
Knowledge Exploration Using Tables on the Web

Fernando Chirigati†∗ Jialu Liu§∗ Flip Korn§ You (Will) Wu§ Cong Yu§ Hao Zhang§
†New York University §Google Research NYC

fchirigati@nyu.edu {jialu,flip,wuyou,congyu,haozhang}@google.com

ABSTRACT
The increasing popularity of mobile device usage has ush-
ered in many features in modern search engines that help
users with various information needs. One of those needs
is Knowledge Exploration, where related documents are re-
turned in response to a user query, either directly through
right-hand side knowledge panels or indirectly through navi-
gable sections underneath individual search results. Existing
knowledge exploration features have relied on a combination
of Knowledge Bases and query logs.

In this paper, we propose Knowledge Carousels of two
modalities, namely sideways and downwards, that facilitate
exploration of IS-A and HAS-A relationships, respectively,
with regard to an entity-seeking query, based on leveraging
the large corpus of tables on the Web. This brings many
technical challenges, including associating correct carousels
with the search entity, selecting the best carousel from the
candidates, and finding titles that best describe the carousel.
We describe how we address these challenges and also experi-
mentally demonstrate through user studies that our approach
produces better result sets than baseline approaches.

1. INTRODUCTION
Driven in part by increased mobile phone usage, modern

search engines have been striving to enhance the search
experience beyond ten blue links. The goal is to anticipate
user needs to help get information as effortlessly as possible.
Examples of recent features [19, 21] in various search engines
(e.g., Baidu, Bing, Google, and Yahoo!) are: Knowledge
Cards, which summarize various facts about the query entity;
“People also search for,” which lists entities that often co-
occur with the query entity; and curated related entities for
specific verticals, e.g., “Movies and TV Shows” for actors.1

These features, often powered by a Knowledge Base and/or
query logs [4, 16, 22, 26], increasingly aim to help users who

∗Work done during internship.
1These three features are collectively known as Knowledge
Panels in Google and Satori in Bing.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 3
Copyright 2016 VLDB Endowment 2150-8097/16/11.

are interested not just in a specific answer but in a general
topic, given that between 30-50% of all queries are entity-
seeking [13, 18] and, therefore, allow exploration of the search
entity’s attributes and its relationships to other entities.
However, current features lack context for the related entities
presented. For example, “People also search for” for the
query [barack obama] in Google mixes together conceptually
different groups of people including Vladimir Putin (head of
state), Michelle Obama (family member), and Hillary Clinton
(cabinet member / former Senator) without any context, let
alone consistency, for how they are related. Other features
are highly curated and/or tailored to specific verticals such
as providing the cast for a movie entity.

Our approach to this problem aims to facilitate explo-
ration along two query modalities, called downwards and
sideways, that correspond to HAS-A and IS-A relationships,
respectively. Downwards provide highlights of an entity with
respect to some facet (e.g., the oeuvre of an artist, or the
participants of an event), while sideways provide potentially
useful associations (e.g., technology companies like Google, or
Republican presidential candidates besides Donald Trump),
enabling comparisons between peers. Figure 1(a) shows an
example of a downward for the query [kentucky derby] and
Figure 1(b) shows a sideway for the same entity. We call
this presentation a Knowledge Carousel 2 and each of these
is potentially interesting and useful for exploring the orig-
inal query. The downward presents winning horses from
various years of the Kentucky Derby, along with facts from
shared attributes such as year of event and finish time; the
sideway presents horse races associated with the Kentucky
Derby, namely, Belmont Stakes and Preakness Stakes (which
together form the Triple Crown of Thoroughbred Racing),
along with facts such as location and time of year.

Downwards are, to some extent, analogous to proper-
ties from Knowledge Bases.3 For example, the Kentucky
Derby entity not only includes properties such as name
and website but also those that connect it to other entities,
e.g., specific instances of the race from individual years via
/time/recurring event/instances, each of which is connected
to a winning horse entity via /award/competition/winner.
However, while Knowledge Bases include a vast number of
entities, they lack idiosyncratic or long-tail properties, and
those that do exist are inconsistent across different entities
of the same type [10]. Sideways are analogous to sets of
entities having the same type (and the ontology of domains

2The term carousel refers to the visual layout of members
that can be swiped to the left or right on a mobile phone.
3Examples from Freebase.

193

(a) (b)

Figure 1: Example of knowledge exploration for the query [kentucky derby] through Knowledge Carousels:
(a) a downward showing the winners of Kentucky Derby; (b) a sideway representing the famous Triple Crown
horse races in the US, of which Kentucky Derby is a member.

containing these types) from Knowledge Bases, though types
tend to be very broad. For example, the Kentucky Derby
entity belongs to recurring event, recurring competition and
literature subject but does not include specialized categories
such as Triple Crown Horse Races.4

Obstacles to being able to assemble related entities with
associated context using only a Knowledge Base are well
known: it is for this reason that Knowledge Bases are used
for multi-entity query answering only when a suitable table
cannot be found [25]. Therefore, we make use of the large
corpus of tables on the Web (WebTables) and argue that,
for the aforementioned query types, this approach works
well for the following reasons. First, tables are highly struc-
tured and, as a result, related entities are easy to find since
they exist within the same column. Second, tables are often
highly curated with explicit contextual information (e.g.,
header attributes, title, and surrounding text) that is very
useful in understanding the concepts associated with the en-
tities. Third, the table structure allows for inferring implicit
features (e.g., semantic types and subject columns) by rea-
soning across columns. Finally, they can leverage query logs
associated with the Web page on which the table appeared.

In short, Knowledge Bases tend to be geared towards un-
derstanding single entities whereas WebTables contain groups
of related entities and, therefore, require less assembly to
produce downwards or sideways from them. Nevertheless,
transforming WebTables into carousels is highly non-trivial,
e.g., only some tables make for a good carousel, specifically,
those that can be compactly represented by members and
facts, and it can be tricky to find the member column and
extract a single entity from its cells as members. In this
paper, we describe manifold challenges of Knowledge Ex-
ploration via tables on the Web, including: (i) selecting
WebTables that make for a good carousel presentation and
carefully choosing members and facts for this presentation;
(ii) finding carousels relevant to a given entity; (iii) ranking
these relevant carousels; and (iv) generating a concise and
human-understandable title. As we shall see in Section 4.4, a
good title is important for context by describing how member
entities of the carousel are related to the search entity. We
discuss our current solutions for each of these issues and
evaluate them through different user studies that confirm
the usefulness of WebTables for Knowledge Exploration.

Overall, our main contributions are as follows: (i) a novel
approach of using WebTables for generating Knowledge
Carousels, its formal problem definition, and the catego-

4More popular entities have a richer set of types; for example,
Barack Obama includes more than 80 types from over 25
domains.

rization of two important exploration modalities, downwards
and sideways (Section 3); existing search features provide
carousels that bear conceptual similarity, but they are geared
to specific verticals and highly curated (e.g., “Cast” for a
given movie could be considered a downward; “Action Movies”
could be considered a sideway), whereas the methods we pro-
pose are fully-automated and horizontal; (ii) solutions for the
main technical challenges: matching carousels to the search
entity, ranking candidate carousels, and generating titles
(Sections 4 and 5); and (iii) extensive user studies evaluating
our solutions against alternative approaches and demonstrat-
ing that we can provide high quality carousel exploration,
outperforming state-of-the-art baselines (Section 6).

2. RELATED WORK
Recently, various search engines have provided users with

features that have the flavor of entity-based knowledge ex-
ploration; a prominent example of this trend is “People
also search for” based on combining query logs, Knowledge
Bases and, to a lesser extent, social media.5 However, lack
of consistency and semantic drift are known problems with
the entities recommended [26]. In [4, 14], member entities
are constrained to be of the same type and ranked via a
regression model based on click co-occurrence and PageR-
ank. Since Yahoo! Spark is no longer in production, we are
unable to test the available types but, based on those in
their examples (e.g., “Related People” and “Related Movies”
for query [jennifer aniston]), these techniques would still
suffer from semantic drift. More recent search features in
Google’s Knowledge Panel and Bing’s Satori provide sideway
and downward carousels for entities in a limited set of verti-
cals, such as movies, and the specific concepts within those
concepts, such as “Cast” or “Other Action Movies”, are
manually curated. The approach we propose in this paper is
automated and, therefore, horizontal.

One of the important aspects of a knowledge carousel is
finding member entities. A widely used approach to find
related entities is concept set expansion: given an initial
set of seed entities, scour the Web for additional entities
occurring in similar contexts (e.g., via Hearst patterns) and,
thus, potentially belonging to the same concept. Leveraging
column structure from WebTables for concept set expansion
has in fact been shown to reduce semantic drift [8, 23]. All
these methods require several seed entities for meaningful
set expansion.

Related but orthogonal problems that have been studied
include table search [2, 17], table-based query answering [2,

5Our experiments in Section 6.2 try to capture this feature
as the Knowledge Base method.

194

Figure 2: A WebTable describing the winners of the Kentucky Derby horse race.

25], subgraph similarity search in Knowledge Bases [16], and
query aspect identification [24]. Of these, table search is
perhaps the most similar in that the user submits a query
and gets back a ranked set of relevant tables. One crucial
difference is in terms of user intent. Table search is a re-
trieval problem where the user has a specific information
need that can be answered by matching tokens (e.g., in the
table header, subject column, or table context as in [2, 5])
whereas carousels are for (sideways and downwards) explo-
ration. Therefore, features (e.g., ignores popularity) and
methodology (e.g., training labels obtained pointwise) for
ranking in table search are not applicable to carousel rank-
ing. Section 6.3 demonstrates this with an experimental
comparison using a state-of-the-art table search system to
rank carousels.

3. OVERVIEW
In this section, we provide an overview of our WebTable

driven approach to facilitate Knowledge Exploration. Our
exposition focuses specifically on the so-called horizontal
WebTables [2] from the English Wikipedia. The reason for
this is threefold: these tables are often of higher quality
compared to other tables on the Web due to Wikipedia col-
laborative editing policies; they are rarely duplicated across
multiple pages; and the English language corpus is the largest
of all languages. We leave it for future work to generalize
these techniques to other tables on the Web.

3.1 WebTables
We begin by introducing a formal definition of WebTa-

bles [5], i.e., an HTML table extracted from a Web page.

Definition 1 (WebTable). A WebTable extracted from a
Web page p is a tuple w = (rh, R,A,Q), where

• rh = (a1, a2, ..., am), a.k.a. header row, is a sequence of
attributes from a special row that is annotated as the
header row of the table;

• R = {r1, r2, ..., rn} is the set of data rows from the table;
for each ri ∈ R, ri = (vi1, vi2, ..., vim) is a sequence of
values with 1-to-1 correspondences to rh;

• A = {c1, c2, ...} is a set of auxiliary metadata extracted
from p’s HTML content about the table, where each el-
ement is a textual string; we specifically consider page
title, table caption, contextual snippets before and after
the table, and title of the content section containing the
table;

• Q = 〈(q1, ρ1), (q2, ρ2), ...〉 is an ordered set of queries qi
that are generated from the click graph [6] using the Web
search logs; the set is attached to p and ordered by their
number of clicks ρi.

Figure 2 shows an example of a WebTable6 for the entity
Kentucky Derby. Here, rh is the first row with attributes
such as Year, Winner, and Jockey, and the remaining rows
are data rows forming R. The caption “Kentucky Derby
winners” on top of the table is part of the auxiliary metadata
A. We use W to denote a set of WebTables.

In particular, the metadata associated with the table are
extracted in the following ways: (i) page title is taken directly
from the 〈title〉 tag of the page containing the table; (ii) table
caption is taken directly from the 〈caption〉 tag associated
with the table; (iii) contextual snippets are extracted from
the HTML content surrounding the table, where we take up
to 200 words (with HTML tags stripped) from before and
after the table; and (iv) section title is extracted from the
header (e.g., 〈h2〉) tag, if present, that is the closest before
the beginning 〈table〉 tag.

Leveraging various previous works on extracting and an-
notating high quality WebTables [2, 5, 12, 17], we make the
following assumptions about the table corpus that we employ
in this paper. First, we assume that low quality tables (e.g.,
tiny tables, calendar tables, and table-of-content tables [2])
are pruned away from the corpus and each table in the corpus
is a good data table. Second, we assume that the header row
of each table is properly detected and low quality non-data
rows are discarded. While we are making those assumptions,
it is important to note that our approach does not require
100% accuracy. In other words, our solution requires neither
all of the tables to be of high quality (as long as most of
the tables are of high quality), nor all header rows to be
properly identified. Indeed, the table corpus that we use for
our experiments has many mistakes in both aspects, and the
experimental results are not affected.

3.2 Knowledge Carousels
Our goal is to generate the set of Knowledge Carousels

from a large corpus of high quality WebTables to enable
and/or assist Knowledge Exploration in Web search. Before
we delve into the carousel generation problem, we formally
define Knowledge Carousel.

Definition 2 (Knowledge Carousel). Given a set E of
entities from a Knowledge Base, a Knowledge Carousel is a
tuple c = (e, t, F,M), where

• e ∈ E is the pivot entity to which the carousel is associated;

• t is a human-readable title that describes the carousel and
its association with the pivot entity;

• F = 〈f1, f2, ..., fk〉 is the totally ordered set of fact names;

• M = 〈m1,m2, ...,ml〉 is the totally ordered set of carousel
members; each mi ∈M is an entity and is associated with

6From http://en.wikipedia.org/wiki/Kentucky_Derby

195

a sequence of fact values Ui = 〈ui1, ui2, ..., uik〉; Ui has
1-to-1 correspondence to F ; for simplicity of presentation
and without loss of generality, we flatten any set-valued
individual fact value into a single value.

Figure 1(a) illustrates an example of a Knowledge Carousel
that can be derived from the WebTable example in Figure 2.
Intuitively, the carousel allows the users to explore recent
winners of the Kentucky Derby horse race. The type of
the carousel is downward because Winner is semantically a
property of Kentucky Derby, which is the pivot entity of the
carousel. The members are American Pharoah, California
Chrome, Orb, and so on, and the set of included facts are
Year, Time, and Jockey. Similarly, Figure 1(b) shows an
example of a sideway Knowledge Carousel for the same entity,
with members being Preakness Stakes and Belmont Stakes,
and the set of facts being composed of Location, Distance,
and Date. For simplicity, we identify the entities based on
their human-readable names in the examples. In the actual
implementation, the entities are represented using machine
IDs7 to avoid naming conflicts, and translated back to names
before being presented to users. Also, note that we only
leverage the set of entities E from the Knowledge Base for
named entity recognition, i.e., we do not leverage the types
or properties to which these entities might be associated
inside the Knowledge Base.

We use cde and cse to denote a downward carousel and a
sideway carousel, respectively, associated with pivot entity e.
The superscripts and subscripts are dropped when they are
obvious from the context or not needed. We use C to denote
a possibly ordered set of Knowledge Carousels, and similar
superscripts and subscripts apply to C.

Intuitively, the quality of a Knowledge Carousel depends
on the following main aspects. First, the members in the
carousel should belong to a coherent semantic concept that
is salient to the pivot entity. This saliency can be downward,
i.e., the members can collectively be considered a property
of the pivot entity (e.g., winners of a horse race or famous
paintings housed at a museum). It can also be sideway,
i.e., the members are peers of the pivot entity and form a
collection to which the pivot entity belongs and for which
the pivot entity is known. For example, Preakness Stakes
and Belmont Stakes are interesting peers to Kentucky Derby
because those three races form the well-known collection
of Triple Crown Races in the US. Second, a carousel must
have a human-readable title that describes the concept of
the carousel and its saliency with regard to the pivot entity.
The task of generating the title has been overlooked in all
previous exploratory search studies. However, this is of high
importance, since, based on discussions with search product
managers, the title is often the only visual cue that can
grab the attention of the search users and motivates them
to further explore.

3.3 Knowledge Carousel Generation
Each of the aforementioned quality requirements presents

its technical challenges, particularly the requirement that
the carousel should form a coherent concept that is salient
to the pivot entity. Our core idea is that the corpus of
WebTables allows us to achieve this better than previous
approaches for the following reasons. First, many WebTables
are painstakingly generated by real users who know and feel

7http://wiki.freebase.com/wiki/Machine_ID

Table 1: List of notations for reference.

Notation Explanation
Knowledge Carousels

C,Cd,Cs set of carousels
c, cd, cs individual carousel
ce,Ce a (set of) carousel(s) for pivot entity e
c.t carousel title

c.F (U), c.M fact names (values), and members
WebTables

W the corpus of tables
w individual table
w.rh header row, i.e., list of attributes
w.R data rows in the table
w.vij value of j-th attribute of the i-th row

w.A,w.Q table auxiliary metadata and queries

passionate about the subject.8 As a result, they tend to
naturally represent salient concepts that are interesting to
people. Second, the tables are extracted from Web pages,
which have a rich set of ranking signals that can be generated
from the search logs. These signals can be leveraged to
identify pages with the most interesting concepts. Third,
there is a number of earlier works on annotating WebTables,
which can be again leveraged for ranking the tables.

Having the WebTables corpus, however, is only the begin-
ning. Constructing high quality Knowledge Carousels from
the WebTables corpus still requires the solving of a suite of
quality ranking challenges, which we will illustrate through
the following formal problem definition.

Definition 3 (Knowledge Carousel Generation).
Given a corpus of WebTables W and a set of entities in
a Knowledge Base E, for each e ∈ E, generate a possibly
empty, ordered set of Knowledge Carousels Ce with e as the
pivot entity, such that:

• carousels associated with the same pivot entity are ranked
according to a scoring function S;

and for each carousel ce ∈ Ce, ∃w ∈W such that:

• members are chosen from the subject column of rh from
among a subset of rows in R;

• facts associated with members are chosen from a subset of
non-subject attributes in rh.

Each Knowledge Carousel is a view derived from a
WebTable by selecting a subset of attributes from the table
header row as the facts and selecting a subset of the table
data rows as the members and fact values. The pivot entity
and the carousel members are mapped to a given Knowledge
Base after named entities are recognized in the textual con-
tent of the table. Finally, the carousels are grouped by the
pivot entities. Some entities may not be a pivot entity for
any carousel, which will lead to an empty C.

3.4 Challenges and Solution Overview
Despite the clear advantages of WebTables, there are var-

ious challenges in using them for Knowledge Exploration.
First, members and facts must be correctly identified. Mem-
bers are the subject of carousels, so the attribute that better
reflects the subject of the WebTable must be detected. While

8Excluding those created purely for layout purpose, which
are pruned away from the corpus.

196

one could assume that this attribute is the first one in the
table, this is often not the case (see Figure 2, where Winner
is the main attribute, and not Year). In addition, since a
table can have a plethora of attributes, the most concise,
interesting, and insightful ones must be chosen as facts to
the carousel. We address these issues by having the notion
of critical attributes: attributes are ranked based on their
popularity and on how close they are from the subject of the
table. Such novel ranking is then used to determine members
and facts (Sections 4.1 and 4.2).

Second, in order to serve relevant carousel(s) for a search
entity, we need to associate each carousel with the proper
pivot entities, depending on the carousel type. Any mem-
ber entity in a sideway carousel can serve as a pivot entity,
because the member set collectively represents the desired
concept. For downward carousels, the effort entails under-
standing which entities the table is about (for which entities
the table potentially describes a property). We show how we
use the context of a WebTable for this task in Section 4.3.

Third, we need a human-readable title that describes,
in a few words, the subject being presented by a carousel.
Even though we have a myriad of context elements in a
WebTable that could be potentially used as titles, they all
have drawbacks. For instance, most of the tables do not
have captions, so leveraging these as titles is hardly feasible.
While page titles have good coverage, they describe the entire
page rather than a specific table, and multiple tables can
be found in a single page. One could also use section titles,
or a combination of these, but not all the tables can be
identified as belonging to a section. Instead, in our approach,
we leverage the query logs to generate concise and human-
understandable titles (Section 4.4).

Last, for entities with more than one associated carousel,
the core technical challenge is designing the scoring function
S for the ranking. In Section 5, we show how we combine
different elements, including popularity and relatedness, to
design a ranking function that performs better than the
state-of-art table ranking system (see Section 6.3).

An overview of the carousel pipeline is presented in Al-
gorithm 1. We first generate pivot-less carousels (C), one
for each WebTable, and represent the many-to-many rela-
tionship between entities (E) and these pivot-less carousels
using a bipartite graph G, with two sets of edges: Ed (for
downwards) and Es (for sideways). Note that Ed and Es

are disjoint as we will discuss in Section 4.3. For each entity,
we attach it as a pivot entity to all its neighboring pivot-
less carousels in G, and rank its associated downward and
sideway carousels, respectively.

We remark that choosing when to serve sideways or down-
wards and deciding the number of carousels to present are
still open problems, and we leave these for future work.

4. CAROUSEL GENERATION
The carousel generation process relies on two important

pieces of metadata associated with the WebTable—critical
attributes and subject column—which are described in Sec-
tion 4.1. The subsequent extraction of carousel members
and facts is discussed in Section 4.2, and the identification
of pivot entities from WebTable in Section 4.3. Following
this procedure (line 1-13 in Algorithm 1), we are able to
generate both downward and sideway carousels (cde and cse,
respectively) by grouping results based on each possible pivot
entity e, each with a carousel title (Section 4.4).

Algorithm 1: Overview of the carousel pipeline.

Input: WebTables W, Entities E
Output: Carousel sets Cd,Cs

1 Cd ← ∅; Cs ← ∅
2 Bipartite graph G = (E,C, Ed ∪ Es)
3 C← ∅; Ed ← ∅; Es ← ∅
4 for WebTable w ∈W do
5 create empty carousel c
6 identify critical attributes and subject column

(Section 4.1)
7 generate carousel members M from subject column

(Section 4.2)
8 generate carousel fact names F and fact values U

from columns of critical attributes (Section 4.2)
9 generate carousel title t (Section 4.4)

10 C← C ∪ {c}
11 identify pivot entities for c as a downward carousel

(Section 4.3.1) and as a sideway carousel
(Section 4.3.2)

12 Ed ← Ed ∪ {(e, c) | e ∈ downward pivot entities}
13 Es ← Es ∪ {(e, c) | e ∈ sideway pivot entities}
14 for entity e ∈ E do
15 Cde ← {c | (e, c) ∈ Ede}; Cse ← {c | (e, c) ∈ Ese}
16 for c ∈ Cde ∪ Cse do c.e← e ;
17 for cs ∈ Cse do
18 remove elements about e from M , F and U in cs

19 apply ranking function S on Cse and Cde (Section 5)

20 Cd ← Cd ∪ Cde ; Cs ← Cs ∪ Cse
21 return Cd and Cs

4.1 Critical Attributes and Subject Column
A WebTable attribute a ∈ w.rh is considered critical if it

provides information that is important for the assessment
of the resulting Knowledge Carousel. For example, for the
Winners of Kentucky Derby carousel in Figure 1(a), the
attribute Winner (from the original WebTable in Figure 2)
is critical since this is what the carousel is about. The
attributes Year and Jockey are also critical because they
provide further useful information about winners. A subject
column is a column associated with a special critical attribute
that anchors the resulting carousel (e.g., Winner) and it
intuitively maps to the carousel members.

To determine whether an attribute is critical, we prune
away some obvious non-critical attributes. In a WebTable,
each attribute in the header row has a set of associated values
from the data rows, and attributes with mostly empty values
do not provide any real information and should be pruned.
We then remove any attribute with more than 50% of its
values being empty. We also identify any value in the data
rows that is a complete sentence. We assume these values are
(long) notes on the table, and because carousels must present
information that is concise, they are considered non-critical.
We then remove any attribute with more than 50% of its
values being sentences.

The remaining attributes of the table w are assumed to
be critical, and they are ranked based on their criticalness
(Section 4.1.1). Such ranking helps determine which table
column is subject (Section 4.1.2) and thus will serve as
members, and which attributes will serve as facts for the
carousel (Section 4.2).

197

4.1.1 Criticalness Ranking
The criticalness of an attribute ai ∈ w.rh is computed

based on two scores: (i) topicality, i.e., how close ai is seman-
tically connected to the concept being presented in the table;
and (ii) popularity, i.e., how often ai is being requested by
users. We measure the topicality by leveraging the meta-
data of the table (w.A) and the popularity by leveraging the
queries associated with the table (w.Q). More formally, we
define the criticalness of an attribute ai as

critical(ai) =
∑
c∈w.A

sim(ai, c)︸ ︷︷ ︸
topicality score

+

∑
(q,ρ)∈w.Q sim(ai, q)× ρ∑

(·,ρ)∈w.Q ρ︸ ︷︷ ︸
popularity score

(1)
where sim(·, ·) corresponds to the cosine similarity between
the tf-idf vectors of input strings. The topicality score com-
putes how similar the attribute header is to the various
metadata of the table, including table captions, section ti-
tles, and surrounding text. It helps identify how close the
attribute is to the concept being presented by the table (e.g.,
Winner attribute in Figure 2 is very similar to the table
caption, “Kentucky Derby winners”). The popularity score
computes how similar the attribute header is to the queries
related to the page—weighted by their frequency—which
helps understand which parts of the table are queried the
most. For example, Winner and Time attributes in Figure 2
are very popular because users often search for the race
winners and their corresponding completion times.

4.1.2 Subject Column
The subject column is a table column associated with one

of the critical attributes that contains information about
the concept being described by the table. For example, in
Figure 2, the column under the Winner attribute makes for
a good subject column because it names all the Kentucky
Derby winners, which is the topic of the table. The sub-
ject column is particularly important to identify carousel
members (Section 4.2) and pivot entities (Section 4.3). Our
straightforward method for identifying the subject column
of a table, which improves upon previous work [2], entails
choosing the critical attribute with highest topicality score
(Equation 1).

4.2 Carousel Members and Facts
The carousel members (mi in Definition 2) are essentially

named entities mentioned in the data values of the subject
column. The member facts are the highest-ranked remaining
critical attributes. For instance, if there is a limit of 3
facts to be presented (Figure 1), the top-3 most critical
attributes—with the exception of the subject one—are chosen
as facts. The fact values (uik in Definition 2) correspond
to the chosen attributes and are retrieved from the same
data row as the member entity. Thus, once we are able to
identify the subject column and the critical attributes in the
table, generating members and facts for the resulting carousel
becomes as simple as (i) applying existing named entity
linking techniques [15] on the subject column to extract the
carousel members, and (ii) properly formatting the critical
attribute values from the table into fact values in the carousel.
Finally, if there are multiple named entities being extracted
from the same subject column value, we select the one with
the highest extraction confidence.

Page Title: List of tallest buildings in Shanghai

Table Caption: *Not Available*

Section Titles: 2. Tallest under construction, approved,

 and proposed

2.1. Under construction

Subject Attribute Header: Name

User Queries:

Tallest Buildings in Shanghai

Tallest Skyscrapers Under

Construction in Shanghai

Towers in Shanghai

Shanghai Skyscrapers List

Height of Tallest Buildings in

Shanghai

...
Shared Hypernyms: Buildings, Skyscrapers

Figure 3: Carousel title generation.

4.3 Pivot Entity
After extracting carousel members and facts, identifying

potential pivot entities for each carousel is the next step,
which creates an index that associates an entity with multi-
ple carousels. Recall that a pivot entity (c.e) is the entity
with which the carousel is associated, e.g., Winners of Ken-
tucky Derby (Figure 1(a)) is associated with the pivot entity
Kentucky Derby. Also recall that downward and sideway
carousels define different relationships between the pivot en-
tity and the carousel members, which result in different ways
that each type of carousel is generated, as described next.
This step of finding pivot entities emphasizes more on recall
than precision as the ranking introduced in next section will
take care of selecting the best carousels.

4.3.1 Downward Carousel
A downward carousel cde contains carousel members that

collectively form a (set-valued) property of its pivot entity.
Intuitively, this means that the underlying WebTable w that
generates the carousel is about the pivot entity and has the
property as its subject column. Therefore, a pivot entity
for a downward carousel should: (1) not be present in the
subject column of w, and (2) be prominent in the context of
w, i.e., in w.A (e.g., “Kentucky Derby” is mentioned in the
table caption of Figure 2).

The former condition is easy to deal with by ignoring
entities acting as carousel members. The second condition
implies w.A to be the source of pivot entity candidates. The-
oretically, many entities can be extracted from w.A through
entity linking, but most of them are unsuitable since the rele-
vance between the carousel and the entity is unknown. Thus,
we propose to prune them by requiring a pivot entity being
topically coherent to the table context or even the entire web
page. Specifically, we identify entities from the table context,
count their mentions from the WebTable queries (w.Q), and
choose a threshold above which an entity will be considered
as a (possible) pivot entity for the table. A Wikipedia page
about Kentucky Derby, for example, would rank high in such
measure for Kentucky Derby, less so for Kentucky Derby
2015, and even less so for Triple Crown Horse Races: by
analyzing user queries, the algorithm discovers Kentucky
Derby being more frequently mentioned than the other two
entities.

We set relatively low thresholds in the above pruning
strategy since we want to maximize recall of the pivot entity
identification. We leave the task of improving precision in
Section 5, which studies the relevance between pivot entity
and carousel members.

198

4.3.2 Sideway Carousel
In comparison, a sideway carousel cse of a pivot entity

contains members that are conceptually similar to the pivot
entity, e.g., for the Triple Crown Horse Races in the USA in
Figure 1(b), the pivot entity Kentucky Derby is similar to
the members Preakness Stakes and Belmont Stakes by being
all part of Triple Crown races. This makes the identification
of pivot entities for sideway carousels much simpler than for
downward carousels: all the entities from the subject column
of a WebTable are potential pivot entities for the resulting
Knowledge Carousel.

4.4 Carousel Title
Generating concise human-readable titles for Knowledge

Carousels is of crucial importance. Consider the sideway
carousel for Taylor Swift shown in Figure 4(d). Without
the title, it may not be straightforward to users in what
coherent way is Taylor swift related to all member entities of
the carousel (U2, Roger Waters, AC/DC, etc.). Nevertheless,
title generation is a challenging task due to the noisy nature of
Web pages, from which WebTables are extracted. Therefore,
while there is a number of seemingly promising approaches
for title generation, none of them have the desired quality,
as described in Section 4.4.1. We have designed our own
candidate title generation method by leveraging user queries,
which we detail in Section 4.4.2.

4.4.1 Conventional Approaches
Perhaps the most obvious approach would be to use table

captions as titles. There are, however, two major issues: (i)
only 10% of the tables have a table caption (e.g., the table
depicted in Figure 3, which lists the tallest skyscrapers under
construction in Shanghai, has no caption), and (ii) even
when a table caption is present, it does not always describe
properly the relationship between the pivot entity and the
carousel, in particular for sideway carousels.

The second approach is to use the page title as the carousel
title. In this case, coverage is not an issue. However, it is
often the case that a single Web page has multiple tables with
different content: by applying the same title to all the tables,
we cannot capture each table’s idiosyncrasy. For instance,
the Web page that contains the table from Figure 3 has four
other tables, and the page title itself does not reflect the fact
that all the buildings are still under construction.

Finally, one could use section titles or a combination of
page title and section titles. There are two main issues
though: (i) only a small percentage of tables can be properly
located within a section, so coverage becomes a challenge,
and (ii) combining multiple pieces of text into a concise and
yet readable text is by itself a challenging natural language
generation problem.

4.4.2 Our Approach: Leveraging User Queries
Given the shortcomings of the aforementioned approaches,

we designed a solution that takes advantage of user queries
associated with the WebTable. Our main intuition is that
some user queries can serve as good carousel titles, and the
challenge is then how to find them and to assure their quality.
Queries are often succinct and understandable to users: they
are issued by the users themselves after all. However, there
are a few challenges in using them. First, since a single
Web page may contain multiple WebTables, some WebTables
may be more popular and others may have a sparse query

Algorithm 2: Title Generation.

Input: Query set w.Q, table metadata w.A, subject
column header with shared hypernyms S′

Output: Best title candidate
1 f ← an empty array
2 for i ← 1 to |w.Q| do
3 if not satisfy hard constraints in Equation 2 then
4 continue

5 f [i][0]← DescriptivenessScore(w.A, S′, qi) as in
Equation 2

6 f [i][1]← ReadabilityScore(qi) using language model

7 index← FindIndexWithMaxPair(f)
8 return qindex

coverage. Second, they are noisy: only a subset of these
queries are relevant to the Knowledge Carousel since queries
may refer to other content from the Web page from which the
carousel was generated. Last, queries may be syntactically
incorrect, lacking readability to be a qualified title.

Our first goal is to increase the query coverage for WebTa-
bles, which increases the chance of having good titles. Specifi-
cally, we mine structured query templates from search queries,
and apply them to the rest of the page to generate more
queries. Similar to [1], we can significantly increase the
content coverage by using such approach.

Next, to remove noise from the set of queries, we identify
the most descriptive user query that can serve as the title for
a given carousel c. Specifically, we model the descriptiveness
of a user query for a carousel based on how it matches
the table auxiliary metadata (w.A) and the subject column
(S ∈ w.rh). For instance, among all the user queries in
the right side of Figure 3, the second query covers most of
the terms within the table metadata (as highlighted in blue
boxes); as a matter of fact, this is the correct title for the
table, and it is also substantially superior to the ones that
would be obtained using the techniques previously presented.
Formally, we adopt the following optimization formula to
choose the queries with the best descriptiveness:

arg max
(q,·)∈w.Q

(∑
c∈w.A

|Wq ∩Wt|
|Wc|

+ max
s∈S′

|Wq ∩Ws|
|Ws|

)
s.t. Wq ⊆ (WA ∪WS′), Nq ⊆ (NA ∪NS′)

(2)

where W and N denote bag of words and noun phrases [3],
respectively, and S′ includes the subject column header text
S and, additionally, all shared hypernyms9 of the members
of c. This scoring function adds up the similarity between
a query and the different components of the table auxiliary
metadata as well as the subject column descriptions,10 thus
increasing the comprehensiveness of the carousel title. We
also enforce two hard constraints on Wq and Nq, which
dictates that a valid query should only contain a subset of
words and noun phrases that appear in A and S′, indicating
that a valid title should be succinct without semantic shift.11

9Hypernyms are identified by finding sufficient evidence on
the Web using Hearst patterns [11].

10Since many of the hypernyms are ad-hoc or synonyms, we
only give credit to the candidate having the most matched
words.
11Noun phrases contain multiple words and preserve their
order, ensuring that a query only containing “Book” won’t
be matched to “Book Character.”

199

Since the descriptiveness score only models how a title
matches the carousel and ignores the title syntax, the next
goal is to measure readability to ensure that a qualified user
query reads like a title. To achieve this, we train an n-
gram language model on the POS tags of web-scale table
captions. The model is then able to give a readability score
by averaging the probabilities of predicting the current word
given the previous words in the candidate title.

Algorithm 2 describes the algorithm for iterating over the
template-expanded query set and identifying the best title.
After generating the two scores for all the titles, function
FindIndexWithMaxPair selects the title candidates hav-
ing the highest descriptiveness scores. If more than one
candidate has the same score, the one with the highest read-
ability score is chosen. Figure 4 depicts some carousels
generated by our approach. Note that the titles are concise
and human-readable, and they well describe the information
being presented, including members and facts.

5. CAROUSEL RANKING
For entities with more than one associated Knowledge

Carousel, ranking becomes essential: typically, only one
or a few carousels would be shown in a search result page
for a query. While table search ranking has been studied
before, there are differences from the table search problem
as discussed in Section 2, including user intent, features
used in table retrieval, and entity-based representation of
carousels. Therefore, we believe ranking techniques used for
table search are not immediately applicable to carousels, and
we have designed our own techniques. In this section, we
describe these techniques for scoring the carousels for a given
pivot entity for ranking purposes, i.e., designing function S in
Definition 3. We note that the existing ordering of members
in the underlying WebTable is often deliberate, and thus we
do not reorder the members. The carousel scoring function
S is designed based on popularity P and relatedness R.

Popularity (P). The popularity score P measures how
important the underlying WebTable w of the carousel c is
to users: the more frequently queries lead to w, the more
likely c provide information of interest to users. We use the
set of user queries, w.Q, that reside in the page containing
w. However, this is a page-level signal, since the queries and
their clicks are associated with the Web page to which w

belongs, rather than with w itself. To address this mismatch,
we use the table metadata w.A together with the header
information w.rh to transform the page-level popularity to
the table-level popularity using the following equation:

P(c) =
∑

(q,ρ)∈w.Q

max
c∈H

sim(q, c)× ρ

s.t. H = w.rh ∪w.A \ { page title }
(3)

where metadata w.A (except page title) includes contextual
information about the table, such as the text surrounding the
table and table caption; header information w.rh essentially
represents the schema of the table; sim(·, ·) corresponds to the
cosine similarity between the tf-idf -weighted vectorized bag-
of-words from the respective input strings.12 By considering
only user queries that match the terms in w.A or w.rh, we
potentially eliminate user queries that are not relevant to

12Note the resemblance to the criticalness formula in Sec-
tion 4.1.1.

the table. Thus, the resulting popularity measure is a better
estimation of the table popularity than the original set of
user queries.

Relatedness (R). Given that a user queries for entity e,
the relatedness R of a Knowledge Carousel c measures how
related the members of c are to the pivot entity. Since
downward and sideway carousels capture different relation-
ships between the pivot entity and the carousel members, we
leverage different relatedness signals for the two types.

For downward carousels, we consider query result co-
occurrences [7]. Conceptually, two entities are similar if
users querying for one often find the other in the query re-
sults. For example, if winning horses are highly relevant to
Kentucky Derby, a search for Kentucky Derby will likely lead
to some documents containing these horses. The relatedness
score between two entities e1 and e2 is computed by count-
ing the occurrences where e1 appeared in the query and e2
appeared in the top-ranked documents for that query, and
vice versa, normalized by the popularities of both entities.
This is aligned with downwards carousels, whose goal is to
find entities that are related by the same property or aspect.

For sideway carousels, we consider query refinements [20].
Two entities are considered to be related if users often search
for them within the same query session. For example, a user
who is interested in Triple Crown races may issue successive
queries containing Kentucky Derby, Preakness Stakes, and
Belmont Stakes within the same search session. The score
between two entities e1 and e2 is computed by counting the
co-occurrences of e1 and e2 in the same user query session
and then normalizing by the popularities of both entities.
R is further divided into two components: relatedness

strength (RS) and relatedness coverage (RC). The former
is the total sum of the scores for related carousel members;
the latter is the fraction of the top-k most related entities to
the pivot that are carousel members (we set k to 500). To
put all together, let e be the pivot entity of the carousel c,
rel(e, e′) be the relatedness score between two entities, and
e.Rk be the set of top-k entities related to e. We have:

R(c) =

(∑
m∈c.M

rel(e,m)

)
︸ ︷︷ ︸

strength (RS)

×
(
|{m|m ∈ c.M,m ∈ e.Rk}|

|c.M |

)
︸ ︷︷ ︸

coverage (RC)

(4)

Overall (S). The final ranking function is defined below.

S(c) = P(c)×R(c) (5)

6. EXPERIMENTAL EVALUATION
In this section, we describe the experimental evaluation

that we carried out to validate our approach. The goal of
the evaluation is the following. First, we assess the entity
coverage of our approach (Section 6.1). Second, we examine
whether WebTables are effective in generating coherent sets
of carousel members (Section 6.2). Third, we evaluate the
quality of the carousel ranking and the generated facets for a
given query entity (Sections 6.3 and 6.4, respectively). Last,
provided that WebTables are a good source for generating
carousels and our ranking quality is good, we assess the
quality of our title generation solution against alternative
approaches (Section 6.5).

200

(a) Downward carousel for Six Flags. (b) Downward carousel for Christmas Music.

(c) Sideway carousel for Brown University. (d) Sideway carousel for Taylor Swift.

Figure 4: Knowledge Carousel examples generated by our framework.

Carousel Corpus. The WebTables corpus used in our
evaluation has a total size of about 170M tables out of which
8M are from Wikipedia. After running our pipeline over
English Wikipedia tables on 200 machines using map-reduce,
we obtained around 24.4M sideway carousels distributed over
3.2M pivot entities and 1.6M downward carousels distributed
over 516K pivot entities. The pipeline took O(10) hours
for both sideways and downwards. The higher number of
sideway carousels is expected since more pivot entities are
identified for sideways, as any entity from the subject column
of a WebTable can potentially serve as a pivot entity.

Pivot Entities. We aimed to perform our evaluation on
a typical query workload. Using the most frequent queries
is not ideal since it captures many keywords of primarily
navigational intent such as amazon and facebook. Instead,
we constructed a workload of the most frequent queries
subject to having a diversity of Freebase types (people, TV
programs, events, locations, etc.) by limiting the number
of queries belonging to any given type to at most 5. The
selection process was as follows. We first randomly sampled
10,000 queries from the query log. These queries were piped
into an in-house entity recognizer and resolver to ground
the entity mentions to Freebase machine IDs. Only the
queries containing exactly one entity, with no additional
tokens, were kept. Then we scanned through these entities,
maintaining counts per type, and rejected any entity that
was non-distinct or if the count for its type exceeded the
maximum capacity. From the remaining, we sampled 200
entities without replacement.

6.1 Entity Coverage
Methodology. We investigated the coverage of our
carousels on tail vs head entities in our workload after classi-
fying 33 out of 200 of them as tail based on majority vote of
3 raters; Table 2 gives some examples of these. We also ex-
amined coverage of a curated feature in Google’s Knowledge
Panels (KP) that has the flavor of carousels; for instance,
given a movie entity, “Action Movies” is sideway-like and
“Cast” is downward-like.13

13We did not compare against the “People also search for”
feature from KP because it does not have a notion of sideways
or downwards.

Results. Based on the full workload of 200 entities, only 21
yielded a sideway-style result in KP and from among only
three verticals — TV shows & movies, video games, and
books — whereas our approach produced a result for 138
entities. Downward-style results in KP had more comparable
coverage to carousels (64 vs 74 entities, respectively). For
tail entities, our approach could generate sideways and down-
wards for, respectively, 19 and 6 entities; in contrast, only 0
and 2 of the tail ones have sideway- and downward-like KP,
respectively. In addition, sideway and downward carousels
could be generated for 117 and 67 of the head entities, re-
spectively, while for KP, these numbers are 20 and 40. In
Section 6.4, we show that the extra coverage provided by our
approach often comes with good quality.

6.2 Quality of Carousel Generation
Methodology. To evaluate how effective WebTables are in
providing coherent sets of entities for both downward and
sideway carousels, we conducted the following user study. We
asked 12 raters (none of whom is an author of this paper) to
compare the set of carousel members from the highest ranked
carousel (proposed approach) against the set of entities gener-
ated by leveraging a Knowledge Base and query logs (baseline
approach) as described below. Raters were allowed to use a
search engine to better understand pivot entities with which
they were not familiar. Each pivot entity was shown along
with two sets of member entities,14 corresponding to the
proposed and baseline approaches, as a side-by-side for eval-
uation, with the left and right sides randomly swapped and
formatted identically so that raters would not know which
side corresponded to which approach. We only presented
entities for which both of the approaches yielded member
sets: 85 for sideways and 64 for downwards. The raters were
then asked whether the left side was better, the right side
was better, both sets were decent, or both sets were bad.

Baseline. Though details of entity recommendation meth-
ods in existing search engines are proprietary (and, in the

14We withheld surrounding metadata, such as header rows or
table captions from our approach and property names from
the baseline, since they can be misleading when taken out of
context and since the metadata from the two sides may not
be comparable.

201

Table 2: Examples of tail and head entities and their corresponding member descriptions from downward-like
Knowledge Panels (KP) and downward carousels (“–” indicates no result found).

Tail Entities KP Carousel Head Entities KP Carousel
Attila Members Outlawed Album Ben Stiller Movies and TV shows Filmography (Actor)

Cutaneous Condition –
List of HLA alleles

CNN TV shows Former Programs
associated w/ cutaneous conditions

Great Trek –
Largest First Waves

FC Barcelona Roster Players
Trek Parties

IMI Galil – Other Variants of IMI Galil Gangnam Style
Other recordings

Weekly Charts
of this song

Houston Marathon – Race Winners Gwen Stefani Songs Filmography
Middle Tennessee Notable

– Inside Out Cast Soundtrack
State University alumni

Neo-Bulk Cargo –
List of International SpongeBob

Episodes Episodes
Auto Shipping Companies SquarePants

case of Yahoo! Spark, no longer online), we tried to capture
the essence of [4, 14] in a baseline method which combines
a Knowledge Base with query logs. We used Freebase since
its types and properties naturally correspond to sideways
and downwards, respectively. However, we noticed that the
number and diversity of types was only rich for head enti-
ties (e.g., Barack Obama). For example, there are only four
types for Kentucky Derby. Therefore, we define the notion
of a collection. A collection of a given entity is the set of
entities sharing a property relation from some other entity
not in the collection. For example, given entity Kentucky
Derby, the collection /base/horse racing/horse race of type
was obtained as a property of the entity Graded Stakes Race,
which contains Kentucky Derby as one of its members and
also contains Preakness Stakes and Breeders’ Cup Classic.
This technique yields a considerable number of candidate
collections: on average, there are 962 collections for a given
query entity. We use those collections to generate sideway
carousels in the baseline approach.

For generating downward carousels in the baseline ap-
proach, we use property-sets. A property-set of a query
entity is defined to be a set of entities which share the same
edge type from the query entity. For example, from Game of
Thrones, the property regular cast/actor can be used to find
all actors of the show. On average, there are 14 properties
(with repeated values) for a given query entity.

To rank collections or property-sets and select their re-
spective members from Freebase, we employ the query co-
occurrence signal used by the “People also search for” fea-
ture from Google. The idea behind this is that the co-
occurrence signal promotes relatedness while the Freebase
collections/properties impose homogeneity. Given a pivot
entity e, we generate a sideway set SKB and a downward set
DKB as follows:

1. Retrieve the set of entities R from the “People also search
for” feature for entity e.

2. Sideway Set : choose the collection c to which e belongs
whose members C are entities e′ from triples (o, p, e′)
for which there also exists triple (o, p, e) with the same
property p and have the greatest resemblance to R via
Jaccard similarity, i.e.:

C = arg max
C′∈Ce

|R ∩ C′|
|R ∪ C′|

where Ce is the set of collections to which e belongs. The
sideway set SKB is composed of entities belonging to C
(minus e).

3. Downward Set : choose the property p of e whose members
P are objects from triples (e, p, o) of the same property
p and have the greatest resemblance to R via Jaccard
similarity, i.e.:

P = arg max
P ′∈Pe

|R ∩ P ′|
|R ∪ P ′|

where Pe is the set of properties of e. The downward set
DKB will be composed of entities belonging to P .

Results. The results are shown in Figure 5. For sideways,
a majority of the raters preferred the WebTable based ap-
proach for 48.24% of the queries and the baseline for 31.76%.
Namely, when raters perceived a quality difference, 50% more
carousels generated by the proposed approach were deemed
better than those generated by the baseline approach. For
the remaining cases where there was no quality difference, a
majority of raters considered 10 of the 85 carousels (11.76%)
to have both sides bad, and both sides were considered de-
cent for the remaining 8.24%. Adding ratios together, our
approach yields decent results at least 56.48% of the time.

The results for downwards are similar. The proposed ap-
proach beat the baseline 43.75% of the time, versus 29.69%
for the baseline approach, another nearly 50% advantage
when quality differences were perceived. A majority of raters
considered 8 of the 64 pivot entities (12.5%) to have both
sides bad, while both sides were considered decent for 14.06%.
Combining the ratios, the proposed approach produces rea-
sonable results in at least 57.81% cases.

Upon examining examples where carousels were preferred,
it appears that a more tightly-knit set of members was the
main reason; e.g., for Gwen Stefani (sideways), users pre-
ferred to see the presenters of the TV show “The Voice”
as members rather than a generic list of female vocalists
(baseline). For the cases rated both bad for sideways, we
noticed that several represented categories and genres rather
than specific objects. These do not make for good side-
ways because they are better suited to being a collection
name rather than members of a collection. Examples of
such entities and their sideways include shoe (“Insulation for
Clothing Ensembles”) and broadway theatre (“Sutton Foster
in Theatre”). Another source of problems for the proposed
approach was disambiguation of the pivot entity, such as
between an eponymous album title and the musician who
recorded it (e.g., Taylor Swift).

6.3 Quality of Carousel Ranking
Methodology. Our goal here is to demonstrate that the
carousel ranking algorithm we developed is choosing good

202

48%

8%

32%

12%

Sideways

44%

14%

30%

12%

Downwards Web Tables Better
Both Decent
Knowledge Base Better
Both Bad

Figure 5: Comparison of WebTable-based approach
against baseline.

carousels from the set of candidates produced by the carousel
generation algorithm. Since users have different information
needs, there is no single best ranking of carousels that would
satisfy all users. Our goal, thus, is to provide carousels that
many users (or perhaps the “average” user) would appreciate.
Unfortunately, having a large pool of raters order carousel
candidates by preference for each pivot entity to establish a
“gold standard” ranking is too costly (in time and money) and
has the usual pitfalls of full rankings when the items being
ranked are not amenable to simple ranking functions [9].
Therefore, we use pairwise comparisons to demonstrate that
users prefer carousels that are high-ranked by our ranking
algorithm to those that are high-ranked by the baseline
approach (and low-ranked by us) as detailed below.

We presented to raters (the same ones from the study
in Section 6.2) a side-by-side comparison of the top-ranked
carousel against an alternatively-ranked one as determined by
the state-of-art table search engine, Google’s Table Search [2].
Table Search was used for comparison because it ranks
WebTables based on query keywords and, therefore, provides
a “good” carousel (i.e., one for which it can be reasonably
expected to rank high). For each pivot entity and for each
carousel type, among the same pool of carousel candidates
generated by our carousel generation algorithm, users were
asked to compare the highest ranked carousel by our ranking
algorithm against the one belonging to the table that Table
Search determined to be the highest-ranked table. It is worth
noting that, while Table Search has no concept of downwards
and sideways, it does tend to favor tables of downward nature
to the pivot query. Furthermore, in the rare case that none
of the Table Search results coincided with a carousel, we
dropped the query from the evaluation. We also discarded
the query when the top result from Table Search was the
same as our top-ranked carousel: 5 for sideways, 48 for down-
wards. The high drop-out number for downwards is expected
because of the tendency for Table Search to find property
tables of the pivot entity query. This resulted in a remainder
of 80 sideways and 16 downwards for the ranking evaluation.

Results. The results are shown in Figure 6. For sideways,
our top-ranked carousel was considered to be better than the
Table Search-based carousel 51.25% of the time while the
latter was preferred 28.75% of the time. This is a nearly 80%
advantage for our ranking algorithm when quality differences
were perceived by the raters. A majority of raters considered
both carousels to be bad in 13.75% of the cases, and in the
remaining 6.25%, both sides were considered decent with no
preference. These ratios were very similar for downwards,
where our carousel ranking algorithm obtains a 60% advan-
tage over Table Search where it is preferred by raters 50%
of the time versus 31% for Table Search.

51%

6%

29%

14%

Sideways

50%

6%

31%

12%

Downwards Carousel Ranking Better
Both Decent
Table Search Better
Both Bad

Figure 6: Comparison of top-ranked carousel against
Table Search-based one.

6.4 Quality of Facets
Methodology. Here we evaluate if the concept representing
carousel members (“facets”) are decent. In the evaluation
from Section 6.3, raters were shown member sets in context,
enabling them to understand the underlying concept. Hence,
we assume carousel results for cases with “both decent” im-
ply reasonable facets and those with “both bad” do not.
Furthermore, we assume that cases where a carousel was
chosen over Table Search imply a decent result. We asked
4 raters (different from Section 6.3) to examine the cases
where Table Search was chosen over sideway carousels to see
if and how many of these carousels had decent quality facets
and counted only those for which at least 3 chose “yes”.

Results. Half (11 out of 22) of the carousels were considered
decent. Summing these plus the cases where a carousel was
preferred or both sides were decent gave a total of 57 cases,
i.e., 71% of the sideway carousels had decent facets. From the
sideways for tail entities, 6 of 8 facets were considered decent.
One example of a bad facet was “College Athletic Programs in
Tennessee” for Middle Tennessee State University as opposed
to “List of Colleges and Universities in Tennessee”, which
was chosen by Table Search. Here, all the metadata based
on user queries is not very rich and includes mostly sports-
related entities. For downwards, the ratio of entities with
decent facets was higher but the coverage was much lower for
tail entities. We believe this is due to lack of table content
in Wikipedia. For example, while Cargo has carousels, the
(more “drilled down”) tail entity Neo-bulk cargo does not.

6.5 Quality of Carousel Titles
Methodology. To assess the quality of the carousel titles,
we performed the following evaluation. For each pivot entity,
we presented the set of members from our top-ranked carousel
along with a multiple choice of candidate titles. Six raters
were asked to select which title(s) best explains the set, with
multiple choices allowed for cases of a tie. In addition to our
generated title from the techniques proposed in Section 4.4,
there were up to three candidate titles used as a baseline that
were chosen from the Web page containing the originating
WebTable, namely, the page title, section title, and table
caption, if available. Also, raters could choose none if they
disliked all of the candidates. The candidate titles in the
multiple choice were randomly permuted to make it difficult
to determine to which method they corresponded. In total,
this evaluation included 60 each for sideways and downwards.

Results. The results are displayed in Figure 7. For 14 side-
ways and 8 downwards, a majority of raters disliked all titles
and chose none. There were 30 sideways and 34 downwards
for which the generated title was preferred versus 16 and 20,

203

Sideways Downwards
0

6

12

18

24

30

36

N
u

m
b

e
r

o
f
E

n
ti
ti
e

s
Proposed
Page Title
Section Title
Table Caption
No Consensus
None

Figure 7: Comparison of proposed title generation
method against baselines.

respectively, for one of the baseline candidates. Note that we
grouped all baselines together as a single histogram bar with
colors breaking down the various alternatives: for sideways,
10 from page title, 3 from section title, and 3 from table
caption; for downwards, 12 from page titles, 4 from section
title, and 4 from table caption. This is being generous to the
baseline since it assumes an oracle has chosen the best from
the alternatives. In addition, there were 7 sideways and 8
downwards for which there was no majority vote, some of
which may provide additional good titles.

Upon examining the titles considered to be of poor quality,
we noticed that the tables tended to exist on pages containing
many other tables and within nested subsections of the page,
for which it was more difficult to attribute user queries to
tables. An example for downwards is “Chart Performance of
Jingle Bell Rock” for a table specifically pertaining to the
recording by Bobby Helms. We believe that more compli-
cated templates can bring improvement.

7. CONCLUSION
In this paper, we presented a study on leveraging the

WebTable corpus to provide Knowledge Exploration via two
types of queries, sideways and downwards. We discussed vari-
ous technical challenges in generating high quality Knowledge
Carousels from tables on the Web and proposed solutions,
including how to: (i) select pivot entities for the two carousel
types; (ii) create a coherent and meaningful set of entity
members for the carousels; (iii) generate a human-readable
carousel title that is concise, interesting, and consistent with
the set of members; and (iv) rank carousels based on popu-
larity and relatedness. Our experimental evaluation shows
that WebTables are a good source of Knowledge Carousels,
generating sets of members that provide meaningful and
interesting information to users. Using WebTables, we are
also able to generate complete and concise titles, and provide
a ranking function that, overall, gives relevance to interesting
carousels. To the best of our knowledge, our paper is a first
study on enabling coherent Knowledge Exploration using
data sources other than Knowledge Bases.

As future work, we plan to run our approach with other
tables on the Web. We will also study different machine
learning techniques to construct ranking models and compare
with our ranking function. Our current approach does not
take into account user-specific query signals, and we plan to
include these to develop personalized carousel rankings.

8. REFERENCES
[1] G. Agarwal, G. Kabra, and K. C.-C. Chang. Towards Rich

Query Interpretation: Walking Back and Forth for Mining
Query Templates. In WWW, 2010.

[2] S. Balakrishnan, A. Y. Halevy, B. Harb, H. Lee,
J. Madhavan, A. Rostamizadeh, W. Shen, K. Wilder, F. Wu,
and C. Yu. Applying WebTables in Practice. In CIDR, 2015.

[3] S. Bergsma and Q. I. Wang. Learning Noun Phrase Query
Segmentation. In EMNLP, 2007.

[4] R. Blanco, B. B. Cambazoglu, P. Mika, and N. Torzec.
Entity Recommendations in Web Search. In ICSW, 2013.

[5] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. WebTables: Exploring the Power of Tables on the
Web. VLDB, 1(1):538–549, 2008.

[6] N. Craswell and M. Szummer. Random Walks on the Click
Graph. In SIGIR, 2007.

[7] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Probabilistic
Query Expansion Using Query Logs. In WWW, 2002.

[8] B. B. Dalvi, W. W. Cohen, and J. Callan. WebSets:
Extracting Sets of Entities from the Web Using
Unsupervised Information Extraction. In WSDM, 2012.

[9] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
Aggregation Methods for the Web. In WWW, 2001.

[10] R. Gupta, A. Halevy, X. Wang, S. E. Whang, and F. Wu.
Biperpedia: An ontology for Search Applications. VLDB,
7(7):505–516, 2014.

[11] M. A. Hearst. Automatic Acquisition of Hyponyms from
Large Text Corpora. In CCL, 1992.

[12] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and
Searching Web Tables Using Entities, Types and
Relationships. VLDB, 3(1-2):1338–1347, 2010.

[13] T. Lin, P. Pantel, M. Gamon, A. Kannan, and A. Fuxman.
Active Objects: Actions for Entity-centric Search. In WWW,
2012.

[14] I. Miliaraki, R. Blanco, and M. Lalmas. From ”Selena
Gomez” to ”Marlon Brando”: Understanding Explorative
Entity Search. In WWW, 2015.

[15] D. Milne and I. H. Witten. Learning to Link with Wikipedia.
In CIKM, 2008.

[16] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas.
Exemplar Queries: Give Me an Example of What You Need.
VLDB, 7(5):365–376, 2014.

[17] R. Pimplikar and S. Sarawagi. Answering Table Queries on
the Web Using Column Keywords. VLDB, 5(10):908–919,
2012.

[18] J. Pound, P. Mika, and H. Zaragoza. Ad-hoc Object
Retrieval in the Web of Data. In WWW, 2010.

[19] R. Qian. Understand Your World with Bing. Official Bing
Blog, March, 2013.

[20] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy.
Clustering Query Refinements by User Intent. In WWW,
2010.

[21] A. Singhal. Introducing the Knowledge Graph: Things, not
Strings. Official Google Blog, May, 2012.

[22] A. Thalhammer, M. Knuth, and H. Sack. Evaluating Entity
Summarization using a Game-based Ground Truth. In
ICSW, 2012.

[23] C. Wang, K. Chakrabarti, Y. He, K. Ganjam, Z. Chen, and
P. A. Bernstein. Concept Expansion Using Web Tables. In
WWW, 2015.

[24] F. Wu, J. Madhavan, and A. Halevy. Identifying Aspects for
Web-search Queries. Journal of Artificial Intelligence
Research, 40(1):677–700, 2011.

[25] M. Yang, B. Ding, S. Chaudhuri, and K. Chakrabarti.
Finding Patterns in a Knowledge Base using Keywords to
Compose Table Answers. VLDB, 7(14), 2014.

[26] X. Yu, H. Ma, B.-J. P. Hsu, and J. Han. On Building Entity
Recommender Systems using User Click Log and Freebase
Knowledge. In WSDM, 2014.

204

