia

3 Newcastle University, UK
1 qing.wang@anu.edu.au, 2 first.last@data61.csiro.au, 3 raj.ranjan@ncl.ac.uk

ABSTRACT
A data analytics flow typically operates on three layers: in-
gestion, analytics, and storage, each of which is provided by
a data-intensive system. These systems are often available
as cloud managed services, enabling the users to have pain-
free deployment of data analytics flow applications such as
click-stream analytics. Despite straightforward orchestra-
tion, elasticity management of the flows is challenging. This
is due to: a) heterogeneity of workloads and diversity of
cloud resources such as queue partitions, compute servers
and NoSQL throughputs capacity, b) workload dependencies
between the layers, and c) different performance behaviours
and resource consumption patterns.

In this demonstration, we present Flower, a holistic elastic-
ity management system that exploits advanced optimization
and control theory techniques to manage elasticity of com-
plex data analytics flows on clouds. Flower analyzes statis-
tics and data collected from different data-intensive systems
to provide the user with a suite of rich functionalities, includ-
ing: workload dependency analysis, optimal resource share
analysis, dynamic resource provisioning, and cross-platform
monitoring. We will showcase various features of Flower us-
ing a real-world data analytics flow. We will allow the audi-
ence to explore Flower by visually defining and configuring a
data analytics flow elasticity manager and get hands-on ex-
perience with integrated data analytics flow management.

1. INTRODUCTION
Recent analysis of cloud providers’ service portfolios [10]

shows that the number of data processing platforms offered
as cloud managed services has surged. This is because they
are well appreciated by the users, releasing them from the
hassle of platforms or cluster setup and maintenance. For
example, Fig. 1 depicts a click-stream data analytics flow in
which Amazon Kinesis [4] is used for managing the ingestion
of streaming data at scale and Apache Storm [6] deployed on

∗Flower is an open-source tool and can be downloaded at
https://github.com/Alireza-/Flower

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

Figure 1: A click-stream data analytics flow.

EC2 processes streaming data and persists the aggregated
results in DynamoDB [3].

Despite straightforward orchestration, elasticity manage-
ment of an established flow is highly challenging. This is
due to three unique characteristics of cloud-hosted data an-
alytics flows. First, data analytics flow applications have
heterogeneous workloads, in which different platforms and
workloads are dependent on each other. For example, Fig.
2 shows how the workload dynamics in the ingestion layer
is strongly correlated with the analytics layer. To provide
smooth elasticity management, these workload dependencies
need to be detected and considered in resource allocations.

Second, data analytics flow applications often deal with
immense data volume which, together with uncertain veloc-
ity of data streams, leads to changing resource consump-
tion patterns. This mandates an elasticity technique that
could sustain workload fluctuations time efficiently, mean-
ing that resources should be acquired and released as soon
as required. However, almost all the auto-scaling systems
offered by cloud providers such as Amazon [1] use simple
rule-based techniques that quickly trigger in response to pre-
defined threshold violations. Although these rules can iden-
tify fatal conditions, they often fail to adapt to unplanned
or unforeseen changes in demand. Moreover, they entail
considerable manual efforts in tuning each system individu-
ally and specifying rules based on available resources, which
require solid expertise and planning.

Third, a data analytics flow is often deployed on heteroge-
neous cloud resources, each of which exhibits different per-
formance behaviours and pricing schemes. Resource alloca-
tion thus needs to cater for diverse resource requirements
and their cost dimensions to meet the users’ Service Level
Objectives (SLOs). Existing solutions [11, 12, 13] lack a
holistic approach for resource management of big data an-
alytics workloads. Instead, they focus either on a specific
resource type such as Virtual Machines (VMs) or particular
workload like Hadoop. Nevertheless, it is noted in [15] that
the ability to scale down both web servers and cache tier
leads to 65% saving of the peak operational cost, compared
to 45% if we only consider resizing the web tier.

1893



0 50 100 150 200 250 300 350 400 450 500 550
0

2

4

6

xm10
4

In
p

u
tm

R
ec

o
rd

sm
(U

)
IngestionmLayerm(Kinesis)

0 50 100 150 200 250 300 350 400 450 500 550
0

10

20

30

Timem(min)

C
P

U
(A

)

AnalyticsmLayerm(Storm)

Figure 2: The data arrival rate at the ingestion layer
(Kinesis in Fig. 1) is strongly correlated (coefficient
= 0.95) with the CPU load at the analytics layer
(Storm).

In response to these challenges, we introduce Flower, a
new elasticity system that is designed for holistic resource
management and performance monitoring of cloud-hosted
data analytics flows. Flower’s goal is to provide a high level
easy-to-use system for the admins and DevOps engineers in
order to fulfil the following tasks:
• Workload Dependency Analysis. To analyse the

dependencies between workloads, Flower applies sta-
tistical regression models to workload logs to quan-
titatively explain relationships between, for example,
resource amount in the ingestion layer (e.g. No. of
Shards) and resource amount in the analysics layer
(e.g. CPU usage).
• Resource Share Analysis. To determine how to

best allocate budget to various types of resources across
a data analytics flow, Flower uses a resource share ana-
lyzer module which uses optimization theory to resolve
maximum share of different resources for each layer in
a data analytics flow.
• Resource Provisioning. To enable accurate yet timely

resource provisioning, Flower uses advanced control the-
ory to automatically reason about resource resizing ac-
tions. Our control system is equipped with the novel
feature of having memory of recent controller decisions
which leads to rapid elasticity of the flow in response
to workload dynamics.
• Cross-Platform Monitoring. Flower also provides a

cross-platform monitoring module that allows the ad-
mins to observe and control all performance measures
pertaining to multiple data processing systems all in
one place.

In our demonstration, we will set up a data analytics flow
on cloud, and then ask our audience to visually build and
configure a management layer on top of the data analytics
flow and observe its performance live. The audience will
then be able to witness how Flower dynamically responds to
workload changes.

2. FLOWER ARCHITECTURE
Flower’s architecture consists of several major components,

as depicted in Figure 3. In a nutshell, the workflow of
the system is described as follows. First, dependencies be-
tween workloads’ resource usage measures such as Kine-
sis Shard utilization, Storm cluster CPU usage, and Dy-
namoDB read/write units are analyzed. To this end, we

Figure 3: Flower architecture.

apply regression techniques to estimate the relationships
among variables. The dependency information along with
the cloud services costs and the user’s SLO constitute the
required inputs for the generation of provisioning plan space.

The resource share analyzer module is then invoked to
determine the maximum resource shares of each layer. The
resource shares can be determined with respect to arbitrary
time windows. Once the upper bound resource shares for
each layer are identified, an adaptive controller at each of
the three layers automatically adjusts resource allocations
of that layer.

The controllers are regulated based on a number of param-
eters, including monitored resource utilization value, desired
resource utilization value, and history of the controller’s de-
cisions. In other words, the controllers continuously provi-
sion resources to serve the incoming records or input data
in order to keep resource utilization of each layer within the
specified desired value. For this purpose, the controllers are
equipped with two key components: sensor and actuator.

The sensor module is responsible for providing resource
usage stats as per the specified monitoring window. The
actuator is capable of executing the controllers’ commands,
such as adding or removing VMs and increasing or decreas-
ing number of Shards.

3. FLOWER COMPONENTS

3.1 Workload Dependency Analysis
To analyse workload dependencies, we use regression as a

simple yet effective machine learning technique that has a
sound statistical basis. Flower uses linear regression model to
estimate relationships between resources in different layers.
In mathematical terms, dependency between a resource r of
the layer L1 and a resource r of the layer L2 is defined as:

r(L1) = β0 + β1r
(L2) + ε (1)

where L1 6= L2 and they belong to either Ingestion (I), An-
alytics (A), or Storage (S) layers, i.e. L1, L2 ∈ {I, A, S}. β0
is the y-intercept, β1 is the slope, and ε is the error. For
example, in Fig. 2 the dependency between the ingestion
and the analytics layers is formulated as:

CPU ' 0.0002 ∗WriteCapacity + 4.8 (2)

1894



Evidently, Eq. 2 provides a sound starting point for the
user to reason out, for example, how much CPU we require
in the analytics layer to support the maximum write capac-
ity of a Kinesis Shard in the ingestion layer - given each
Shard supports up to 1,000 records/second for writes. It is
worth mentioning that not all the layers are dependent on
each other where, for example, we witnessed no correlation
between the write capacity in Kinesis and write capacity in
DynamoDB for the click-stream analytics flow application.

3.2 Resource Share Analysis
Given the budget and estimated dependencies between

workloads, what would be the maximum share of resources
for each layer in a data analytics flow? To address such
a question, Flower provides an optimization module that is
able to find an optimal solution with respect to the users’
SLOs. To this end, it formulates a multi-objective function
as follows:

max(r
(I)
t , r

(A)
t , r

(S)
t ) (3)

subject to:∑
d

r
(I)
t ∗ cd +

∑
d

r
(A)
t ∗ cd +

∑
d

r
(S)
t ∗ cd ≤ Budt (4)

r
(L1)
t = β0 + β1r

(L2)
t + ε (5)

where r
(I)
t , r

(A)
t , r

(S)
t ∈ R+ , and variables like r

(I)
t represents

the resource amount in the layer I at time t. cd refers to the
cost dimension d of the resource. The resource shares of the
different layers are subject to the following constraints:
(4) Budget Constraint : at time t the sum of costs concerned

with different cloud resources across all the layers must
be within the specified budget Budt.

(5) Dependency Constraints: dependency between the lay-
ers which is learned via the regression techniques as
discussed in Section 3.1.

In multi-objective optimization, there does not typically
exist a solution that minimizes or maximizes all objective
functions simultaneously. Thus, attention is paid to Pareto
optimal solutions, i.e. those that cannot be improved in any
of the objectives without degrading at least one of the other
objectives. Flower uses NSGA-II algorithm [8] to efficiently
search the provisioning plan space.

Consider the click-stream data analytics flow in Fig. 1 and
the following assumptive dependency constraints as well:

5 ∗ r(A)
t1 ≥ r

(I)
t1 , 2 ∗ r(A)

t1 ≤ r
(I)
t1 , 2 ∗ r(I)t1 ≤ r

(S)
t1 , where r

(I)
t1 ,

r
(A)
t1 , and r

(S)
t1 respectively refer to the number of Shards

in ingestion, VMs in analytics, and Write capacity units in
the storage layer at time t1. Given these constraints, the
algorithm finds six Pareto optimal solutions, each represent-
ing the resource shares of Kinesis, Storm, and DynamoDB
simultaneously, as shown in Fig. 4. In the end, one solu-
tion which is best suited to the problem in practice must be
identified either manually by the user or randomly by the
system.

3.3 Resource Provisioning
Flower has multiple built-in adaptive controllers tailored

to the data ingestion, analytics, and the storage layers. This
is due to the design principles [9] mandated by practical

Figure 4: Pareto optimal solutions

requirements of each layer of a data analytics flow. Our
adaptive controllers are defined as follows:

uk+1 = uk + lk+1(yk − yr), (6)

Here, uk and uk+1 are the current and new actuator values.
yk and yr are respectively the current and desired reference
sensor measurement. The controller gain lk+1 is adaptively
updated according to the following update law:

lk+1 =

lk + γ(yk − yr), if lmin ≤ lk + γ(yk − yr) ≤ lmax

lmin, if lk + γ(yk − yr) < lmin

lmax, if lk + γ(yk − yr) > lmax

(7)

Here, lk is the controller gain at the time k, lmin > 0 and
lmax > 0 are the lower bound and the upper bound of the
controller gain, respectively, and γ > 0 is a controller pa-
rameter.

Flower’s sensor module periodically collects live data from
multiple sources such as CloudWatch [2] and inserts them
into the actuator module. The controllers regulate the ac-
tuator value from the previous time step proportionally to
the deviation between the current and desired values of the
sensor variable in the current time step.

Our control system, unlike the existing solutions [12, 14],
has the feature of updating the gain parameters in multi-
stages and keeping the history of the previously computed
control gains for rapid elasticity. Our experiments in [9]
have shown that our control system outperforms the state of
the art fixed-gain [12] and quasi-adaptive [14] counterparts.
We have also provided a rigorous stability analysis of the
resulting controllers in [9].

3.4 Cross-Platform Monitoring
Many cluster monitoring tools such as Ganglia [5] are

available to assist administrators. However, they fail to pro-
vide a holistic view of performance measure across a data
analytics flow. One is required to check out different sys-
tems and user interfaces in order to track any possible per-
formance failures or slowdowns. For example, monitoring an
analytics flow application built upon Storm and DynamoDB
systems requires to track performance statistics in two sep-
arate user interfaces.

To tackle this issue, Flower introduces a module called all-
in-one-place visualizer, which allows users to visually define

1895



Figure 5: Flower’s flow builder interface

a monitoring layer on top of multiple systems. The mod-
ule calls the APIs of the systems, such as CloudWatch and
Storm, and consolidates diverse performance measures in an
integrated user interface:

4. DEMONSTRATION
The demonstration will give a walk-through over the key

features of Flower. To this end, a demo infrastructure will be
set up on Amazon cloud with three systems: (a) Kinesis, (b)
Storm, and (c) DynamoDB. These systems are required to
deploy the test data analytics flow - click-stream analaytics
as shown in Fig. 1, which is based on the Amazon’s reference
architecture for click-stream analytics [7]. Once the flow is
deployed, we will use a random multi-threaded click stream
generator deployed on several EC2 instances to emulate the
real website traffics.

We will then ask the audience to follow the steps below
in order to create and run a flow elasticity manager:

1. Flow Builder: The attendee first will use Flower’s
Flow Builder to drag and drop multiple platforms and
create a data analytics flow via its graphical user in-
terface as shown in Fig. 5.

2. Flow Configuration Wizard: Then, the user will
follow a wizard to configure the controllers with in-
formation such as resource name (e.g. table name in
DynamoDB), desired reference value, and monitoring
period for the selected systems in Step 1.

3. Controller Performance Monitor: Once configu-
ration is completed, the user will then be able to run
the service. Flower will accordingly launch visualiza-
tions as shown in Fig. 6. The attendees will then
observe how different controllers change the cloud ser-
vices capacities dynamically and the resulting perfor-
mance. They will also be able to adjust parameters of
the controllers, such as elasticity speed, monitoring pe-
riod, or even their internal settings and compare their
impacts on SLOs.

In addition to above demonstration, we will also ask the
attendees to create a cross-platform visualization dashboard
using similar steps. This will allow them to experience live
monitoring of multiple systems all in one go.

5. REFERENCES
[1] Amazon auto scaling. https://aws.amazon.com/autoscaling/.

[2] Amazon cloudwatch. https://aws.amazon.com/cloudwatch/.

[3] Amazon dynamodb. https://aws.amazon.com/dynamodb.

[4] Amazon kinesis. http://aws.amazon.com/kinesis.

[5] Ganglia monitoring system http://ganglia.sourceforge.net/.

[6] Apache storm. http://storm.apache.org/.

[7] R. Bhartia. Amazon kinesis and apache storm: Building a
real-time sliding-window dashboard over streaming data.
Technical report, Amazon Web Services, October 2014.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. TEVC,
6(2):182–197, 2002.

[9] A. Khoshkbarforoushha, A. Khosravian, and R. Ranjan.
Elasticity management of Streaming Data Analytics Flows on
clouds, Journal of Computer System Sciences, 2016.

[10] A. Khoshkbarforoushha, M. Wang, R. Ranjan, L. Wang,
L. Alem, S. U. Khan, and B. Benatallah. Dimensions for
evaluating cloud resource orchestration frameworks. Computer,
49(2):24–33, 2016.

[11] I. Konstantinou, E. Angelou, D. Tsoumakos, C. Boumpouka,
N. Koziris, and S. Sioutas. TIRAMOLA: elastic NoSQL
provisioning through a cloud management platform. In
SIGMOD, pages 725–728. ACM, 2012.

[12] H. C. Lim, S. Babu, and J. S. Chase. Automated control for
elastic storage. In ICAC, pages 1–10. ACM, 2010.

[13] J. Ortiz, B. Lee, and M. Balazinska. Perfenforce
demonstration: Data analytics with performance guarantees.
SIGMOD, 2016.

[14] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized
resources in utility computing environments. In ACM SIGOPS
Operating Systems Review, volume 41, pages 289–302. 2007.

[15] T. Zhu, A. Gandhi, M. Harchol-Balter, and M. A. Kozuch.
Saving cash by using less cache. In HotCloud, 2012.

Figure 6: Elasticity control and monitoring interface

1896

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/dynamodb
http://aws.amazon.com/kinesis
http://ganglia.sourceforge.net/
http://storm.apache.org/

	Introduction
	Flower Architecture
	Flower Components
	Workload Dependency Analysis
	Resource Share Analysis
	Resource Provisioning
	Cross-Platform Monitoring

	Demonstration
	References

