
DataTweener: A Demonstration of a Tweening Engine for
Incremental Visualization of Data Transforms

Meraj Khan§ Larry Xu; Arnab Nandi§ Joseph M. Hellerstein;

The Ohio State University§ University of California, Berkeley;

{khan.485,nandi.9}@osu.edu, {larry.xu,hellerstein}@berkeley.edu

ABSTRACT
With the development and advancement of new data inter-
action modalities, data exploration and analysis has become
a highly interactive process situating the user in a session
of successive queries. With rapidly changing results, it be-
comes difficult for the end user to fully comprehend trans-
formations, especially the transforms corresponding to com-
plex queries. We introduce “data tweening” as an informa-
tive way of visualizing structural data transforms, presenting
the users with a series of incremental visual representations
of a resultset transformation. We present transformations
as ordered sequences of basic structural transforms and vi-
sual cues. The sequences are generated using an automated
framework which utilizes differences between the consecutive
resultsets and queries in a query session. We evaluate the
effectiveness of tweening as a visualization method through
a user study.

1. INTRODUCTION
Data analysis tasks often involve queries which produce

large changes in results for relatively small changes in the
queries. Consider the case of the pivot transformation, a
very popular and useful transformation for analytical pur-
poses. A small change in the query, e.g., changing from the
query Q1 to Q2 causes a large change in the resultset, T1 to
T12 as seen in Figure 3.

Q1 = SELECT Id, Year , Dept
FROM StudentEnrollment E;

Q2 = SELECT * FROM (
SELECT Year , Dept
FROM StudentEnrollment E)
PIVOT (COUNT(Dept) FOR Dept IN ("ECE", "CSE"));

Such large jumps in the result space can leave the users
disoriented as they can clearly notice something changed,
but it is difficult to understand what the exact changes were
and how they were caused. In such cases, tweening (an
incremental visualization of the transformation) can help

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

UI

DataTweener Tweening Engine 

DB

Qnew

Qnew

Qnew Rnew

Qold Rold T

Figure 1: System design for a tweening-based query in-
terface.

users get the right context and make the transformation
easier to understand. This change can be brought about by
a single text query on traditional query interfaces or through
a touch gesture on modern direct-manipulation touch-based
interfaces [2, 3, 6]. Direct-manipulation interfaces require
continuous visual feedback during user interaction to keep
the user engaged [7]. Hence, for these modern interfaces,
tweening is a hard requirement.

We provide a formalized a visual grammar of basic struc-
tural transforms and visual cues in our work Data Tween-
ing [4], wherein we also presented a framework to generate
ordered sequences of micro-operations from this grammar to
encode resultset transformations. The visual grammar is de-
signed considering the design principles of animated graph-
ics [1, 9] and other works in perception research [8]. We
visualize these ordered sequences as animated transforms
on the query interface described here.

2. SYSTEM
The core of the data tweening based query interface is the

tweening engine incorporated in the client. When a user
issues a new query Qnew, the UI passes the query to the
tweening engine, which then saves the old query Qold and the
old resultset Rold, and issues Qnew to the database for exe-
cution. Upon receiving the result Rnew from the database,
the tweening engine utilizes the old and new queries and
corresponding resultsets to generate the tweening sequence
T . This tweening sequence is then visualized on the UI as an
animated transition from Rold to Rnew. This is illustrated
in Figure 1.

A tweening sequence is composed of basic transforms and
visual cues defined on table entities (list of table cells, columns,

1953



Col1 Col2 Col3

A1 A2 A3

C1 C2 C3

Col1 Col2 Col3

A1 A2 A3

C1 C2 C3

deemphasize([r3

])

Col1 Col2 Col3

A1 A2 A3

B1 B2 B3

C1 C2 C3

B1 B2 B3

insert([{r3:[B1, 
B2, B3]}, 
{r5:[B1, B2,
B3]}])

Col1 Col2 Col3

C1 C2 C3

A1 A2 A3

B1 B2 B3

B1 B2 B3

order([r1, 
r4, r2, r5, 
r3])

Col1 Col2 Col3

C1 C2 C3

A1 A2 A3

B1
B2

B3
B2

nest([(r4

c1, r5c1), 

(r4c3, 
r5c3)])

Col1 Col2 Col3

C1 C2 C3

A1 A2 A3

B1
B2

B3
B2

Col1 Col2 Col3

C1 C2 C3

A1 A2 A3

B1 B2
B3

B1 B2

unnest([{r4c1:
(2, 1)}])

Col1 Col2 Col3

C1 C2 C3

A1 A2 A3

B1 B2
B3

B1 B2

emphasize([
r3, r4, r5], 
delete)

Col1 Col2 Col3

C1 C2 C3

delete([r3, 
r4 , r5])

Col1 Col2 Col3

C1 C2 C3

separate(
[c1])

Col1 Col2 Col3

C1 C2 C3

Col1

C
2

C
o
l2

C1

C
3

C
o
l3

rotate([{cell-
group:[r1c2, 
r1c3, r2c2, r2c3

]}])

Col1 C2 Col2

C1 C3 Col3

rotate([{text:[
r1c2, r1c3, r2c2, 
r2c3 ]}])

Col1 C2 Col2

C1 C3 Col3

bridge([c1])

Figure 2: Micro-operations in the Visual Grammar

or rows). Figure 2 shows the effect of these micro-operations
on a table.

The tweening sequence is generated using a fixed rulebase
defined in Table 1. The rulebase defines the ordered se-
quences of basic transforms corresponding to changes in dif-
ferent SQL clauses. If two consecutive queries differ in mul-
tiple clauses, the tweening sequences for respective changes
are concatenated to form the complete tweening sequence.
In addition to the structural transforms, the sequences in-
clude visual cues which are inserted before / after certain
transforms for providing hints to upcoming and current trans-
forms in the sequence. The standard visual cues are inserted
into the tweening sequence as per the following rules.

 delete is preceded by emphasize, and followed by deempha-
size on the table entities on which delete is to be applied.

 insert is followed by emphasize, and then deemphasize on
the newly inserted table entities.

 order is preceded by annotate showing a note with sorting
column, and order (ascending or descending).

More difficult query changes like pivot are tweened through
a different set of rules as shown in Figure 3. The tweening
of pivot operation follows the natural logical construct of
pivot, first showing the aggregation and then following it
with the cross-tabulation. In certain cases where at least
one of the queries from a consecutive pair of queries in a
session is an aggregation query, the tweening generation be-
comes non-trivial as the tweening engine would need tuples
constituting aggregation of either or both the queries to gen-
erate a meaningful animation. In such cases, instead of is-
suing the new query Qnew to the database, the tweening en-
gine substitutes it with a simplified form of the expression-
disaggpQoldq

�
disaggpQnewq, where disaggpQq represents

the SQL query which would return the constituent tuples
forming the resultset corresponding to query Q. Our work
in [4] details how and why this works. It also covers a few
optimizations over these standard techniques which we do
not implement in this demo.

3. QUERY INTERFACE
We present a web-based query interface with two interac-

tion modalities – text and multitouch on two independent
screens. On the text interface, the user can type in the de-
sired SQL query in a text console, and see the result visual-
ized through tweening in the same window. The multitouch
interface defines intuitive touch gestures for basic relational
data transforms- select, project, aggregate, and cross-tab.
Each of these transform visualizations are composed of basic
transforms and visual cues described in the earlier section.
We restrict the type of queries that can be issued in a query
session to a subset of SQL. We require the FROM clause in
all the queries for a given session to be exactly the same.

3.1 SQL Console Interface
The users can type in a query in the console at the bottom

right of the browser window. When the user types in a query,
the visualization area is updated from the old resultset to
the new resultset through an animated transition. The users
start by issuing a SELECT query on one of the datasets
available in the database. After the first query, the user
needs to make sure they use the same FROM clause as that
in the first query in all the subsequent queries. An exception
to this rule is the pivot query which is required to have the
table being pivoted in the FROM clause expression of the
other queries in the session. Figure 4 shows the console area
and the visualization area for this interface. The result for
the query typed in the console is shown in the visualization
area. The query execution is triggered by completion of the
SQL statement in the console. If the user issues an invalid or
unsupported SQL statement, an appropriate error message
is shown on the top right corner of the screen.

3.2 Multitouch Interface
On the multitouch interface, the users can select a database

table at the start of the session. The users can then issue
queries on the selected dataset through touch gestures. For
the demonstration, we provide support for basic relational
operations along with cross-tabulation. The gestures for the
respective operations are described below:

1954



Table 1: Query-based tweening rulebase

Differing Clause Change Tweening Sequence
SELECT delete(columns), insert(columns), order(columns)
WHERE delete(rows), insert(rows), order(rows)

GROUP BY New Group By Clause
order(rows), highlight(rows, cause=aggregation), in-
sert(aggregateColumn), separate(groups), nest(rows), bridge(groups)

GROUP BY Removed Group By Clause delete(aggregateColumn), unnest(rows)

Id Year Dept

1 2012 CSE

4 2012 CSE

2 2012 ECE

3 2012 ECE

5 2012 ECE

6 2013 CSE

10 2013 CSE

11 2013 CSE

12 2013 CSE

7 2013 ECE

8 2013 ECE

9 2013 ECE

Id Year Dept

1 2012 CSE

4 2012 CSE

2 2012 ECE

3 2012 ECE

5 2012 ECE

6 2013 CSE

10 2013 CSE

11 2013 CSE

12 2013 CSE

7 2013 ECE

8 2013 ECE

9 2013 ECE

Id Year Dept

1 2012 CSE

4 2012 CSE

2 2012 ECE

3 2012 ECE

5 2012 ECE

6 2013 CSE

10 2013 CSE

11 2013 CSE

12 2013 CSE

7 2013 ECE

8 2013 ECE

9 2013 ECET1

T2 T3

Year Dept

2012 CSE

2012 CSE

2012 ECE

2012 ECE

2012 ECE

2013 CSE

2013 CSE

2013 CSE

2013 CSE

2013 ECE

2013 ECE

2013 ECE

T4

Year Dept Count

2012 CSE
2

2012 CSE

2012 ECE

32012 ECE

2012 ECE

2013 CSE

4
2013 CSE

2013 CSE

2013 CSE

2013 ECE

32013 ECE

2013 ECE

Year Dept Count

2012 CSE
2

2012 CSE

2012 ECE

32012 ECE

2012 ECE

2013 CSE

4
2013 CSE

2013 CSE

2013 CSE

2013 ECE

32013 ECE

2013 ECE

Year Dept Count

2012 CSE 2

2012 ECE 3

2013 CSE 4

2013 ECE 3

T5 T6
T8

Year Dept Count

2012 CSE 2

2012 ECE 3

2013 CSE 4

2013 ECE 3

T7

Year

2012

EC
E

C
SE

3 2

2013

EC
E

C
SE

3 4

Year

2012
ECE CSE

3 2

2013
ECE CSE

3 4 Year ECE CSE

2012 3 2

2013 3 4

Year ECE CSE

2012 3 2

2013 3 4

T9

T10

T11

T12

Figure 3: Incremental Visualization of Pivot Transfor-
mation introduced in Section 1

SQL Console

AlbumId Title ArtistId

1 Balls to the wall 2

2 Restless and Wild 2

3 Let there be Rock 1

4 Big Ones 3

5 Jagged Little Pill 4

6 Facelift 5

7 Warner 25 Anos 6

8 Audioslave 8

9 Out of Exile 8

Table Visualization Area

SELECT Album.AlbumId, 
Album.Title, Album.ArtistId
FROM Album;

Done Running Query
Done Parsing Schema
Done Loading DB
Fetching DB

Debug Info

Figure 4: SQL console query interface

 SELECTION - The query interface provides two mecha-
nisms for selection. Users can either pinch-in (Figure 5)
rows to delete them or they can specify an attribute-
specific WHERE clause predicate in the pop-up dialog
opened by tapping on a column header. The predicates
are defined in the same syntax as that in standard SQL.
For deleting rows using the pinch-in gesture, users need
to tap on two cells in the same column separated by at
least one row and swipe inwards. This would cause all the
rows in between the two touchpoints (excluding the rows
containing them) to be deleted.

 PROJECTION - The users can delete a column with the
pinch-in touch gesture (Figure 5). This works exactly like
the pinch-in gesture for selection. The users can select
two distinct cells in the same row and swipe inwards to
delete the block of columns between the two points.

 AGGREGATION - The users can initiate the aggregation
gesture by a single finger swipe directed from the measure
column to the group-by column after which they would
be prompted to pick the aggregation function. The swipe
gesture for aggregation and the final output for a sample
table is shown in Figure 6.

 CROSS-TABULATION - A cross-tab can be performed
by an arc-shaped swipe gesture originating at a cell in the
column to be transposed to the attribute headers and di-
rected upwards towards the table headers while holding
down a cell in the pivot column. The gesture is depicted
in Figure 7. To maintain a continuous visual feedback,
once the system figures out the cross-tab query during the
swipe gesture, it starts showing the transition to the new
resultset. For example, for the cross-tab query demon-
strated in Figure 7, an animated transition from T7 to
T12 in Figure 3 is played.

1955



AlbumId Title ArtistId

1 Balls to the wall 2
2 Restless and Wild 2

3 Let there be Rock 1

4 Big Ones 3

5 Jagged Little Pill 4

AlbumId Title ArtistId

1 Balls to the wall 2

2 Restless and Wild 2

3 Let there be Rock 1

4 Big Ones 3

5 Jagged Little Pill 4

Figure 5: Pinch-in gesture for SELECTION and PRO-
JECTION on multitouch interface

AlbumId ArtistId

1 1

2 1

3 2

4 3

5 4

6 5

7 6

8 8

9 8

Pick Aggregate Function

COUNT MAX MIN AVG

ArtistId Count

1 2

2 1

3 1

4 1

5 1

6 1

8 2
Figure 6: Aggregation on multitouch interface

EnrollmentYear Dept Count

2012 CSE 2

2012 ECE 3

2013 CSE 4

2013 ECE 3

EnrollmentYear CSE ECE

2012 2 3

2013 4 3

Figure 7: Cross-tabulation on multitouch interface

4. USER STUDY
To study the effectiveness of tweening as a visualization

method and its role in helping people understand complex
transformations, we conducted a user study [5]. We re-
cruited 20 undergraduate and graduate students from dif-
ferent backgrounds to participate in an in-persosn study.
The users were asked to rate our pivot tweening sequence
for clarity and understandability on a scale of 0 � 10. We
also asked them if the tweening helped them understand the
pivot transformation better. Figure 8 shows the rating for
pivot tweening by each user. 18 out of the 20 users said they
found tweening helpful in understanding pivot. The users
rated the tweening sequence high both for clarity (mean -
8.23, standard error - 1.24) and understandability (mean -
8.48, standard error - 1.31) Through this study, we conclude
users find tweening helpful in understanding complex trans-
formations and hence is an effective visualization method.

5. DEMONSTRATION
For the demonstration, we will present a web app on a

touch-screen laptop. The users can opt to either use the
console-based interface or the multitouch interface. The
users can select a publicly available datasets hosted on an
in-browser sqlite database. Users can see complex data
transformations broken down and visualized into simple and
smooth transitions between distinct resultsets. This is in

0	

2	

4	

6	

8	

10	

12	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Ra
.n

g	

User	

Clarity	 Understandability	

Figure 8: User rating for pivot tweening

contrast to the standard sql resultset visualization where the
changes in resultsets are abrupt and discontinuous. For ex-
ample, the pivot transformation corresponding to a change
in query Q1 to Q2 introduced in Section 1 would be displayed
as an animated transition stepping through the frames shown
in Figure 3. The same transformation on the standard query
interface would be displayed as an abrupt change from T1

to T12. A demo video (http://go.osu.edu/datatweener)
is provided for elucidation.

6. CONCLUSION AND FUTURE WORK
This work describes an initial implementation of a query

interface with support for data-tweening. Users can get real-
time feedback in the form of animated transition for a subset
of SQL queries. We have shown that the visual grammar has
the expressivity to encode a wider SQL subset than sup-
ported by the current implementation. In the future, we
plan to build a full-fledged query interface with tweening
support, and add playback capability for all actions. We
also plan a comparative study to see if users perform any
better on data analysis tasks with a tweening enabled query
interface over traditional query interfaces. Another interest-
ing future work is extending tweening to very large datasets.
Acknowledgements We acknowledge the support of the
U.S. National Science Foundation under awards IIS-1422977,
IIS-1527779, CAREER IIS-1453582, and IIS-1564351.

7. REFERENCES
[1] Heer, Jeffrey and Robertson, George G. Animated

Transitions in Statistical Data Graphics. TVCG, pages
1240–1247, 2007.

[2] Idreos, Stratos and Liarou, Erietta. dbTouch: Analytics
at your Fingertips. CIDR, 2013.

[3] Jiang, Lilong and Nandi, Arnab. Designing interactive
query interfaces to teach database systems in the
classroom. SIGCHI, pages 1479–1482, 2015.

[4] Khan, Meraj and Xu, Larry, and Nandi, Arnab and
Hellerstein, Joseph M. Data tweening: Incremental
visualization of data transforms. VLDB, pages 661–672,
2017.

[5] Kosara, Robert and others. Thoughts on User Studies:
Why, How, and When? CGA, pages 20–25, 2003.

[6] Nandi, Arnab and Jiang, Lilong and Mandel, Michael.
Gestural Query Specification. VLDB, pages 289–300,
2013.

[7] Shneiderman, Ben. Direct Manipulation: A Step
Beyond Programming Languages. Sparks of innovation
in HCI, page 17, 1993.

[8] Todorovic, Dejan. Gestalt Principles. Scholarpedia,
2008.

[9] Tversky, Barbara and Morrison, and Julie Bauer and
Betrancourt, Mireille. Animation: Can It Facilitate?
IJHCS, pages 247–262, 2002.

1956


