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ABSTRACT
We demonstrate LocLok, a LOCation-cLOaKing system to
protect the locations of a user with differential privacy. Lo-
cLok has two features: (a) it protects locations under tem-
poral correlations described through hidden Markov model;
(b) it releases the optimal noisy location with the planar
isotropic mechanism (PIM), the first mechanism that achieves
the lower bound of differential privacy. We show the detailed
computation of LocLok with the following components: (a)
how to generate the possible locations with Markov model,
(b) how to perturb the location with PIM, and (c) how to
make inference about the true location in Markov model.
An online system with real-word dataset will be presented
with the computation details.

1. INTRODUCTION
With the technology advances in smartphones with local-

ization capabilities, location based applications have been
tremendously popular in people’s lives. Location-based ser-
vices (LBS) [11, 5] range from searching points of inter-
est to location-based games and location-based commerce.
Location-based social networks allow users to share locations
with friends, to find friends, and to provide recommenda-
tions about points of interest based on their locations.

A concern of the location based applications is location
privacy [2]. Because locations contain a lot of sensitive in-
formation such as one’s religion and health condition (when
a user goes to church or hospital), it is considered as private
information of users. However, to enable the location based
applications, users have to provide their locations to the re-
spective service providers or other parties. This location dis-
closure raises important privacy concerns since digital traces
of users’ whereabouts can expose them to attacks ranging
from unwanted location based spams/scams to blackmail or
even physical danger.

Challenges. Most existing location preversing solutions in
the literature are based on location obfuscation which re-
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places the exact location with an area (location generaliza-
tion) or a noisy location (location perturbation) (e.g. [8, 1]).
Many of them only consider static scenarios or perturb the
location at single timestamps without considering the tem-
poral correlations of a moving user’s locations, and hence
are vulnerable to various inference attacks. For example,
by combining the knowledge of temporal correlations, the
static noisy location can be easily disclosed to adversaries.
Such temporal correlations are usually described by Markov
model to reflect the patterns such as user moving habits or
road network constraint. Because the true location is always
hidden from adversaries and service providers, it is a hidden
Markov model.

Differential privacy [6] has been considered as an accepted
notion for privacy preservation. Initially it was proposed to
protect aggregated statistics of a dataset by limiting the
knowledge gain of the neighboring databases whether a user
is in a dataset or not. Applying differential privacy on loca-
tion data was conducted in recent literature. In particular,
several works (e.g. [4, 7, 3]) have applied differential privacy
on location or trajectory data but in a data publishing or
data aggregation setting. In contrast, in our setting of con-
tinual location sharing, the protection needs to be enforced
on the fly for a single user. For example, the recent work
[1] proposed a notion of geo-indistinguishability which bears
some similarity to differential privacy by changing the no-
tion of neighboring databases.

Several challenges emerge when adopting differential pri-
vacy in our setting. First, standard differential privacy only
protects user-level privacy (whether a user opts in or out of
a dataset); while in our setting, the protection needs to be
enforced for a single user. Hence the user cannot opt out of
the system, otherwise there is no data to protect. Second,
temporal correlations have to be considered to account for
the road networks or the user’s moving patterns.

Contributions. In this paper, we demonstrate the location
cloaking system [13] to preserve location privacy with differ-
ential privacy. Our framework is shown in Figure 1, where
we have a moving user with location stream who needs to
share the locations to some service providers or other par-
ties. The user’s true locations are kept to only the user.
The noisy locations are released by the privacy mechanisms
to the service providers, and visible to adversaries. To pre-
serve location privacy, we tackle the temporal correlations
described by Markov model, which are assumed to be public.
Furthermore, we assume the release mechanism is transpar-
ent to adversaries, who, in the worst case, can even have
the knowledge of all historically released locations from the
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Figure 1: Problem setting

user.
First, we demonstrate an extended differential privacy def-

inition based on the notion of δ-location set we developed in
[13]. In our problem, location changes between two consec-
utive timestamps are determined by temporal correlations
modeled through a Markov chain [12, 9]. Accordingly we
propose a “δ-location set” to include all probable locations
(where the user might appear) at current timestamp. To
protect the true location, we “hide” it in the δ-location set
in which the elements are not distinguishable to each other.

Second, we show how to perturb the true location with
an efficient differentially private mechanism, called planar
isotropic mechanism (PIM), based on δ-location set. To our
knowledge, PIM is the first optimal mechanism that achieves
the lower bound of differential privacy. The trick is that lo-
cation data is only two-dimensional (or three-dimensional at
most). Hence we can transform the location to an isotropic
space to conduct the perturbation so that the optimality of
the error can be guaranteed.

Third, we present the continual location sharing system
by combing the Markov model and the PIM together. We
show that even with the temporal inference, the location at
current timestamp can still be protected by the δ-location
set based differential privacy.

Software Availability. Our demonstration using the Ge-
oLife data and OpenStreetMap will be put on the website
http://www.loclok.com. Besides our demonstration sys-
tem, we also have a prototype iPhone app “LocLok” in Ap-
ple’s app store. The source code of the app can also be found
at https://github.com/yhxiao/gitloc.

2. SYSTEM OVERVIEW
We partition a map into grids where each grid is a state

in Markov model. Then a user’s true location is denoted by
a state (grid) number in a Markov model.

At each timestamp in LocLok, three components are cal-
culated: (1) a δ-location set is generated in Markov model
to find the probably locations of the user; (2) a noisy loca-
tion z is released using a differentially private mechanism,
i.e. PIM; (3) The released location is used to make infer-
ence about the true location. Then by Markov transition,
the probability after inference will be used in the next times-
tamp. The three components iterates as a loop over time.
Figure 2 shows the system overview. The last step “Markov
transition” is a standard movement with Markov transition
matrix.

Location Release

Bayesian Inference

Markov Transition

δ-location Set

time

Figure 2: System Overview

2.1 Generating δ-location set
The idea of differential privacy is to hide a database in

its neighboring databases, which are derived by adding or
removing a record in the database. Similarly, we can hide
the user’s true location in possible locations where the user
may appear. On the other hand, hiding the true location in
any impossible locations does not work because the adver-
sary already knows the user cannot be there. We use the
concept of δ-location set to denote the possible locations of
the user.

To incorporate temporal correlations, we assume the Markov
model is public. Hence adversaries can also use the Markov
model to derive the probability of the true location of a
user. At any timestamp, say t, a prior probability of the
user’s current location can be derived, denoted by p−t [i] =
Pr(u∗t = si|zt−1, · · · , z1).

We use a parameter δ to derive the possible locations of
the user. δ-location set ∆Xt is a set containing minimum
number of locations that have prior probability sum no less
than 1 − δ. Essentially, it is a set of the most probable
locations of the user after removing the unlikely locations.

∆Xt = min{si|
∑
si

p−t [i] ≥ 1− δ}

Then differential privacy can be guaranteed on ∆Xt if for

any two locations x1 and x2 in ∆Xt
Pr(A(x1)=zt)
Pr(A(x2)=zt)

≤ eε holds

where zt is the released location from any mechanism A.

2.2 Location Release Mechanism
Instead of adopting the standard Laplace mechanism to

release the “noisy” location, we use a planar isotropic mech-
anism (PIM) to release the differentially private locations.
The novelty is that we transform the data release mecha-
nism (K-norm mechanism [10]) into an isotropic space, gen-
erate the “noisy” location, and transform the noisy location
back to the original space. In this way, the released location
achieves the lower bound of differential privacy [13].

To denote the sensitivity function of differential privacy,
we use sensitivity hull to denote the geometric sensitivity
of the location. Given the δ-location set, we can derive a
convex hull K′ covering all the points in ∆X by Conv(∆X)
where Conv() is a function of convex hull. Then the sensi-
tivity hull K can be derived by covering all the differences
among every pair of points in K′.

K = Conv(∆V)

∆V = ∪
v1,v2∈ vertices of K′

(v1 − v2)
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To implement the planar isotropic mechanism (PIM), we
transform the sensitivity hull to its isotropic space. This
is computationally feasible because in 2-dimensional space
the transformation is in constant time. To derive the trans-
formation matrix T, we uniformly draw random samples
in K. When the number of samples grows, the matrix

T =
(

1
l

∑l
i=1 yiy

T
i

)− 1
2

becomes stable where y1, · · · ,yl
are the random samples from K. Then we transform the
sensitivity hull K to TK.

Next we generate a random variable r from Gamma dis-
tribution Γ(3, ε−1). Let z′ = rz′. Then we transform the
point z′ to the original space by z′ = T−1z′. Finally, the
released location is z = x∗ + z′.

2.3 Inference
Similar to the forward-backward algorithm in hidden Markov

model, the released location zt can be used to make better
estimation of the true location. For privacy reasons, we as-
sume the data release mechanism, i.e. PIM, is transparent
to adversaries. Thus the probability distribution of zt is
known. To derive the probability of si being the true lo-
cation, we first transform z and si back to the isotropic
space z′t = Tz, s′i = Tsi. Next the emission probabil-
ity Pr(zt|u∗t = si) can be derived in the isotropic space.
Then we use Bayesian rule to derive the posterior probabil-
ity Pr(u∗t = si|zt), which is also the inference of u∗t given
all the released locations z1, · · · , zt.

In the next timestamp t+ 1, the prior probability can be
derived as p−t+1 = ptM where M is the transition matrix of
Markov model. Then the three components repeat again as
in Figure 2.

3. DEMONSTRATION
We demonstrate the functionalities and utilities of LocLok

using the real-world dataset GeoLife. The computation de-
tails will also be included in the demonstration.

Dataset. Geolife data [14] was collected from 182 users in a
period of over three years. It recorded a wide range of users’
outdoor movements, represented by a series of tuples con-
taining latitude, longitude and timestamp. The trajectories
were updated in a high frequency, e.g. every 1 ∼ 60 seconds.
We clean the data by extracting the locations every 5 min-
utes. Then we extracted all the trajectories within the 5th
ring of Beijing to train the Markov model. Because the map
granularity affects the Markov model and the correspond-
ing trajectories, we show three layers of the same data by
partitioning the map into 25 × 25, 50 × 50 and 100 × 100
grid.

Basic Functions. First, we choose a trajectory of a user in
one day. For example, Figure 3 shows a trajectory of a user,
marked in the grid coordinates. The green point indicates
the true location at current time. When the user moves, the
probability of the location can be derived by Markov model.
Figure 4 shows the δ-location set of the user, containing
all the probable locations the user might appear based on
previously perturbed (released) locations and the Markov
transition.

Second, we show how to release a noisy location zt with
PIM. Given the convex hull of δ-location set in Figure 5a,
we first draw the sensitivity hull in Figure 5b by moving
the convex hull around while containing the origin within

Figure 3: A trajectory in GeoLife

Figure 4: δ-location set of the user

the convex hull. Then the covered area forms the sensitivity
hull K. Third, we show how to transform the sensitivity hull
to its isotropic space. We randomly draw samples in K, and

derive the transformation matrix T =
(

1
l

∑l
i=1 yiy

T
i

)− 1
2

where y1, · · · ,yl are the random samples from K. Thus by
applying KI = TK, the sensitivity hull can be transformed
to the isotropic space KI , shown in Figure 5c.

Finally, we generate the noisy location zt. By Bayesian
inference, the posterior probability of the true location p+

t

can be derived. Then at the next timestamp, the process
repeats again. The released trajectory is the series of noisy
locations over time. For example, Figure 6a is the true tra-
jectory of a user on a map. Then the released trajectory is
shown in Figure 6b. We can see that the released trajectory
is still close to the true trajectory, and ε-differential privacy
on δ-location set is preserved at each timestamp where ε = 1
and δ = 0.01.

Advanced Functions. We also demonstrate two advanced
functions: (a) how the parameters impact the result, (b)
how the map granularity changes the result. We will allow
different parameters of ε and δ perform on the same dataset
to compare the different results. We show that with larger
ε, the error in the released location is smaller. Whereas
with larger δ, the δ-location set becomes smaller. Although
this may lead to better utility, it may also cause that true
location is excluded in the δ-location set. Even with the
solution of surrogate [13], we need to tune the value of δ for
better utility. In general, if both ε and δ are small, the area
of δ-location set will become larger and larger after a long
time as Markov model converges. In this case, a larger ε is
preferred for better utility.
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Figure 6: Performance over time: (a) The true (original) trajec-

tory; (b) the released trajectory.

We also show the impact of different map granularity by
showing the same data under 3 partitioning size: 25 × 25,
50 × 50 and 100 × 100. Intuitively, with finer granularity
and larger partition size, the trajectory contains more mov-
ing details with smaller grid. Furthermore, with finer gran-
ularity, the trained Markov model is more diverging, which
means the probability of staying in the same grid will be
smaller. This leads to the more possible locations and com-
plicated sensitivity hull. On the other hand, with coarse
granularity, the information of the trajectory becomes less,
and the diagonal values in the transition matrix becomes
larger. Hence the probability of staying at the same grid
rises. The moving speed of the user may become vague over
time.

User Interface. The interface of our system is the map
page from OpenStreetMap. We will give options to select
different trajectories in the dataset. After showing the true
trajectory, we let audience choose the map granularity and
the parameters. Then the system will show the true loca-
tion, δ-location set, the sensitivity hull, and the noisy loca-
tion on the map until the moving user reaches the end of
the trajectory.
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