
A Confidence-Aware Top-k Query Processing Toolkit on
Crowdsourcing

Yan Li#1 Ngai Meng Kou#2 Hao Wang†3∗ Leong Hou U#4∗ Zhiguo Gong#5

#Department of Computer and Information Science, University of Macau, Macau SAR
1yb57411@umac.mo 2yb27406@umac.mo 4ryanlhu@umac.mo 5fstzgg@umac.mo

†State Key Laboratory for Novel Software Technology, Nanjing University, China
3wanghao@nju.edu.cn

ABSTRACT
Ranking techniques have been widely used in ubiquitous ap-
plications like recommendation, information retrieval, etc.
For ranking computation hostile but human friendly items,
crowdsourcing is considered as an emerging technique to
process the ranking by human power. However, there is
a lack of an easy-to-use toolkit for answering crowdsourced
top-k query with minimal effort.

In this work, we demonstrate an interactive programming
toolkit that is a unified solution for answering the crowd-
sourced top-k queries. The toolkit employs a new confidence-
aware crowdsourced top-k algorithm, SPR. The whole pro-
gress of the algorithm is monitored and visualized to end
users in a timely manner. Besides the visualized result and
the statistics, the system also reports the estimation of the
monetary cost and the breakdown of each phase. Based on
the estimation, end users can strike a balance between the
budget and the quality through the interface of this toolkit.

1. INTRODUCTION
Online crowdsourcing platforms, such as Amazon Mechan-

ical Turk (AMT) and CrowdFlower1, become popular nowa-
days, where these platforms can help to distribute simple
microtasks [3, 6] (e.g., image classification and labeling) to
workers at reasonable costs. For instance, a requester might
pay as low as $0.01 to collect a binary judgment answer.
More importantly, these platforms have implemented some
well-proven mechanisms to secure the answer quality, e.g.,
qualification test and gold standard questions.

Some complex tasks, such as joining between two datasets
or ranking top-k items, are not natively supported in these
crowdsourcing platforms. Therefore, some advanced crowd-
sourcing systems, e.g., Qurk [9, 10, 11] and CrowdDB [4,
5], were developed to address the need of these tasks. For
instance, [10] studied how to support human-powered sorts

∗Corresponding authors.
1www.mturk.com; www.crowdflower.com

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

and joins on the crowdsourcing platforms using an easy-to-
use SQL like language.

To the best of our knowledge, most existing work [4, 5, 9,
10, 11] apply a majority vote mechanism for unifying the an-
swers from the crowd workers. However, these work overlook
a fact that the cost to unify the answers (i.e., concluding a
comparison based on the judgments from the crowd) should
be proportional to the difficulty. For instance, picking the
younger photo between a child and an adult should need
fewer judgments than pick between two adolescents. Based
on this observation, our prior work [7] studied a crowd-
sourced confidence-aware query processing which takes the
judgment difficulty (estimated by the confidence level in
statistics) into the query processing. As shown in [7], the
confidence-aware solution not only secures the query answer-
ing quality but also minimizes the crowdsourcing cost.

Our prior study [7] focused on the crowdsourced top-k
query [1, 2, 8, 12], that has been considered as an emerg-
ing technique for ranking computation hostile but human
friendly items, e.g., ranking the 10 most beautiful college
campuses in the world. While the top-k query is a crucial
requirement in ubiquitous applications, we notice that end
users may require some effort to understand the crowdsourc-
ing environment and to learn advanced algorithms before
they can really process any top-k queries on the crowdsourc-
ing platforms. For ease of use, we extend our solution [7]
to be an easy-to-use programming toolkit so that end users
are able to process crowdsourced top-k queries with mini-
mal effort. This toolkit employs a novel confidence-aware
algorithm Select-Partition-Rank (SPR) [7] running on a lo-
cal server or a popular crowdsourcing platform CrowdFlower
supporting global crowd channels. We implement the toolkit
as a programming library due to the considerations of both
user privacy and developer flexibility. In short, users are not
willing to share their account information (e.g., the private
key in CrowdFlower). Developers, on the other hand, can
easily integrate a library into their own systems.

The contributions of this demonstration are threefold: (1)
we provide a convenient toolkit to answer the crowdsourced
top-k query on a local server or through an online platform;
(2) an interactive user interface is designed for fine-tuning
the result quality and the monetary budget during the exe-
cution; and (3) the intermediate information and statistics
are visualized by concise figures. We organize our paper as
follows. We give the overview of our toolkit in Sec. 2. Then
we introduce our confidence-aware top-k algorithm and our
quality control techniques in Sec. 3 and Sec. 4, respectively.
The demonstration scenarios are presented in Sec. 5.

1909

Figure 1: Crowdsourced top-k processing toolkit architecture

2. OVERVIEW
Figure 1 is an overview of the toolkit architecture. As the

execution is a dynamic procedure, it is important to provide
functions for monitoring the running statistics, estimating
the expected monetary cost, interposing the system at any
stage and hiding the complex crowdsourcing platform in-
terface from the end users. It is also critical to provide a
strategy to help the users to limit the monetary cost within
the budget. Note that, since the monetary cost is propor-
tional to the result quality, it is always possible to find an
appropriate confidence level such that the monetary cost is
less than the budget limitation.

There are 3 major components in the toolkit. The user
interface and the status monitor in blue color are the func-
tions for interaction and visualization. Users can access the
execution status, adjust the budget limitation and update
the algorithm parameters in real-time through this compo-
nent. The system manager in yellow color is the component
for balancing the monetary cost and result quality. It reads
the statistics from the top-k processing algorithm and es-
timates the expected monetary cost. If the estimated cost
exceeds the budget limitation, it will pause the algorithm
and wait for the user’s decision (semi-automatic mode) or
directly re-balance the cost and quality by reducing the ob-
jective confidence level (automatic mode). The component
in green color is the back-end processing logic. The execu-
tion strategy is based on SPR algorithm. Record manager
stores the results of all the finished microtasks (i.e., compar-
isons) to enable fault-tolerant processing. Microtask genera-
tor and platform interface transform an internal comparison
to worker readable microtasks and communicate with crowd.

3. SELECT-PARTITION-RANK
Select-Partition-Rank (SPR) [7] is a confidence-aware al-

gorithm for the crowdsourced top-k query. The experiment
results in Figure 2 show that SPR is one of the most mon-
etary and time efficient solutions to find the top-k items
with quality guarantee. Therefore we implement SPR in the
toolkit as the query processing algorithm. SPR decomposes
the top-k query into a set of pairwise preference comparisons
and distributes the comparisons as microtasks to the crowd.
The worker who accepts a microtask needs to decide her
preferred item and indicate her preference level (i.e., how
much she prefers the item). Since some comparisons can
be answered easily (i.e., one item is much better than the
other) while some comparisons may be tough (i.e., two items
are similar), SPR dynamically decides the workload of each
comparison to make sure that every comparison result has

the same confidence. So the total monetary cost of SPR is
proportional to the total workload of all the comparisons.
SPR has 3 phases: selecting phase, partitioning phase and
ranking phase. We shortly introduce the basic idea of each
phase in the following.

0 5 10 15 20 25 30 35 40

TMC(x10000)

0

10

20

30

40

La
te

n
cy

(x
1

0
0

)
Inf

Tour

Heap

QSSPR

(a) IMDb dataset

0 5 10 15 20 25 30 35

TMC(x10000)

0

10

20

30

40

La
te

n
cy

(x
1

0
0

)

Inf

Tour

Heap

QSSPR

(b) Book dataset

Figure 2: Performance summary of SPR with regard
to the total monetary cost (TMC) and the query
latency. Inf is the optimal yet infeasible solution.
Heap, Tour and QS are the baseline solutions.

Select. Given the item setO with sizeN , let {o∗1, o∗2, · · · , o∗k}
be the top-k items where o∗i ∈ O and o∗i � o∗j (o∗i is superior
to o∗j) for any i < j. SPR wants to find a reference item in
{o∗k, o∗k+1, · · · , o∗ck} by sampling where c > 1 and ck � N .
This reference can be found by taking the median item from
a set of m candidates where each candidate is the max item
of x random samples from O [7].

Partition. We compare each item o ∈ O \ r with the ref-
erence r. Since r ∈ {o∗k, o∗k+1, · · · , o∗ck}, we can safely filter
the items which lose the comparison with r. There will be
only a small set of items remained.

Rank. In the ranking phase, the remaining items are ranked
by a sorting method with near linear performance. The top-
k items can then be returned.

4. ESTIMATION AND SELF-ADAPTATION
In this section, we discuss how the end users can strike

a balance between the monetary budget and the top-k an-
swering quality through the system manager of this toolkit.

Almost every crowdsourcing algorithm has its preferred
parameter setting which is well-tuned for the testing appli-
cations, but the default settings are not enough for an open
system due to various application domains. Tuning the pa-
rameters is painful and sometimes impossible for the end
users. With inappropriate settings, the total monetary cost
and the result quality will not be guaranteed. In this toolkit,
we implement two features, budget estimation and quality

1910

self-adaptation, to avoid parameter tuning and make budget
controllable under certain confidence level.

Budget estimation. SPR is a confidence-aware algorithm
that its result quality is subject to the objective confidence
level. We only need to estimate (i.e., forecast) the total
monetary cost according to the confidence level and detect
if there is a risk of exceeding budget. The total monetary
cost (TMC) in SPR can be measured by

TMC =
∑

Comp(oi, oj)∈C

wi,j ,

where C is the set of pairwise comparisons Comp(oi, oj), and
wi,j is the workload (number of judgments) for comparison.

The estimation of Estimated Cost (EC) consists of 3 com-
ponents, estimating the cost of the selecting phase, the par-
titioning phase and the ranking phase. The Estimated Cost
(EC) of each phase can be divided into 2 parts, the actual
current cost and the estimated future cost. Let ACs, ACp
and ACr be the actual current cost of selecting phase, par-
titioning phase and ranking phase. And let ECs, ECp and
ECr be the estimation of future cost of the corresponding
phases. Then we have

EC = ACs + ECs + ACp + ECp + ACr + ECr.

For every phase, the actual cost is known and the future
cost can be estimated by the product of the expected work-
load of a comparison and the number of expected future
comparisons of that phase. Let w̄ be the average workload
of the past comparisons and we use w̄ to approximate the
expected workload of a comparison for simplicity. The ex-
pected number of comparisons in each phase can be bounded
according to the execution procedure. The number of future
comparisons is the expected number of comparisons exclud-
ing the ones already finished. Next, we summarize the ex-
pected number of comparisons phase by phase.

In the selecting phase, we select the median item from m
independent candidates as a reference r where each candi-
date is the max item from x item samples. x and m are
decided based on a limitation that the expected number of
comparison is bounded by N , which is also the expected
number of comparisons [7] in the selecting phase. In the par-
titioning phase, we compare r with every other items which
indicates the expected number of comparisons is N − 1. In
the ranking phase, with the reference-based sorting, the ex-
pected number of comparisons is approximated by 2N . The
total monetary cost can then be estimated.

Self-adaptation. Due to inappropriate settings, the esti-
mation of the total monetary cost may exceed the budget.
In this case, the toolkit provides an interactive interface to
balance the quality and the cost. The user has to adjust
the budget and the confidence level till the estimation of
the total monetary cost is less than the budget2. There are
two methods, one to increase the budget and the other to
decrease the confidence level. Budget increase is done man-
ually by the user while the confidence level can be tuned
automatically based on a self-adapting mechanism.

Since the expected number of comparisons is bounded, we
then analyze the relationship between the confidence level
1−α and the expected workload of a comparison. For each
finished comparison (of w samples), let µ̄w be the sample

2In practice, the budget should be larger than 1.1 ·EC after
balance to avoid repetitious adjustment.

mean and Sw be the sample standard deviation. Suppose
without loss of generality µ̄w > 0, the expected workload
w′ under a new confidence level 1− α can be derived [7] as
follows:

w′ =

(
Sw · tα

2
,w−1

µ̄w

)2

,

where tα
2
,w−1 indicates the right-tail probability of size α

2
of the t-distribution with w − 1 degrees of freedom. Thus,
the confidence level can be adjusted to the maximum value
that strikes a balance between the cost and the quality.

5. DEMONSTRATION
In this demonstration, we invite all attendees to involve

in a ranking game, “what are the most attractive sights for
the VLDB 2017 attendees?” on a local server and show
the running procedure of the toolkit including all discussed
features. Our audiences can participate the game either on
their laptop or smart phone. We start the demonstration
by showing the ranking game instruction. In the pairwise
judgment page, each audience states her preference for the
sights by dragging a slider bar. If an audience wants to know
more about the sight, she can check the Wikipedia page
by clicking on the image. Meanwhile, our audiences can
investigate the entire query processing, from the input data
formalization to the final result collection, via the status
monitor interface.

5.1 Demonstration Setup

(a) Instruction (b) Judgment

Figure 3: Quest UI

For a top-k query, a user needs to prepare a quest interface
and an item list. The quest interface is an HTML page for
pairwise judgments. Figure 3 shows the quest interface in
the ranking game, where two items can be judged by drag-
ging the slider bar. To support different kinds of items, each
item in the item list is represented by a tuple 〈ItemID,URL〉
where ItemID is a unique index for the item and URL is the
entity (e.g., an image, a video, a word, etc.). For the sake of
demonstration, we select 20 photos of famous sights in Mu-
nich as the item list and preload into our local server. We
also assume that our attendees will answer the judgments to
the best of their knowledge (i.e., no golden quest is needed
in the ranking game).

1911

5.2 Status Monitor
During the execution, audience can monitor the current

running query via the status monitor. We assume each an-
swer collected from the VLDB 2017 attendees costs $0.01.

Figure 4: Status monitor - upper windows

Progress monitor. In the upper windows (Figure 4), the
overall progress of the task can be view on the top of the
interface. On its right, there is a “stop button” to terminate
a query immediately. The right side shows the statistics of
the query execution, such as running time, estimated run-
ning time, number of comparisons, number of ties, average
workload and estimated number of pairs to compare.

Budget Control. In the budget control window, the es-
timation of the total monetary cost is highlighted while its
breakdown is illustrated by a doughnut graph. The current
cost and the estimated future cost of every phase of SPR
is shown as a piece of doughnut. Users can investigate the
changes in real time. The slider bar below the estimated
total monetary cost is used to tune confidence level.

Figure 5: Status monitor - lower windows

Budget monitor. Figure 5 is the lower windows of the
status monitor. In the left hand side, there is a line chart of
the current monetary cost (green line), the estimated future
monetary cost (orange line) and the total budget (red line)
over time. The current monetary cost and the estimated
future monetary cost are updated when a new microtask
result is collected.

Result monitor. On the right hand side of Figure 5 is the
result monitor. It shows a list of the top-k items based on
current collected result. The list will be updated over time
during the execution.

Interaction example. Figure 6 shows an example that
users control the monetary cost under the budget via an
interactive process. At some time point, even the current
cost ($3.2) is under the budget ($15), the estimated cost
($16.2) is over the budget limitation. The program pauses
the execution immediately and throws out a budget risk as

(a) Budget risk

(b) Control budget with confidence level

Figure 6: An example of budget control

shown in Figure 6(a). In order to continue the process, the
user could add an additional budget or reduce the confidence
level. Figure 6(b) shows the result of taking the latter op-
tion. The confidence level is automatically reduced from
90% to 84%. The estimation of budget is then decreased
from $16.2 to $13.6 correspondingly.

Acknowledgement. This work was supported by MYRG-
2016-00182-FST and MYRG2014-00106-FST from UMAC
RC, 61502548, 61432008, 61503178 from NSFC, BK20150587
from Jiangsu Province, FDCT/007/2016/AFJ from FDCT.

6. REFERENCES
[1] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the

crowd for top-k and group-by queries. In ICDT, pages 225–236,
2013.

[2] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Top-k and
clustering with noisy comparisons. ACM Trans. Database
Syst., 39(4):35:1–35:39, 2014.

[3] A. Doan, M. J. Franklin, D. Kossmann, and T. Kraska.
Crowdsourcing applications and platforms: A data
management perspective. PVLDB, 4(12):1508–1509, 2011.

[4] A. Feng, M. J. Franklin, D. Kossmann, T. Kraska, S. Madden,
S. Ramesh, A. Wang, and R. Xin. Crowddb: Query processing
with the VLDB crowd. PVLDB, 4(12):1387–1390, 2011.

[5] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. Crowddb: answering queries with crowdsourcing. In
SIGMOD, pages 61–72, 2011.

[6] B. Frei. Paid crowdsourcing. Current State & Progress toward
Mainstream Business Use, Smartsheet. com Report,
Smartsheet. com, 9, 2009.

[7] N. M. Kou, Y. Li, H. Wang, L. H. U, and Z. Gong.
Crowdsourced top-k queries by confidence-aware pairwise
judgments. In SIGMOD, pages 1415–1430, 2017.

[8] J. Lee, D. Lee, and S. Hwang. Crowdk: Answering top-k
queries with crowdsourcing. Inf. Sci., 399:98–120, 2017.

[9] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Demonstration of qurk: a query processor for human operators.
In SIGMOD, pages 1315–1318, 2011.

[10] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Human-powered sorts and joins. PVLDB, 5(1):13–24, 2011.

[11] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced
databases: Query processing with people. In CIDR, pages
211–214, 2011.

[12] V. Polychronopoulos, L. de Alfaro, J. Davis, H. Garcia-Molina,
and N. Polyzotis. Human-powered top-k lists. In WebDB, pages
25–30, 2013.

1912

