
A Demonstration of STHadoop: A MapReduce Framework
for Big Spatiotemporal Data *

Louai Alarabi
Department of Computer Science and

Engineering
University of Minnesota, MN, USA

louai@cs.umn.edu

Mohamed F. Mokbel
Department of Computer Science and

Engineering
University of Minnesota, MN, USA

mokbel@cs.umn.edu

ABSTRACT

This demo presents ST-Hadoop; the first full-fledged open-source

MapReduce framework with a native support for spatio-temporal

data. ST-Hadoop injects spatio-temporal awareness in the Hadoop

base code, which results in achieving order(s) of magnitude better

performance than Hadoop and SpatialHadoop when dealing with

spatio-temporal data and queries. The key idea behind ST-Hadoop

is its ability in indexing spatio-temporal data within Hadoop Dis-

tributed File System (HDFS). A real system prototype of ST-

Hadoop, running on a local cluster of 24 machines, is demonstrated

with two big-spatio-temporal datasets of Twitter and NYC Taxi

data, each of around one billion records.

1. INTRODUCTION
Processing big spatio-temporal data has gained much interest in

the last few years, mainly due to the emerging and popularity of

devices and applications that create them in large-scale. Examples

of such data include Taxi trajectory data that archive over 1.1 Bil-

lion trajectories [8], social network data (e.g., Twitter has over 500

Million new tweets everyday) [11], and NASA Satellite data that

produces 4TB of data every day [6, 7]. The current efforts to pro-

cess big spatio-temporal data on MapReduce environment are ei-

ther: (a) run on-top of Hadoop framework [4, 5, 10]. However, us-

ing Hadoop as-is results in a sub-performance for spatio-temporal

applications that need indexing, which is in contrast to Hadoop that

organizes its data as non-indexed heap files, or (b) run as an ad-hoc

operation using big spatial data systems e.g., SHAHED system [3]

is built on top of SpatialHadoop [2]. However, big spatial data

systems only support spatial indexing, which is not efficient in sup-

porting spatio-temporal queries.

This demo presents ST-Hadoop; the first full-fledged open-

source MapReduce framework with a native support for spatio-

temporal data, available to download from [9]. ST-Hadoop is a

comprehensive extension to Hadoop and SpatialHadoop [2] that

∗This work is partially supported by the National Science Foundation,
USA, under Grants IIS-1525953, CNS-1512877, IIS-1218168, and by a
scholarship from the College of Computers & Information Systems, Umm
Al-Qura University, Makkah, Saudi Arabia.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 21508097/17/08.

Objects = LOAD ’points’ AS (id:int, Location:POINT,

, time:t);

Result = FILTER Objects BY

Overlaps (Location, Rectangle(x1, y1, x2, y2))

AND t < t2 AND t > t1;

(a) Range query in SpatialHadoop

Objects = LOAD ’points’ AS (id:int, STPoint:(Location,Time));

Result = FILTER Objects BY

Overlaps (STPoint,

Rectangle(x1, y1, x2, y2),Interval (t1, t2));

(b) Range query in ST-Hadoop

Figure 1: Range query in SpatialHadoop vs. ST-Hadoop

injects spatio-temporal data awareness inside each of their layers,

mainly, indexing, operatiosn, and language layers. ST-Hadoop is

compatible with to SpatialHadoop and Hadoop, where programs

are coded as map and reduce functions. However, running a pro-

gram that deals with spatio-temporal data using ST-Hadoop will

have order(s) of magnitude better performance than Hadoop and

SpatialHadoop. Figures 1(a) and 1(b) show how to express a spatio-

temporal range query in SpatialHadoop and ST-Hadoop, respec-

tively. The query finds all points within a certain rectangular area

represented by two corner points 〈x1, y1〉 , 〈x2, y2〉, and a within

a time interval 〈t1,t2〉. Running this query on a dataset of 10TB

and a cluster of 24 nodes takes 200 seconds on SpatialHadoop as

opposed to only one second on ST-Hadoop. The main reason is that

SpatialHadoop will exploit its built-in spatial index and then scan

all the entries that overlap with the spatial predicate to find the data

entries that overlap with the temporal predicate. Meanwhile, ST-

Hadoop exploits its built-in spatio-temporal index to only retrieve

the data entries that overlap with both the spatial and temporal pred-

icates, and hence achieves two orders of magnitude improvement

over SpatialHadoop.

The key idea behind the performance gain of ST-Hadoop is its

ability to load the data in Hadoop Distributed File System (HDFS)

in a way that mimics spatio-temporal index structures. Hence, in-

coming spatio-temporal queries can have minimal data access to

retrieve the query answer. ST-Hadoop is shipped with support for

two fundamental spatio-temporal queries, namely, spatio-temporal

range and join queries. However, ST-Hadoop is extensible to sup-

port a myriad of other spatio-temporal operations, and we plan

to show the demo audience how to build applications on top of

what we have for now. We envision that ST-Hadoop will act as

a research vehicle where developers, practitioners, and researchers

worldwide, can either use directly or enrich the system by con-

tributing their operations and analysis techniques inside. We will

demonstrate a real system prototype of ST-Hadoop, running on a

local cluster of 24 machines, with two big-spatio-temporal datasets

of Twitter and NYC Taxi data, each of around one billion records.

1961

Indexing

MapReduce

Operations

MasterSlaves

Map/Reduce

Tasks

Configured MapReduce Job

Spatio-temporal

Queries

Query

Results

Index Information

Storage/Processing

Nodes

Language

Spatio-temporal

Operations

System AdminCasual UserDeveloper

Config

Files

File Data

System

Parameters

SpatioTemporalFileSplitter

SpatioTemporalRecordReader

Time-slicing

Data-slicing

 Multi-Resolution

ST-RangeQuery, ST-JOIN

ST-Aggregates

 TIME

INTERVAL

Figure 2: ST-Hadoop system architecture

2. STHadoop ARCHITECTURE
Figure 2 gives the high level architecture of our ST-Hadoop sys-

tem; as first full-fledged open-source MapReduce framework with

a built-in support for spatio-temporal data. ST-Hadoop cluster con-

tains one master node that breaks a map-reduce job into smaller

tasks, carried out by slave nodes. Three types of users interact with

ST-Hadoop: (1) Casual users who access ST-Hadoop through its

language to process their datasets. (2) Developers, who have a

deeper understanding of the system internals and can implement

new operations, and (3) Administrators, who can tune up the sys-

tem through adjusting system parameters in the configuration files

provided with ST-Hadoop installation. ST-Hadoop adopts a layered

design of four main layers, namely, language, Indexing, MapRe-

duce, and operations layers, described briefly below:

Language Layer: This layer extends Pigeon language [1] to sup-

ports spatio-temporal data types that are associated with (i.e., TIME

and INTERVAL) and operations (e.g., OVERLAP, and JOIN).

Indexing Layer: ST-Hadoop temporally loads and divides data

across computation nodes in the HDFS. In this layer ST-Hadoop

reads a random sample obtained from the whole data, bulk loads

this sample temporary in the master node memory to build its

spatio-temporal index, and then uses the spatio-temporal bound-

aries of leaves-nodes to assign data records with its overlap par-

tition(s). ST-Hadoop sacrifices storage to achieve more efficient

performance in supporting spatio-temporal operations, by replicat-

ing its index into temporal hierarchy index structure that consist of

two-level indexing of temporal and then spatial.

MapReduce Layer: ST-Hadoop changes the implementation of

SpatialHadoop MapReduce layer, which enables ST-Hadoop to

exploits its spatio-temporal indexes and realizes spatio-temporal

predicates. We are not going to discuss this layer any further.

Operations Layer: This layer encapsulates the implementation of

two common spatio-temporal operations, namely, spatio-temporal

range query, and spatio-temporal join queries. More operations can

be added to this layer by ST-Hadoop developers.

3. LANGUAGE LAYER
ST-Hadoop does not provide a completely new language. In-

stead, it extends Pigeon [1] by adding spatio-temporal data types,

functions, and operations. Spatio-temporal data types (STPoint and

Interval) are used to define the schema of input files upon their

loading process. The following code snippet loads NYC taxi tra-

jectories from ’NYC’ file with a column of type STPoints.

trajectory = LOAD ’NYC’ as

(id:int, STPoint(loc:point, time:timestamp));

trajectory and NYC are the paths to the non-indexed heap

file and the destination indexed file, respectively. loc and time

are the columns that specify both spatial and temporal attributes.

ST-Hadoop encapsulate the implementation of two common

spatio-temporal operations, (e.g., range query and Join query), that

take the advantages of the spatio-temporal index. The following

example retrieves all cars in State Fair area represented by it’s min-

imum boundary rectangle during the time interval of August 25th

and September 6th from trajectory indexed file.

cars = FILTER trajectory

BY overlap(

RECTANGLE(x1,y1,x2,y2),

INTERVAL(08-25-2016, 09-6-2016));

4. INDEXING LAYER
The key idea behind the performance gain of ST-Hadoop is the

idea of its indexing, where data are temporally loaded and divided

across computation nodes. Figure 3 Illustrates the abstract idea

of indexing in ST-Hadoop, that consist of two-level indexing of

temporal and then spatial. ST-Hadoop replicates this two-level in-

dexing into multiple layers with a different granularity. In each

layer, the whole dataset is replicated and spatiotemporally parti-

tioned. ST-Hadoop sacrifices storage to achieve a more efficient

performance. ST-Hadoop index input files through the following

three consecutive phases, as described in details below:

Phase 1: Sampling. The objective of this phase is to estimate the

spatial distribution of objects and how that distribution evolves over

time. ST-Hadoop employs a Map-Reduce job to efficiently read a

sample through scanning all data records. We fit the sample to an

in-memory simple data structure of a length (L), that is an equal

to the number of HDFS blocks, which can be directly calculated

from the equation L = (Z/B), where Z is the total size of input

files, and B is the HDFS block capacity (e.g., 128 MB). The size

of the random sample is set to a default ratio of 1% of the input

file, with a maximum size of 100MB to ensure it fits in the memory

of the Master node. Once the sample is read, we sort the sample

in a chronological order to their time, and within individual time

instance in the sample, we estimate the size and the number of data

records associated with each time instance.

Phase 2: Bulk Loading. The input of this phase is the sample

loaded into memory, and the output of this phase is the spatio-

temporal boundaries of ST-Hadoop index. The bulk loading index

can be constructed as following:

• Temporal slicing. In this step we determine the temporal bound-

aries by slicing the in-memory sample that represents the data in

HDFS into multiple intervals, to efficiently support a fast random

access to a sequence of objects bounded by the same time interval.

ST-Hadoop employs two slicing techniques, namely, Time-Based

and Data-Based. The Time-Based technique slices the sample into

multiple splits, that are uniformly on their time intervals. Figure 4

shows the general idea of this type of slicing, where ST-Hadoop

splits a year of data into the interval of one month. While the time

interval of the slices is fixed, the size of slices varies according to

the time distribution of the data. Meanwhile, in Data-Based slicing

the sample is sliced to the degree that all sub-splits are uniformly

in their data size. All slices hold the same number of data blocks,

while their time intervals are disjointed. Figure 5 depicts the key

concept such that a slice1 and slicen are equally in size, but

they differs in their interval coverage.

1962

Temporal Slicing

Temporal

Hierarchy Index

Spatial Indexing

Bulk-loading

Bulk-loading Bulk-loading

Figure 3: Indexing in ST-Hadoop

• Spatial Indexing. This step ST-Hadoop determines the spatial

boundaries of the data within each temporal slice. ST-Hadoop

needs to find the spatial boundaries of each temporal slice inde-

pendently, such decision handles a case where there are a great

disparity in spatial distribution between slices. ST-Hadoop takes

the advantages of applying different types of spatial bulk loading

techniques that are already implemented in SpatialHadoop such as

Grid, R-tree-like, Quad-tree, and Kd-tree. By the end of this step,

ST-Hadoop bulk loaded the spatio-temporal boundaries for the data

in its smallest granularity, as shown in the lowermost of Figure 3.

• Temporal Hierarchy Indexing. For an efficient retrieval of spatio-

temporal objects, ST-Hadoop bulk loads its two-level indexing of

temporal and then spatial, into temporal hierarchy index. This or-

thogonal structure can be described as a temporal hierarchy for

spatio-temporal indices as shown in uppermost of Figure 3. ST-

Hadoop combines a set of temporal slices from the lowermost layer

to create a slice with a larger time interval. For simplicity let’s as-

sume the lowermost layer is sliced into days, then ST-Hadoop com-

bines a set days to create a week-slice in the layer above. Likewise,

ST-Hadoop reads a sample from the merged set to bulk load its

spatio-temporal index. Note that this step is necessary as the distri-

bution of objects vary from day to day. Once ST-Hadoop receives

the sample, it determines the spatial boundaries. For each layer in

the hierarchical index, ST-Hadoop iterates this bulk loading tech-

nique. Each iteration produces a set of a two-level indexing with

different time resolution, such as weeks, months, and years. A sys-

tem parameter can be tuned by ST-Hadoop administrator to choose

the number of layers and their resolution. By default, ST-Hadoop

set its temporal hierarchy index to four layers with a resolution of

days, weeks, months and years, respectively. ST-Hadoop maintains

its hierarchical index on a regular basis, using a single map-reduce

job to reflect newly received data on the index.

Phase 3: Scanning. Given the spatio-temporal boundaries in all

layers inside the temporal hierarchy index, we initiate a map-reduce

job that scans through the input file, physically partitions HDFS

block, and assign records to all overlapping partitions. ST-Hadoop

partitions are determined by bulk loaded spatio-temporal bound-

aries, which they are being cloned from all layers inside the tem-

poral hierarchical index structure. For each record r assigned to a

partition p, the map function writes an intermediate pair 〈p, r〉 Such

pairs are then grouped by p and sent to the reduce function to write

the physical partitions to the HDFS.

5. OPERATION LAYER
The combination of the temporally load balancing proposed in

the spatio-temporal indexing layer with the temporal hierarchy

structures gives the core novelty of ST-Hadoop, in which it enables

the possibility of realizing many spatio-temporal operations. In this

Size

 (GB)

1

....

Figure 4: Time-Slice

HDFS

Figure 5: Data-Slice

demonstration, we show the implementations of spatio-temporal

range and join queries as case studies of how to exploit the new in-

dexing in ST-Hadoop. Other spatio-temporal operations, e.g., kNN,

reverse nearest neighbor, and aggregation queries, can also be real-

ized in ST-Hadoop following a similar approach.

Spatio-temporal Range query: ST-Hadoop exploits its temporal

hierarchy index to select partitions that overlap with the temporal

and spatial query predicates. For example, consider ”finding geo-

tagged news in California area during the last three months” . The

answer of this query can be obtained from any level (i.e., resolu-

tion) in the temporal hierarchy index, such as day-level, week-level,

or month-level. The main challenge in this step is that the parti-

tions in each level cover the whole time and space, which means

the query can be answered from any level individually or we can

mix and match partitions from different resolutions. Depending

on which level are used, there is a tradeoff between the number

of matched partitions and the time needed to process each one of

them. One extreme, if the highest-resolution that has a short inter-

val, e.g. daily level, there will be too many partitions to process

with a little work to handle each one. On the other extreme, if the

lowest-resolution with long intervals, e.g., monthly level, is used,

only a few partitions selected, but an extra effort required to process

them. ST-Hadoop balance this tradeoff by employing an algorithm

to computes the coverage ratio, which is defined as the ratio be-

tween the time interval of a partition and the query predicates.

Spatio-temporal Join: Given two indexed dataset R and S of

spatio-temporal records, and a spatio-temporal predicate θ. Spatio-

temporal join joins two spatio-temporal dataset R.S on spatio-

temporal predicate θ. For example, one might need to understand

the relationship between the birds death and the existence of hu-

mans around them, which can be described as ”find every pairs

from bird and human trajectories that are close to each other within

a distance of 1 mile during the last week”. ST-Hadoop join algo-

rithm run a map-reduce in two steps, hash and join, respectively. In

the hash step, a map function scans overlapped partitions from the

two input files, and hashes each spatio-temporal records to inter-

mediate buckets. The spatio-temporal boundaries of intermediate

buckets created by ST-Hadoop as non-overlapping buckets. The

hash function assigns each point in the left dataset, r ∈ R, to all

buckets within an Euclidean distance d and temporal distance t,
and assigns each point in the right dataset, s ∈ S, to the one bucket

which encloses the point s. This ensures that a pair of matching

records 〈r, s〉 are assigned to at least one common bucket. In the

join step, each bucket is assigned to one reducer which performs

a traditional in-memory spatio-temporal join. We use the plane-

sweep algorithm which can be generalized to multidimensional

space. Since the set S is not replicated, each pair is generated by

exactly one reducer and no duplicate avoidance step is necessary.

1963

ST-Hadoop Demonstration

Figure 6: ST-Hadoop Front Interface

6. DEMONSTRATION SCENARIO
We deploy the real system prototype of ST-Hadoop download-

able at [9] on a dedicated remote cluster of 24 nodes. The cluster is

loaded with two datasets Twitter and NYC taxi where each includes

one billion records, with a total size of 10TB and 300GB, respec-

tively. The attendee can access the cluster and trigger the execution

of their spatio-temporal queries through a nicely designed front-

end. For a comparision the query will be submitted to ST-Hadoop,

SpatialHadoop, and Hadoop frameworks, respectively. The three

frameworks installed on a separate cluster with the same configu-

ration and dataset.

Figure 6 depicts the system interface, which is a querying and vi-

sualization tool to show the usability and efficiency of ST-Hadoop.

In this demonstration, we will demonstrate two scenarios, (Sce-

nario 1) will show the usability and running process of ST-Hadoop,

and the other one will reveal to the audience a live comparison be-

tween ST-Hadoop, SpatialHadoop, and Hadoop (Scenario 2).

6.1 Scenario 1: Spatiotemporal Queries
Conference audience interact with ST-Hadoop by issuing two

spatio-temporal queries (i.e., range and join) as shown in the fornt-

end interface in Figure 6. This interface facilitates the ST-Hadoop

user to provide, (1) spatial range, (2) time range, (3) operation, and

(4) switch between dataset. For example, a user requests a spatio-

temporal range query that ”finds all objects in downtown Califor-

nia during last weeks” . The user can freely navigates through the

query answer on the front-end map. We will show how ST-Hadoop

performs spatio-temporal join to ”finds similar pairs of objects in

downtown Minneapolis, such that pair is close to each other by

a spatial threshold d (1 Mile) and within the temporal duration t
(Jun-Sep)” . These are two scenarios can be tuned by audience to

show the powerful ability of ST-Hadoop to perform spatio-temporal

operations efficiently; even with a more complex query such as the

spatio-temporal join.

6.2 Scenario 2: Comparison with (Spatial)
Hadoop

Conference attendees can see the progress of the submitted query

on all three system side-by-side as shown in Figure 7. This admin-

istration interface lists the progress of all running jobs as well as all

completed job. To contrast the index of ST-Hadoop with Spatial-

Hadoop and Hadoop, the audience can grasp an overview about the

processed partitions. As shown in Figure 8, a comparison between

Figure 7: ST-Hadoop Jobs Progress

http://www-users.cs.umn.edu/~louai/demo-sthadoop/

ST-Hadoop SpatialHadoop Hadoop

Number of Partitions

-

-

-

-

-

-

-

-

-

-

-

 Scanned Objects

-

-

-

-

-

-

-

-

-

-

-

 Processing Refinement

3

72

9K

900K

1B
81,920

Figure 8: Partitions Visualization

the selected partitions from all three frameworks will be dynami-

cally displayed on the screen as a bar chart. Likewise, the number

of scanned objects and the percentage of refinement depicted in bar

and pie chart, respectively. Since the data inside Hadoop treated

as non-indexed heap file, it will always be the case that all par-

titions will be processed for any task. Meanwhile, SpatialHadoop

equipped with its spatial indexes can choose a fewer number of par-

titions to process, but it fails to realize the temporal locality of the

data. On the other hand, ST-Hadoop index realizes the spatial and

temporal locality of its indexed data. Thus, ST-Hadoop will utilize

to minimize the number of selected partitions compared to other

frameworks, which plays a crucial role in query processing.

7. REFERENCES
[1] A. Eldawy and M. F. Mokbel. Pigeon: A spatial mapreduce language. In ICDE,

pages 1242–1245, 2014.

[2] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce Framework for

Spatial Data. In ICDE, pages 1352–1363, 2015.

[3] A. Eldawy, M. F. Mokbel, S. Alharthi, A. Alzaidy, K. Tarek, and S. Ghani.

SHAHED: A MapReduce-based System for Querying and Visualizing

Spatio-temporal Satellite Data. In ICDE, pages 1585–1596, 2015.

[4] Z. Li, F. Hu, J. L. Schnase, D. Q. Duffy, T. Lee, M. K. Bowen, and C. Yang. A

spatiotemporal indexing approach for efficient processing of big array-based

climate data with mapreduce. International Journal of Geographical

Information Science, pages 17–35, 2017.

[5] Q. Ma, B. Yang, W. Qian, and A. Zhou. Query Processing of Massive

Trajectory Data Based on MapReduce. In CLOUDDB, pages 9–16, 2009.

[6] Land Process Distributed Active Archive Center, Mar. 2015.

https://lpdaac.usgs.gov/about.

[7] Data from NASA’s Missions, Research, and Activities, 2017.

http://www.nasa.gov/open/data.html.

[8] Data from NYC Taxi and Limosuine Commission, 2017.

http://www.nyc.gov/html/tlc/.

[9] http://st-hadoop.cs.umn.edu/.

[10] H. Tan, W. Luo, and L. M. Ni. Clost: a hadoop-based storage system for big

spatio-temporal data analytics. In CIKM, pages 2139–2143, 2012.

[11] Twitter. The About webpage., 2017.

https://about.twitter.com/company.

1964

