
Thoth in Action: Memory Management in Modern Data
Analytics∗

Mayuresh Kunjir
Duke University

mayuresh@cs.duke.edu

Shivnath Babu
Duke University

shivnath@cs.duke.edu

ABSTRACT
Allocation and usage of memory in modern data-processing
platforms is based on an interplay of algorithms at multiple
levels: (i) at the resource-management level across contain-
ers allocated by resource managers like Mesos and Yarn,
(ii) at the container level among the OS and processes such
as the Java Virtual Machine (JVM), (iii) at the framework
level for caching, aggregation, data shuffles, and application
data structures, and (iv) at the JVM level across various
pools such as the Young and Old Generation as well as the
heap versus off-heap. We use Thoth, a data-driven platform
for multi-system cluster management, to build a deep un-
derstanding of different interplays in memory management
options. Through multiple memory management apps built
in Thoth, we demonstrate how Thoth can deal with multiple
levels of memory management as well as multi-tenant nature
of clusters.

1. INTRODUCTION
We are witnessing an explosion in the number of data-

processing platforms: Hadoop, Spark, HBase, Cassandra,
Kafka, Storm, Flink, Presto, and others. Some key observa-
tions about these platforms are:

• JVM-based: Most of these platforms run on the Java
Virtual Machine (JVM) and are written in JVM-based
languages like Java, Scala, and Clojure. The JVM is
recognized industry-wide as a developer-friendly, stable,
efficient, and secure system.

• Container-friendly: These platforms are invariably run
in multi-tenant environments where resources are allo-
cated and isolated using containers, e.g., using technolo-
gies like Yarn, Mesos, and Docker.

• Memory-intensive: Jim Gray is credited with predict-
ing that “Memory is the new disk.” In-memory data
storage is increasingly the focus in these platforms.

∗This research is supported by NSF grants CNS-1423128
and IIS-1423124.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

Figure 1: Analysis of K-means workflow showing interplay
in different user goals by varying memory per container

The central premise of this paper is that modern data ana-
lytics will increasingly be done in memory on shared-nothing
clusters using JVMs running inside containers. Given this, it
is high time for a systematic empirical study to understand
issues faced by these platforms such as:

1. The interplay of memory-management decisions made
at multiple levels such as: (i) the resource-management
level across various containers allocated on a cluster,
(ii) within a container, (iii) at the application level for
caching, aggregation, data shuffles, etc., and (iv) inside
the JVM.

2. The impact of the JVM’s garbage collection (GC) on re-
sponse time, throughput and performance predictability.

3. The resource-usage overheads of serializing and deserial-
izing data for use in the JVM heap, as well as the use of
off-heap storage to possibly reduce these overheads.

4. The chances of failure due to “out-of-memory excep-
tions.”

5. The impact of the many tuning knobs at various levels
to control memory management, including the number
and sizes of memory pools, how to serialize/deserialize,
how to perform GC, and others.

6. Multi-tenant nature of the platforms necessitates guar-
antees on fair access to system resources, including mem-
ory. This requirement conflicts with memory-management
decisions made for a single tenant.

Often times, cluster administrators simply over-allocate
memory as a safeguard. An internal study carried out at
a popular social networking company showed that memory
is over-allocated by 350% in a production workload. This
is partly due to developers using default resource allocation
settings for lack of a better knowledge about actual memory
requirements.

1917



A simple example suffices to bring out the complexity that
application developers and database administrators of these
modern platforms face. Figure 1 plots runtimes of a sam-
ple K-means application workflow run on a ‘Spark on Yarn’
cluster of 10 nodes. The application is provisioned with one
container on each node. Memory allocated to this container
is varied across test configurations. The application caches
a dataset of vertices in memory to be used across iterations.
With only 1GB memory, containers run out of memory while
caching this dataset. After multiple container failures, Yarn
kills the application. When the memory is increased to 2GB,
some containers run out of memory. But they are replaced
with new containers which re-do the failed tasks and the
application eventually succeeds. In this process though, not
only does the performance suffer, but the predictability also
takes a hit: The number of containers that fail due to insuf-
ficient memory is hard to predict due to data distribution
and scheduling factors. A memory of 4GB proves sufficient
for a predictable and a much better performance. In this
setting, the entire data fits in the available memory on each
node. If memory is over-provisioned, like in the case of 6GB
memory in the graph, the runtime suffers since the JVM’s
memory allocation and de-allocation (GC) costs go up with
the heap size.

This example showcases the interplay among four key
performance metrics: (i) response time, (ii) efficiency of
resource usage, (iii) reliability, and (iv) performance pre-
dictability. We do a systematic study of how different mem-
ory management options impact the performance metrics.
Thoth is a data-driven cluster management platform we have
developed [8]. It collects a wide variety of profiling data from
a data analytics cluster, consolidates it to a system-agnostic
format, and allows multiple visualization and system man-
agement apps over the data. This demonstration uses the
Thoth platform to understand memory management inter-
plays on a ‘Spark on Yarn’ cluster.

Further, Thoth is used in optimizing multi-tenant work-
loads sharing memory as a data cache in a fair manner. We
have developed a multi-tenant cache management solution,
ROBUS [7], which maximizes the throughput of a multi-
tenant cluster using cache for performance speedups while
being fair in terms of the speedups obtained by tenants.

Related Work. The community is either working on under-
standing time bottlenecks [9] or on a focussed analysis of
a single level of memory management (e.g. VisualVM [5],
Ganglia [3], Memory Pressure Interrupts [6]). We are doing
a comprehensive study of memory management encompass-
ing all levels which incorporates various interplays in tuning
options as well as in performance metrics.

2. MEMORY MANAGEMENT
2.1 Memory Pools

Memory in modern data analytics clusters is managed
at four different levels: Resource manager level, Container
level, Application level, and JVM level. Each level maintains
multiple memory pools, each with a specific purpose. While
some of the pools are controlled by configuration options,
the others are often unmanaged. Figure 2 depicts various
memory pools on a node in a data analytics setup.

Resource Manager level. At the topmost level, the clus-
ter memory is managed by a Resource Manager (RM) such

Figure 2: Logical organization of memory pools on a
worker node. Executor memory is managed by JVM.

as Yarn [10]. The RM deploys a Node Manager (NM) on
each worker machine which allocates the physical memory
to a set of containers as per application requirements (e.g.,
data locality) and multi-tenancy requirements (e.g., sharing
resources fairly among tenants). Each container gets to use
the resources assigned to it in isolation.

Container level. We focus on JVM-based application frame-
works that run a JVM process, called executor, within a
container. The process is launched with a heap configured
with an upper bound on physical memory. Additionally, the
application can use off-heap memory to allocate direct byte
buffers [1] which is shown as part of the Executor Memory
in Figure 2. On top of this, each executor process requires
some amount of memory for various OS overheads. Here,
the OS stores shared native libraries, thread stacks, Non-
blocking I/O (NIO) buffers, and memory-mapped files.

While launching a container, we can configure the amount
of memory for the application heap which is to be specified
as part of JVM launch command. The off-heap space used
for OS overheads, however, could be unbounded. Resource
managers employ a utility to monitor this space and warn or
kill the application if the value exceeds a set threshold [10].

Application level. An application platform needs to use
memory for various purposes including: (a) data cache, (b)
execution objects, (c) serialization/deserialization buffers,
and (d) user code data structures. There are various choices
for the application platform when it comes to managing
these objects: Each object could be allocated from a single
unified pool of application memory; Or the application mem-
ory could be broken into multiple pools for different types
of objects. Sizing these pools is an important optimization
choice in data analytics platforms [2]. Another important
choice an application platform needs to make is regarding
the format of objects in memory. While the objects on heap
take more space due to Java’s serialization overheads, JVM
takes on the burden of managing the heap entirely. For an
improved performance, application platforms use off-heap
space for certain object types [4].

Since the modern analytics platforms are multi-tenant in
nature, possibilities of work sharing and resource sharing are
available [7]. Managing memory for such shared optimiza-
tions brings challenges of both efficiency and fairness.

JVM Process level. One of the salient features of the JVM
is its memory management. It periodically runs a process
of garbage collection (GC) which collects any unreferenced
objects from application heap. The heap is organized into
multiple pools of objects as shown in Figure 2. Any object
serialized to heap resides in a pool determined by its age in
heap. The number of pools and the size of each is determined
by the GC policy configured at the time of process launch.
On a high level, there are two categories of pools: Young
generation and Old generation. As the names suggest, the

1918



Figure 3: Thoth platform for memory management

young generation pool stores newly loaded objects and the
old generation pool stores long living objects.

Interplays. Management of memory pools across levels can
be inter-related. As a case in point, data cached in memory
by an application is typically needed for a longer duration
and is, therefore, expected to end up in old generation pool
of heap. If the old generation pool is configured to a size
lower than the application’s cache data pool, some of the
cache objects will end up in young generation pool increasing
the frequency of garbage collection calls thereby adversely
affecting performance. It is, therefore, necessary to tune
application cache pool and GC pools together.

2.2 Thoth Platform
Thoth [8] provides a data-driven platform to build various

cluster management apps. We make use of this platform in
analyzing cluster memory. Figure 3 shows a Thoth proto-
type specifically catered to memory management. Data gen-
erated during an application life-cycle is collected by Thoth
agents running in each node. This data is collected and con-
solidated on a central data warehouse. The key sources of
profiled data we use as part of this demonstration are as
follows:

• System profiling using pidstat: ‘pidstat’ is a linux
utility that instruments a process for resource metrics
such as CPU usage and Resident Set Size (RSS) memory.

• JVM profiling using statsd: We employ JVM profil-
ing using statsd monitor on every executor JVM.

• Application event profiles: In order to understand
application platform’s management of memory, we track
all memory-related events in the underlying application
platform. Our prototype builds on the event logging in-
frastructure provided by Spark [4].

• Error logs: Error logs generated by the resource man-
ager and application platforms are monitored for any
Out-of-Memory errors.

As Thoth’s data manager consolidates data from various
sources together, it enables a deep analysis of impact of
various memory management options. The platform also
enables developing applications that optimize multi-tenant
workloads together, ROBUS [7] being a case in point. ROBUS
is an online app that manages a centralized cache to simul-
taneously optimize a workload from multiple tenants. The
choice of data brought to cache guarantees a fair utility to
each tenant which is achieved by developing accurate utility
estimation models based on workload profiling in Thoth.

(a)

(b)

(c)

(d)

Figure 4: Memory usage for a representative executor run-
ning a SortByKey application under: (a) 6GB heap with
default GC configurations, (b) 6GB heap with more aggres-
sive GC, (c) 4GB heap with aggressive GC, and (d) 4GB
heap with default GC configurations and up to 2GB off-
heap buffer space

1919



Figure 5: A visualization of application profiling in Thoth

3. DEMONSTRATION PLAN
We have developed a prototype of Thoth platform illus-

trated in Figure 3 for a ‘Spark on Yarn’ cluster. A web inter-
face is built to analyze applications using profiling data col-
lected from multiple sources as described in Section 2.2. Dif-
ferent summary views are provided along with visualizations
allowing for a visual inspection of memory and performance-
related inefficiencies. An example screenshot is presented in
Figure 5.

Further, we have built a recommendation engine that pro-
vides guidelines on optimizing performance metrics such as
latency, memory utilization, predictability of performance,
and reliability. The engine works in two phases:

The first phase inspects data local to the application under
investigation to find any sub-optimal configurations result-
ing in performance inefficiencies. For example, a low heap
utilization across all executors of an application can trigger
an alert to lower the maximum heap configuration; or, a big
variance in memory usage of executors can be correlated to
the skew in distribution of input data.

The second phase of the recommendation engine looks at
profiles of previously run applications to learn better mem-
ory configuration settings. A profile matcher component
first matches the applications based on a signature built on
the input properties and the workflow graphs. All the pos-
sible matches are compared with the current application to
find out any correlations between the configuration options
and the performance metrics. This analysis can help tune
applications running as part of scheduled workflows.

An example analysis is presented in Figure 4. It demon-
strates how various tuning options at each of Yarn level,
Spark level, and JVM level are progressively explored by
our tool (namely: allocating right heap size, using off-heap
buffers, and increasing frequency of GC). The tuning results
in a configuration that not only reduces the memory provi-
sioned by 33% but also improves the latency by 25%.

Through the case studies presented so far, it is clear that
many factors ranging from interplays between different mem-
ory management options to the trade-offs in various perfor-

mance metrics play a part in memory tuning. Thoth plat-
form enables a deep understanding of these factors. The
demonstration is intended to present the power of Thoth by
means of various memory analysis apps. Some of the key
analysis apps that will be demonstrated are the following:

• Memory tuner: Using the recommendation engine dis-
cussed above, we demonstrate how workflows that run
periodically can be optimized for their resource usage
and performance predictability.

• Performance engineering: Thoth supports visualiza-
tions showing memory usage of various memory pools
during execution which can help pinpoint the resource-
hungry stages in an user application. The data backing
the visualizations consolidates important metrics from
application event logs, such as average time spent in GC
by different application phases, providing great value to
application developers.

• ROBUS: ROBUS is representative of both a tool man-
aging memory across multiple tenants as well as an app
that is online in nature. Tenant workloads are optimized
through caching data in a centralized pool of memory
which simultaneously improves performance of tenants
as well as guarantees a fair performance speedup to each
tenant [7].

4. REFERENCES
[1] Byte buffers and non-heap memory.

http://goo.gl/9v5EyT[Online; accessed 28-Feb-2017].
[2] Consolidate storage and execution memory

management. https://goo.gl/k93rHi[Online;
accessed 28-Feb-2017].

[3] Ganglia Monitoring System.
http://ganglia.sourceforge.net[Online; accessed
28-Feb-2017].

[4] Spark-2.0.1 Docs.
http://spark.apache.org/docs/2.0.1/[Online;
accessed 28-Feb-2017].

[5] VisualVM. https://visualvm.java.net/[Online;
accessed 28-Feb-2017].

[6] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu.
Interruptible tasks: Treating memory pressure as
interrupts for highly scalable data-parallel programs.
In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP ’15, pages 394–409, New
York, NY, USA, 2015. ACM.

[7] M. Kunjir, B. Fain, K. Munagala, and S. Babu.
ROBUS: Fair cache allocation for data-parallel
workloads. In Proceedings of the 2017 ACM
International Conference on Management of Data,
SIGMOD ’17, pages 219–234, New York, NY, USA,
2017. ACM.

[8] M. Kunjir, P. Kalmegh, and S. Babu. Thoth: Towards
managing a multi-system cluster. Proc. VLDB
Endow., 7(13):1689–1692, Aug. 2014.

[9] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
and B.-G. Chun. Making sense of performance in data
analytics frameworks. In 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
15), pages 293–307, Oakland, CA, May 2015. USENIX
Association.

[10] V. K. Vavilapalli, A. C. Murthy, C. Douglas,
S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache
hadoop YARN: Yet another resource negotiator. In
Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 5:1–5:16, New York, NY,
USA, 2013. ACM.

1920


